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Abstract Although brain temperature has neurobiological and clinical importance, it remains

unclear which factors contribute to its daily dynamics and to what extent. Using a statistical

approach, we previously demonstrated that hourly brain temperature values co-varied strongly

with time spent awake (Hoekstra et al., 2019). Here we develop and make available a mathematical

tool to simulate and predict cortical temperature in mice based on a 4-s sleep–wake sequence. Our

model estimated cortical temperature with remarkable precision and accounted for 91% of the

variance based on three factors: sleep–wake sequence, time-of-day (‘circadian’), and a novel ‘prior

wake prevalence’ factor, contributing with 74%, 9%, and 43%, respectively (including shared

variance). We applied these optimized parameters to an independent cohort of mice and predicted

cortical temperature with similar accuracy. This model confirms the profound influence of sleep–

wake state on brain temperature, and can be harnessed to differentiate between thermoregulatory

and sleep–wake-driven effects in experiments affecting both.

Introduction
Brain temperature is a fundamental physiological variable that can affect numerous neural processes,

from basic properties such as nerve conduction velocity, passive membrane potential, and synaptic

transmission, to global regulation of brain activity (Wang et al., 2014). Specifically, fluctuations

within the physiological temperature range (33–37˚C in rodents) have been shown to modify channel

kinetics (Rosen, 2001), reuptake of neurotransmitters by transporters (Xie et al., 2000), miniature

postsynaptic currents (Simkus and Stricker, 2002), the neuronal firing rates of single neurons

(Tryba and Ramirez, 2004; Guatteo et al., 2005), and neuronal synchronization (Csernai et al.,

2019). Conversely, neuronal activity is one of the main determinants of brain temperature

(Kiyatkin et al., 2002). Thus, brain activity both affects and is affected by fluctuations in tempera-

ture. In clinical settings, brain temperature increases in common pathological conditions such as

stroke or head injury (Mrozek et al., 2012), and temperature is deliberately lowered in interventions

to protect the brain from hypoxic events (Faridar et al., 2011). Since heat plays a crucial role in neu-

ronal functioning (Kiyatkin, 2010; Alonso and Marder, 2020) and brain tissue is very sensitive to

thermal damage (Yarmolenko et al., 2011), it is crucial to understand which factors contribute to

changes in brain temperature under normal circumstances.

Generally, brain temperature is considered to be the net result of heat production, which is deter-

mined by brain metabolism, and heat dissipation, which is determined by brain blood flow and the

brain-to-blood temperature gradient (Hayward and Baker, 1969). The sleep–wake states, non–

rapid-eye-movement (NREM) sleep, rapid-eye-movement (REM) sleep, and wakefulness, define brain

states associated with specific neuronal activities, oxygen consumption, and metabolism (Nir et al.,

2013). The latter two (active) brain states are accompanied by increases in brain temperature,

whereas NREM sleep evidences a decrease (Hayward and Baker, 1969; Obál et al., 1985;
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Franken et al., 1992a; Hoekstra et al., 2019). Besides decreased heat production, increased heat

dissipation further contributes to the decreases in brain temperature during NREM sleep: (i)

although the global blood flow to the brain decreases in absolute terms, it increases when taking

the considerable drop in oxygen consumption during NREM sleep into account (McAvoy et al.,

2019), and (ii) since body temperature is actively down-regulated through peripheral vasodilation

(and perspiration in humans) after sleep onset, the brain-to-blood temperature gradient increases

(Szymusiak, 2018).

By quantifying the relationship between sleep–wake state and brain temperature we reported

that the sleep–wake distribution explains 84% of the variance in brain temperature in the rat

(Franken et al., 1992b), a finding we recently replicated in the mouse (Hoekstra et al., 2019). How-

ever, the 1992 analysis has been criticized for overestimating the impact of sleep–wake state by hav-

ing averaged over hourly intervals and ignoring other contributing factors such as locomotion

(Heller et al., 2011), and the sequential nature of assessing the contribution of sleep–wake and cir-

cadian-related factors (Witting and Mirmiran, 1997). Although recent studies have found the contri-

bution of locomotor activity to brain temperature to be negligible (Shirey et al., 2015;

Hoekstra et al., 2019) and confirmed that circadian factors do not contribute significantly to brain

temperature (Baker et al., 2005), the concerns underlying the use of hourly values and a fixed order

of assessing the contributing factors have not been directly addressed.

To resolve these outstanding issues, we drew on a recent dataset (Hoekstra et al., 2019) to

develop a mathematical model that simulates changes in brain temperature at the high time resolu-

tion required to account for its rapid fluctuations during sleep–wake state transitions. This new

model explained 91% of the variance in brain temperature and reduced the model error to 0.26˚C

down from an observed dynamic range of 3.13˚C. In addition to accurately capturing the short-term

dynamics associated with sleep–wake transitions, the model revealed prior wake prevalence as a

novel, longer-term factor altering the range of values within which brain temperature is regulated.

The circadian factor explained 9.3% of the overall variance in brain temperature, of which 7.6% was

redundant with the contribution of the other two factors. Finally, we show that the model can accu-

rately predict brain temperature dynamics in an independent cohort of mice using the parameter

settings obtained in the main experiment. This model thus, contributes to better documenting and

quantifying the fundamental dependence of brain temperature on the sleep–wake state.

