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Emerging evidence suggests that type 2 diabetes (T2D) may impair the ability to properly

adjust the circulation during exercise with augmented blood pressure (BP) and an

attenuated contracting skeletal muscle blood flow (BF) response being reported. This

review provides a brief overview of the current understanding of these altered exercise

responses in T2D and the potential underlying mechanisms, with an emphasis on the

sympathetic nervous system and its regulation during exercise. The research presented

support augmented sympathetic activation, heightened BP, reduced skeletal muscle BF,

and impairment in the ability to attenuate sympathetically mediated vasoconstriction

(i.e., functional sympatholysis) as potential drivers of neurovascular dysregulation during

exercise in T2D. Furthermore, emerging evidence supporting a contribution of the

exercise pressor reflex and central command is discussed along with proposed future

directions for studies in this important area of research.

Keywords: sympathetic nerve activity, blood pressure, blood flow, exercise pressor reflex, central command,

baroreflex, functional sympatholysis

INTRODUCTION

Type 2 diabetes (T2D) negatively impacts cardiovascular health, contributing to a high risk
of premature mortality (Raghavan et al., 2019). Notably, ∼60% of T2D patients also have
hypertension, which suggests that alterations