Results
Wakefulness and REM sleep can be considered to be the opposite of NREM sleep in brain tempera-

ture dynamics. In the cortical activated states of wakefulness and REM sleep, brain temperature

increases, whereas during NREM sleep when cortical input is reduced and neuronal activity becomes

synchronized, temperature decreases (Obál et al., 1985; Franken et al., 1992a). Therefore, based

on a previously described model in the rat (Franken et al., 1992b), we used the following exponen-

tial equations to iteratively simulate changes of brain temperature in the mouse:

During waking=REM sleep :Tt ¼U�ðU�Tt�1Þ � e
�Dt

tWR

During NREM sleep :Tt ¼ L�ðTt�1�LÞ � e
�Dt

tN

With a time step (Dt) of 0.0011 hr (i.e., the 4-s epochs at which sleep–wake states were scored),

the current temperature (Tt) was calculated based on the preceding temperature (Tt�1) according to

the distance from an upper asymptote (U) and time constant t WR when the mouse was awake or in

REM sleep at time t or, when in NREM sleep, according to the distance from the lower asymptote

(L) and time constant t N . The four free parameters of this basic model were the two time constants

(in hours) and the values of the two asymptotes (in ˚C) between which brain temperature could vary.

Drawing on previous results and assumptions (Franken et al., 1992b), we initially set the values for

both time constants to 0.47 hr, the lower and upper asymptotes to the minimum and maximum tem-

peratures reached in each animal during the 96-hr recording, respectively, and the initial tempera-

ture (T0) to the average temperature in the first 5 min of the recording. However, the following
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features were further developed to improve the simulation: (1) as already mentioned above, we

defined 2 different time constants to represent the increase and decrease in temperature, instead of

just 1 for both processes, (2) the asymptote values were free parameters, (3) all free parameters

were simultaneously optimized for each mouse, (4) optimization took into consideration the entire

recording, including sleep deprivation and recovery, instead of the baseline period alone, and (5)

performance was assessed at a sub-minute time scale; that is, the 4-s resolution at which the sleep–

wake states were determined, rather than at an hourly resolution.

Based on this more refined model, referred to as Model 0, we simulated the temperature record-

ings based on the individual sleep–wake state sequence data (Figure 1), with an average correlation

coefficient (r) of 0.91, and a median root mean square (RMS) error of 0.36˚C across animals. Gener-

ally, the time constant of wakefulness was higher than the one of NREM sleep (i.e., in 9 out of 11

mice; with median of 0.33 vs. 0.23 hr), indicating that the rate of increase of cortical temperature

during wakefulness was slower than its decrease in NREM sleep. The difference between the upper

and lower asymptotes varied by roughly 3˚C, with the upper asymptotes consistently near the tem-

perature values observed during SD (Supplementary file 1).

However, the simulation presented deviations from the measured cortical temperature, especially

when higher temperatures were reached during the light phase and sometimes around lower values

during the dark phase (see arrows in Figure 1A). When we examined the time course of the average

hourly residuals of the model across animals (Figure 1B), we found a systematic fluctuation in the fit;

during the baseline light periods simulated values were too high and during the dark periods too

low, compared to the recorded temperature values. The residual RMS (i.e., the RMS of the averaged

hourly residuals) amounted to 0.19˚C. However, the residuals during sleep deprivation (SD) which

occurred during the light period resembled those observed during the dark period, which argues

against a simple circadian modulation. Although incorporating a circadian modulation of both

asymptotes as previously done in the rat (Franken et al., 1992b) somewhat improved the overall fit

(RMS error = 0.32˚C; residual RMS = 0.15˚C), it did not abolish the apparent periodicity in the base-

line residuals in mice and resulted in an even poorer fit during SD (Figure 1—figure supplement 1).

Given the time-of-day independent similarity between the residuals during the SD and the dark

phase, an alternative factor that could contribute to a temporary upregulation of brain temperature

(beyond the sleep–wake state- driven changes already captured by the simulation) could be the prior

periods of sustained wakefulness (Obermeyer et al., 1991). To explore this possibility, instead of a

circadian modulation, we changed the asymptotes according to the prevalence of wakefulness (and

REM sleep, for consistency) prior to each data point. We refer to this factor as ‘prior

wake prevalence’. The window size over which prior wake prevalence was calculated, as well as the

time lag for affecting the asymptotes, were kept as free parameters. Modulation of the asymptotes

according to prior wake prevalence considerably improved the fit (r = 0.95; RMS error = 0.28˚C; Fig-

ure 2) and removed most of the excessive overestimations during light periods, as well as the under-

estimation of temperature during the dark periods (see arrows in Figure 2A). We found that the

optimal window size was 4.0 hr, with a shift of 1.5 hr prior to the time point under consideration,

and a scaling factor of 1.2˚C. The latter parameter represents the maximum possible modulation of

either asymptote (i.e., 100% wakefulness or 100% NREM sleep during a given 4.0 hr window;

Supplementary file 2). We optimized all the parameters simultaneously in this new model (i.e.,

Model 1) and found that all of the values obtained with Model 0 changed significantly (p�0.002; F

(2,10) � 9.98, one-way repeated measures analysis of variance [rANOVA]): the lower asymptote

increased, leading to a substantial reduction in the inter-asymptote temperature range from 3.1˚C to

2.0˚C, which might have contributed to the substantial shortening of the time constants (0.18 and

0.13 hr for wake/REM sleep and NREM sleep, respectively), as they need to be faster to compensate

for the reduced distance from the asymptote so that a similar increase/decrease temperature rate

can be achieved.

Interestingly, after incorporating the prior wake-prevalence factor, the residuals of the new model

showed a consistent light–dark (circadian) modulation (Figure 2B), with an over-estimation of the

temperatures in the light periods, including the SD (residual RMS = 0.12˚C). To account for this mod-

ulation, we again applied a 24 hr sine-wave modulation onto the asymptotes. The combined effect

of modulating the asymptotes according to prior wake-prevalence and circadian time (i.e., Model 2)

almost flattened the residuals (residual RMS = 0.09˚C; Figure 2C) and further improved the fit

(r = 0.96; RMS error = 0.26˚C). The amplitude of the sine wave was 0.19˚C with a phase of �0.63 hr,
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Figure 1. Results of Model 0 with constant asymptotes. (A) A representative example of a 96-hr recording in one mouse of brain temperature (blue) and

simulated data (orange). Green lines represent the model’s lower and upper asymptotes. The 4-s hypnogram of wake (W), non–rapid-eye-movement

sleep (N), and rapid-eye-movement sleep (R) appears above the lower asymptote. White/gray backgrounds represent 12 hr light–dark periods,

respectively, and the salmon background starting at 48 hr indicates the 6 hr of sleep deprivation. Red arrows point to examples of over/under

estimation of the model in the light–dark periods, respectively. (B) Hourly differences (mean ± STD) between simulation output and data. Red marks

below the graph represent significant differences, tested by paired t-tests and false discovery rates corrected at p<0.05. Hourly values are plotted at

the interval midpoint. White/gray/salmon backgrounds as in (A).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Residuals of the model in which both asymptotes were modulated according to a circadian rhythm.
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Figure 2. Results of models 1 and 2 with modulation of asymptotes. (A). Simulation fit (orange) after incorporating prior wake prevalence (Model 1).

Note that both asymptotes (green) are modulated in parallel, recorded data (blue line) are of the same animal as in Figure 1, and previous over- and

under-estimations marked by red arrows are diminished. White/gray/salmon backgrounds indicate light/dark/SD periods, respectively. (B,C). Residuals

of models 1 and 2, as in Figure 1B, after the addition of prior wake prevalence (B, Model 1, M1) and with an additional circadian rhythm modulation of

both asymptotes (C, Model 2, M2). Dashed lines mark the mean temperature residuals of Model 0, from Figure 1B. Red marks indicate significant

deviations from zero. Note the reduction in the number of red marks from Figure 1B, to Figure 2B to Figure 2C.
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placing the trough of the circadian influence at ZT5.37. The window size over which the prior wake-

prevalence was calculated shortened to 3.0 hr and the difference between the asymptotes

decreased to 1.85˚C (Table 1). Relative to Model 1, the only free parameter that exhibited a signifi-

cant change was the scaling factor of the prior wake prevalence window (which dropped from 1.2 to

1.0˚C, paired t-test, T(10) = 5.4; p=0.0003). Figure 3 shows the final fit of Model 2 to the tempera-

ture data for each of the 11 animals. Note that mouse #616 displayed exceptionally long waking

periods (see periods of uninterrupted high temperature levels in the dark periods) that likely contrib-

uted to the exceptionally long prior wake prevalence window (5.5 hr) and the large scale factor rela-

tive to the circadian influence (1.05 vs. 0.11˚C), modulating the asymptotes in this animal. These

aberrant parameters, might in turn, explain the exceptional phase of the trough of the circadian fac-

tor (ZT15.6).

Since Model 2 explained roughly 91% of the variance in the data, we next examined the contribu-

tion of each of the three factors. To do so, we decomposed the simulated temperature signal into

its three constituent factors by removing the circadian and/or prior wake-prevalence factors, and

subtracting the respective result from the Model 2 output (see ’Materials and methods’). Consistent

with the R2 value of 83% achieved in Model 0, the factor sleep–wake state accounted for the largest

portion of the variance, that is, 74% (Figure 3—figure supplement 1). Some of this explained vari-

ance was, however, shared with the other two factors in the model, that is, prior wake prevalence

(27%) and circadian time (4%), leaving 42% as the unique contribution of the sleep–wake state. In

comparison, the uniquely explained variance contributed by the prior wake prevalence and the circa-

dian process were considerably smaller (12% and 2%, respectively). In total, the overall explained

variance contributed by prior wake prevalence was 43% and by the circadian process 9%, of which

3% was shared.

In 5 of these 11 mice, we ran additional experiments with a similar design but shorter SD (2 and/

or 4 hr, starting at ZT0) and only one day of recovery. To verify whether the parameters found in the

main experiment were not overfitted to the specific experiment, we tested the performance of

Model 2 in each of the additional recordings, using the individually optimized parameters from the 6

Table 1. Model 2 parameters for each animal.

Optimized values for each of the model parameters, and additional three descriptive variables: the difference between the upper and

lower asymptotes (fourth column), the root mean squared error, and the correlation coefficient (two last columns). Columns 7–9 list the

parameters of the prior wake-prevalence window: ‘Size’ refers to the window size, ‘Shift’ to the interval between the end of the window

and the time point being evaluated, and ‘Scale’ to the conversion from % waking within the window to its temperature modulation of

the asymptotes. Column 11 lists the phase of the 24-hr sinewave modulating the asymptotes (starting at zero) relative to ZT0. The last

row summarizes the median value for each parameter, except for the correlation coefficient which is averaged after a Fisher transfor-

mation. Asterisks indicate KO mice.

Animal
Asymptotes (˚C) Time constants (hr) Prior wake prevalence Circadian

RMS error (˚C) Correlation
Lower Upper Difference Wake/REM NREM Size (hr) Shift (hr) Scale (˚C) Amplitude (˚C) Phase (hr)

603 34.26 35.82 1.56 0.21 0.06 4.75 �1.90 1.02 0.13 0.86 0.28 0.94

606 34.74 36.59 1.85 0.23 0.10 2.75 �1.30 1.01 0.25 �0.71 0.26 0.95

608 32.28 33.77 1.49 0.22 0.08 2.75 �1.40 0.92 0.25 �0.41 0.23 0.95

609 34.04 36.28 2.24 0.22 0.11 1.75 �1.10 0.68 0.19 �2.66 0.25 0.97

612 32.60 34.45 1.85 0.23 0.11 1.50 �0.90 0.73 0.18 �0.63 0.24 0.97

613 34.15 36.07 1.92 0.11 0.17 3.25 �1.00 1.12 0.26 �0.83 0.30 0.93

616* 34.01 36.11 2.10 0.17 0.14 5.50 �2.70 1.05 0.11 9.59 0.26 0.97

617* 34.54 36.30 1.76 0.16 0.16 3.25 �1.00 1.01 0.17 �1.17 0.23 0.96

619* 34.53 36.40 1.87 0.21 0.11 3.00 �1.60 0.62 0.06 �1.07 0.25 0.96

620* 36.89 38.21 1.32 0.12 0.05 2.75 �1.40 1.16 0.22 1.29 0.29 0.95

622 36.14 38.11 1.97 0.20 0.09 4.75 �2.00 1.02 0.19 �0.41 0.31 0.95

Median 34.26 36.28 1.85 0.21 0.11 3.00 �1.40 1.01 0.19 �0.63 0.26 0.96
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hr SD experiment (Table 1). The simulation proved to be robust for all the new recordings (all r

values �0.91, and RMS errors �0.37), thus convincingly demonstrating the generalization of parame-

ters within animals over time and across different experiments (Supplementary file 3).

Finally, given the high precision of the simulations, we inquired whether the algorithm could go

beyond the simulations based on parameters adjusted specifically to an individual mouse. To this

Figure 3. Results of Model 2 for all individual mice. The graphs show the fit (orange) of the final model to the data (blue) of all 11 animals (ordered as in

Table 1). Example data in Figures 1A and 2A correspond to mouse number 617 in the 8th row. White/gray/salmon backgrounds indicate light/dark/

sleep deprivation (SD) periods, respectively.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Proportional Venn diagram of the variance explained by each of the three factors in Model 2.
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end, we used the median parameter values found previously (Table 1) to predict brain temperature

in a different cohort of mice (n = 5) recorded in the context of another study. The experiment had

the same 96 hr design as the current study, and none of those data were used to optimize the model

parameters. To test the model without providing temperature data, and because the model is itera-

tive, we needed to estimate the initial temperature (T0) to start the first iteration. We first used the

main dataset to associate the average temperature and the percentage of Wake/REM state in the

first 7 min of recording by linear regression, and then estimated the T0 values in the current dataset

based on wake/REM prevalence in the first 7 min (see ’Materials and methods’, and Figure 4—fig-

ure supplement 1). After obtaining T0, we used Model 2 to simulate the brain temperature of the

independent cohort. Remarkably, all the correlation coefficients were between 0.93 and 0.95,

although the median of the RMS error was 0.48˚C since some recordings had consistent differences

in absolute temperatures from physiological values, as was also observed in the main dataset

(see columns 2-3 in Table 1). When we brought the empirical temperature data to the same average

level as the predicted temperature traces (without changing scale), the median of the RMS error was

reduced to 0.34˚C and the fine overlap between predicted and observed temperature measures was

again revealed (Figure 4, and Figure 4—figure supplement 2). Repeating this process for the test

group with the medians of the more basic models 0 and 1, yielded correlation coefficients in the

0.86–0.89 and 0.91–0.93 ranges, respectively.

Discussion
We developed and made available a tool to predict brain temperature dynamics based on the

sleep–wake state sequence. The model showed a very accurate fit with data obtained under undis-

turbed baseline conditions, and during and following SD of varying lengths. It equally well predicted

the global temperature dynamics on a time scale of hours and the changes following sleep–wake

transitions on the order of seconds. In addition to two known factors modulating brain temperature,

that is, the sleep–wake state and circadian influences, we identified a novel contributing factor

involving the prior wake prevalence, which accounted for the up-regulation of brain temperature

observed during periods of sustained wakefulness.

Model parameters
In mice kept under our experimental conditions, specifically a 25˚C ambient temperature, a 12:12 hr

light–dark cycle, housed singly, and food ad libitum, we observed a dynamic brain temperature

range of a little over 3˚C. However, at any given time of the experiment, the range of observed tem-

perature fluctuations did not surpass 2˚C. This range, delimited by the upper and lower asymptotes

in the model, represents a homeostatically defended range within which the brain temperature can

vary according to the animal’s behavior without eliciting a thermoregulatory response

(Parmeggiani et al., 1975; Satinoff, 1983). Both asymptotes were modulated by two factors. The

first was a time-of-day factor modeled by a sine wave, lowering and raising the defended tempera-

ture range with an amplitude of 0.19˚C, reaching lowest levels close to the light period midpoint,

that is, ZT5.4. Although we referred to this factor as ‘circadian’, given the experimental conditions,

this fluctuation could also relate to the imposed light–dark cycle. Nevertheless, using a different ana-

lytical approach, our previous work in rats maintained under different photoperiods and under

constant dark conditions arrived at very similar amplitudes for the time-of-day modulation of cortical

temperature (0.13–0.21˚C; Franken et al., 1992b; Franken et al., 1995), supporting the interpreta-

tion that the time-of-day factor does not depend on the lighting condition and is likely to represent

a modulation of circadian origin.

The model identified a second factor dubbed ‘prior wake-prevalence’, that modulated the asymp-

totes of the defended temperature range. This factor differs considerably from the acute depen-

dency of brain temperature on sleep–wake state transitions considered in Model 0 in that it

integrates sleep–wake state information over several hours instead of minutes, thus suggesting a dif-

ferent underlying mechanism. Practically, it quantifies an up-regulation of the level at which tempera-

ture is regulated after sustained periods of wakefulness. Up-regulation of brain temperature during

sustained wakefulness has been reported previously but was observed under conditions of SD span-

ning several weeks (Obermeyer et al., 1991). Because the prior wake-prevalence effect here was

transient, and only involved a 3-hr time window, and was equally observed under baseline and
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Figure 4. Model fit to a novel dataset. (A) Representative example of the Model 2 fit (orange) to novel raw data (blue) not used for optimization, using

the median of the optimized parameters from the original dataset (Table 1). (B) Temperature residuals of Model 2 (mean ± STD) across all animals in

the novel dataset. Notice the small number of red markers, indicating significant deviations from zero. White/gray/salmon backgrounds in both panels

indicate light/dark/sleep deprivation periods, respectively.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Correlation between initial temperature to wake and rapid-eye-movement (REM) sleep prevalence.

Figure supplement 2. Results of Model 2 for each mouse of the independent cohort.
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sleep-deprivation conditions, the underlying mechanisms might not be the same. The maximal

amplitude of the modulation of the asymptotes brought about by the prior wake-prevalence factor

(i.e., the scaling parameter in Table 1), was about fivefold larger than that of the circadian modula-

tion (1.01˚C vs. 0.19˚C), thus underscoring the importance of prior wake prevalence in determining

brain temperature. Interestingly, the prior wake-prevalence effect affected the asymptotes 1.4 hr

later. Although we are unable to provide a satisfactory explanation for this finding, delayed effects

of sleep–wake state transitions have been reported in humans for body temperature (Bunnell et al.,

1988; Youngstedt et al., 1997), suggesting that the delay we observed in the mouse might relate

to lagging peripheral effects affecting body temperature and, subsequently, brain temperature.

Although we refer to this factor as prior wake-prevalence, it is equally plausible that the predomi-

nance of NREM sleep in a given interval drives the modulation. The onset of NREM sleep is associ-

ated with an active down-regulation of brain temperature involving peripheral vasodilation

concomitant with decreased neural activity (Glotzbach and Heller, 1976). Therefore, the 3 hr time

windows during which NREM sleep prevails might elicit a delayed net decrease in brain temperature

involving peripheral mechanisms reminiscent of the slow physiological responses characteristic of

sleep inertia in humans (Kovac et al., 2020). Our current data do not lend themselves to identify

this factor’s physiological substrate and needs further investigation.

The other optimized parameters were the time constants describing the changes in cortical tem-

perature occurring at the sleep–wake transitions. Mathematically, a time constant value represents

the time it will take to close ~63% of the gap between the current temperature and the asymptote,

a duration that is constant regardless of the actual distance from the asymptote. To limit the number

of free parameters in the model we did not differentiate between the rates of increase in wakeful-

ness and REM sleep. Although this assumption is likely to be false (see, e.g., Hoekstra et al., 2019),

we reasoned that it would not impact the model’s performance significantly since REM sleep was rel-

atively sparsely represented in our data (6% of recording time). The simulation identified time con-

stants in the range of minutes for both the increases during wakefulness (and REM sleep) and the

decreases in cortical temperature during NREM sleep. It also found longer time constants for the

increase than for the decrease (13 and 7 min, respectively), pointing to a slower buildup of heat rela-

tive to its dissipation during NREM sleep. This difference is consistent with the concept that the

blood that perfuses the brain acts as a heat sink, and that increases in temperature underestimate

the rate of heat production since cooling occurs simultaneously (Hayward and Baker, 1969).

Explained variance
Using linear regression analysis between the hourly values of wakefulness and brain temperature,

the sleep–wake state was reported to explain 84% of the variance in brain temperature

(Franken et al., 1992b; Hoekstra et al., 2019). Although the overall fraction of the variance

explained in the final iteration of our simulation was higher (91% in Model 2), the sleep–wake state

factor explained less of the variance in brain temperature (74%; see Figure 3—figure supplement 1

for a summary). This discrepancy is due to the additional factors the model identified, primarily the

prior wake-prevalence with which the sleep–wake state factor shared an important part of the

explained variance. The linear regression results mentioned above should optimally be compared to

the results of Model 0, in which only the sleep–wake state sequence was considered. In fact, Model

0 explained a very similar portion of the variance, that is, 83%. As suggested previously

(Franken et al., 1992b), the circadian factor carried surprisingly little information about brain tem-

perature. Of the 9% of the variance that could be attributed to circadian modulation, most was

redundant with that of the other two factors and only <2% was uniquely circadian. In the model,

both the circadian and prior wake-prevalence factors modulated the asymptotes. Consistent with

the fivefold larger portion of variance explained by the latter, the maximum possible modulation of

the asymptote was also fivefold larger.

Comparison to previous models
Compared to our earlier effort to simulate brain temperature in the rat (Franken et al., 1992b), we

made a number of key modifications that enhanced the accuracy of the simulation. In the previous

model, only the time constants were optimized but the estimates for the asymptotes were taken

directly from the data. Moreover, the same time constants were used to simulate the increases and
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decreases in temperature accompanying sleep–wake state transitions. The current analysis showed

that increase and decay rates differ considerably with a faster temperature decay in NREM sleep

than the increase in wakefulness. Other factors estimated from the residuals in the original model

were not formally optimized in one model simultaneously. The first such factor is the time-of-day

(‘circadian’) modulation, whose amplitude was surprisingly similar in the two studies and species.

Moreover, in the rat study, a down-regulation of the asymptote was needed to accurately fit the ini-

tial 12 hr of recovery because the actual temperature levels were lower than those predicted based

on the sleep–wake distribution. This down-regulation after SD was not observed in the current study

even when the prior wake-prevalence factor was not incorporated (Figure 1—figure supplement 1).

This difference could reflect a thermoregulatory response to the longer SD in the rat (24 hr vs. 6 hr

in the mouse) or could result from the assumption of equal decay and increase rates, because during

the recovery, time spent in NREM sleep was increased and in the current study NREM sleep was

found to be associated with a faster decay rate. The final difference between the two studies is the

considerably slower time constants in the rat (0.47 hr) compared to the mouse, which may be attrib-

uted to a species difference.

The differences between the simulations were probably also affected by the modifications we

made to address previous criticism. As previously noted by others (e.g., Witting and Mirmiran,

1997), the sequential evaluation of the contribution of different factors may lead to an overestima-

tion of those assessed first because shared (or redundant) variance will be added to the first but not

the second. We addressed this problem by optimizing the parameters for the various factors simulta-

neously and by explicitly assessing the shared variance among factors. Another criticism concerned

the use of hourly mean values to evaluate the model’s performance, since it removes a large portion

of the variability and leads to inflated correlations (Heller et al., 2011). We found no support for this

criticism: performance assessed at a 4 s resolution yielded high correlations similar to the hourly val-

ues (Franken et al., 1992b).

Additional factors affecting brain temperature dynamics
Our simulation predicted brain temperature with high accuracy under the specific conditions of our

study, but other factors affecting brain temperature could not be considered. For example, the effi-

cacy with which blood removes heat from the brain depends on the ambient temperature

(Hayward and Baker, 1969), which was kept constant during experiments. Although

brain temperature dynamics during sleep–wake state transitions seem qualitatively similar across a

wide range of ambient temperatures (Alföldi et al., 1990), it is nevertheless likely that the model

parameters, and in particular the time constants, would need to be optimized for each ambient tem-

perature. Moreover, increases in brain temperature accompanying intense activity such as wheel run-

ning (Fuller et al., 1998; Kunstetter et al., 2014), or activating stimuli such as a tail pinch or cage

change (Kiyatkin et al., 2002), cannot be captured by the current version of our model because we

considered wakefulness to be a uniform brain state. Similarly, sleeping alone or in a group, or having

access to a nest, will likely affect the dynamics of brain temperature during sleep through its impact

on heat dissipation (Gordon, 2017). Although these refinements of the simulation are currently lack-

ing, the model could be easily expanded to accommodate these factors, once experimental data are

available.

Brain vs. body temperature
Rhythms in temperature are generally considered a direct output of the circadian time-keeping sys-

tem (Refinetti and Menaker, 1992). Our model showed, however, that the circadian contribution to

brain temperature in the mouse is small and that the observed circadian rhythmicity in brain temper-

ature under undisturbed conditions is driven primarily by the circadian sleep–wake distribution.

Because circadian studies often rely on core body temperature measures, it remains unclear whether

the model could predict changes in body temperature with similar precision. In rodents in general,

body and brain temperatures change in parallel (Blessing, 2018), suggesting that their gross dynam-

ics are governed by similar rules and that the daily dynamics (e.g., hourly mean values) of body tem-

perature can be predicted using assumptions similar to those in our model. However, at the finer

time scale at which we optimized our model, the few available studies suggest that the temperatures

of the brain and body behave differently (Ootsuka et al., 2009). One noticeable example of this is
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that body temperature does not increase during REM sleep (Alföldi et al., 1990). Moreover, during

extreme sleep disturbance (Obermeyer et al., 1991; Baud et al., 2013) or thermal manipulations

(Donhoffer et al., 1959; Kiley et al., 1984), brain and body temperatures can deviate considerably,

suggesting that their underlying regulatory mechanisms differ. Therefore, the extent of the model’s

accuracy in predicting changes in body temperature at small time scales should be tested

experimentally.

Implications
As the model can predict brain temperature dynamics with high accuracy even without optimization

of the parameters in individual mice, a number of applications can be envisioned. For instance, neu-

roactive drugs do not only affect brain temperature (Kiyatkin, 2018) but often also impact the

sleep–wake state. By predicting the effects of the sleep–wake state on brain temperature, the model

can isolate the direct effect of the intervention on brain temperature, that is, the residuals of the sim-

ulation that cannot be explained by the sleep–wake state. Second, brain temperature affects many

properties of neuronal functioning (Kiyatkin, 2010) and therefore may influence cognitive perfor-

mance (Walter and Carraretto, 2016). Given the dynamics of brain temperature formulated by the

model, it would be interesting to examine the putative associations between impaired cognitive

functioning and distinctive thermoregulatory states, as has been observed during sleep inertia after

awakening (Kräuchi et al., 2004). This would require determining first of all whether brain tempera-

ture in humans is governed by similar rules. Although such data in humans are sparse, one study

reported similar temperature dynamics to those in the mouse (Landolt et al., 1995). The authors,

however, reasoned that the underlying driving influence is circadian rather than the sleep–wake

state, based on locomotor activity and NREM sleep depth arguments. Since studies in rodents have

shown that both locomotor activity (Shirey et al., 2015; Hoekstra et al., 2019) and NREM sleep

depth (Franken et al., 1991; Tobler et al., 1994) only have a minimal association with brain temper-

ature, brain temperature in humans might be driven by the sleep–wake distribution, consistent with

the assumptions of our simulation.

Materials and methods

Data acquisition
Detailed descriptions of the data acquisition, surgical procedures, and experimental design can be

found elsewhere (Mang and Franken, 2012; Hoekstra et al., 2019) but is briefly described

in this section. Data from 11 male C57BL6/J mice (seven wild types [WT]) and four lacking the gene

encoding cold-inducible RNA-binding protein (Cirbp KO mice), 10–15 weeks of age were included.

Sleep–wake distribution and brain temperature were unaltered in KO mice (Hoekstra et al., 2019)

and likewise the results reported here did not differ statistically between the two genotypes. All

mice were housed individually under a 12:12 hr light–dark cycle with ZT0 and ZT12, corresponding

to light onset and dark onset, respectively. Ambient temperature was maintained at 25˚C and food

and water were provided ad libitum. Electroencephalograms (EEGs), recorded from a frontal-parietal

derivation, and electromyograms (EMGs), recorded from the neck muscles, were used to ‘score’ the

sleep–wake states ’wakefulness’, ’NREM sleep’, and ’REM sleep’, at a 4 s resolution. Sleep–wake

states marked as having EEG artefacts were included in the temperature analyses. Brain temperature

was measured by a thermistor placed on top of the right visual cortex corresponding to the mid-

point of the frontal-parietal EEG electrode pair on the left hemisphere, and was sampled at 10 Hz

and the median value for each 4 s epoch represented that epoch. Recordings lasted 96 hr, started at

light onset, and included two 24 hr days serving as baseline (termed baseline 1 and baseline 2), 6 hr

of SD starting at light onset on day 3, followed by an 18-hr (recovery 1) and a 24-hr (recovery 2)

recovery period. SD was achieved by gentle handling (Mang and Franken, 2012). In addition to the

main experiment above, a subset of five animals (1 WT and 4 KO mice) was subjected to a 2- and 4-

hr SD following the same protocol as for the 6-hr SD experiment but without recovery 2

(Hubbard et al., 2020). One session was excluded due to a technical problem resulting in abrupt

discontinuity of the temperature data. A final, independent cohort of five WT mice of the same

strain, same sex, same age, and that underwent the same 4-day protocol with 6 hr SD, was used to
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test the predictions of the model. All experiments were approved by the Ethics Committee of the

State of Vaud Veterinary Office Switzerland under license VD2743 and VD3201.

Analysis
Model 0: optimization details
All code was programmed in Matlab and optimization used the fmincon function of the Optimization

Toolbox, by minimizing the mean squared error between the simulated and recorded temperature

signals. All free parameters were always optimized simultaneously, even when additional ones were

added at later stages. For each animal, we constrained the base values of both asymptotes to the

range of empirical temperature values plus a 2˚C deviation in either direction. The upper and lower

asymptotes were always defined as vectors with same size (86’400 4 s epochs) as the 96 hr experi-

ment recordings. The code assumed 12:12 hr light–dark cycles, the start of recording at light onset,

sleep scoring only included wake, NREM sleep and REM sleep states, and 48 hr of baseline.

Model 1: modulation of asymptotes according to prior wake-prevalence
To modulate the asymptotes at each time point based on the preceding prevalence of the sleep–

wake state (referred to as the ‘prior wake-prevalence’), for each time t, we calculated the fraction (0–

1) of time spent in wake or REM sleep within a given time window ending at time t–1. We estimated

temperature values for time points prior to the start of the recording (i.e., before the light onset of

baseline 1), by averaging corresponding time points from the two days of baseline. Finally, we sub-

tracted the averaged wake/REM fraction of total recording time (4 days) and multiplied by 2 so that

the resulting values vary between – 1 and +1, and then multiplied the result by a scale factor to

translate the fraction of time spent awake/REM sleep into a degree Celsius modulation of the

asymptote. In addition, to enable the window not to end strictly at time t–1, we also implemented a

window shift relative to time t by moving the produced vector back and forth in time. Since this shift

was allowed in both directions and we could not predict values after the end of the recording, we

assumed zero values (i.e., no modulation of the asymptotes). The outcome vector was added to

both asymptotes.

In contrast to the window scale factor and all other free parameters in this study, which were con-

tinuous variables, the window size and window shift were discrete parameters that eventually trans-

lated into integer numbers of specific cell indices in a vector. Due to the requirement of the fmincon

function for differentiability, to optimize these two parameters we applied a brute force method: (1)

we defined possible values for each of the two variables, (2) for each unique combination of the val-

ues we ran the fmincon on the rest of the parameters and calculated the error, and (3) kept the

parameters (continuous and discrete) that yielded the lowest error output. In this study we chose to

test window size values between 0 and 10 hr (step size of 0.25 hr) and window shift values between

�5.0 and +0.5 hr (increments of 0.1 hr). For none of the mice was the best fit obtained with parame-

ter values at the limits of these defined ranges.

Model 2: addition of circadian modulation of the asymptotes
To introduce a circadian modulation of the asymptotes we used the following formulas:

Lt ¼ Lt � sinð2 �p � tþPÞ �A

Ut ¼Ut � sinð2 �p � tþPÞ �A

where A and P are the free parameters for optimization and stand for the amplitude and phase (in

hours) of the sine wave, respectively. Lt and Ut are the lower and upper asymptote values at time t;

hence, both asymptotes were changed in parallel and to the same extent. The minus sign before the

sine function is due to the fact that the recording started at light onset.

Prediction of initial simulated temperature value without actual temperature
data
In the original algorithm, the initial temperature was determined based on the recorded data, but to

generalize our algorithm to predict brain temperatures of datasets without brain temperature
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recordings, we needed a different method to estimate the value of the initial temperature. Although

the temperatures of most animals ranged between 34˚C and 36˚C, some recordings showed non-

physiological lower (32–34˚C) or higher (36–38˚C) ranges (Hoekstra et al., 2019), which probably

resulted from technical problems. Nevertheless, the difference between the asymptote values was

stable across animals (around 2˚C), and simulation performance was high, regardless of the average

absolute levels (Table 1). Therefore, to estimate the initial temperature when exclusively using the

state sequence, we produced a predictive formula based on our existing data. First, we normalized

the temperature data of each recording in the 96 hr experiment to a range between 34˚C and 36˚C.

Then, we calculated the correlation between the percentage ‘occurrence’ of wake/REM sleep in a

window at the start of the recording, and the average temperature in the same time window. In this

way, we could reliably predict the temperature in the first minutes of the recording (r = 0.98, Fig-

ure 4—figure supplement 1), which we used as an estimated initial temperature. We chose a 7 min

window size since it yielded the highest correlations across values between 1 and 10 min (analysis

not shown). Finally, we applied linear regression to obtain the following equation:

initial temperature¼ 0:92265 � occurrenceþ 34:3282

where occurrence is a value between 0 and 1, with 0 referring to 7 min of continuous NREM sleep

and 1 to continuous REM sleep and/or waking. Note that this estimate of the initial temperature is

valid solely for recordings that start at light onset and under a 12:12 hr light–dark cycle.

Units and statistics
Throughout this manuscript, the time measures are expressed in hours, the temperature in degrees

Celsius, and correlation coefficients (r) are the outcomes of Pearson correlations, unless stated other-

wise. Optimized parameters are summarized as median values, and correlation coefficients as aver-

ages after Fisher transformation (Fisher, 1915; Silver and Dunlap, 1987). Paired Student’s t-tests

with false discovery rates correction (Benjamini and Hochberg, 1995) for multiple comparisons at a

significance level of p<0.05 tested for significant effects for the 96 hr time series. Individual fits are

summarized as the median of the root mean square (RMS) of the difference between the simulated

data and the recorded data (referred to as ‘RMS error’ in the text), while effect sizes of the model

residuals were assessed by the RMS of the mean residuals for hourly values (referred to as the ‘resid-

ual RMS’). Differences in parameters across genotypes and models were assessed by t-tests, or by

rANOVA with Tukey’s range test when more than two values were assessed. The relative contribu-

tion of the three factors (sleep–wake state, prior wake prevalence, and circadian) to the variance

explained by Model 2 was calculated as follows. The model output was first disassembled into three

traces, corresponding to the effects of sleep–wake state, prior wake prevalence, and circadian. The

unique variance explained by each factor was then calculated as the ratio of the variance of each fac-

tor’s trace to the overall variance in the data. For the shared variance among factors, we subtracted

the corresponding unique explained variances from the variance of the sum of the traces. The results

of explained variance are presented as a Venn diagram using a tool available online (Micallef and

Rodgers, 2014).

Code availability
The two core Matlab scripts for brain temperature simulation (Source Code File 1) and parameters

optimization (Source Code File 2) are provided as Supplementary material, together with running

scripts (Source Code Files 3 and 4) and an example of the data (Source Code File 5). In addition, the

recorded temperatures, sleep scoring, and simulated temperatures of the three models are available

for each of the 11 animals in the main experiment, as an Excel file (Supplementary file 4).
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according to the prior wake-prevalence in the window preceding the assessment of temperature.

Further details as in Table 1.

. Supplementary file 3. Performance of Model 2 for additional sleep deprivation (SD) experiments of

the same animals. The table shows the Pearson’s correlation coefficient (r) and root mean squared
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Data availability

The two core Matlab scripts for brain temperature simulation and parameters optimization, are pro-

vided as supplementary material, together with an example of the data and running scripts. In addi-

tion, the recorded temperatures, sleep scoring, and simulated temperatures of the three models are

available for each of the 11 animals in the main experiment, as an Excel file.

The following datasets were generated:

References
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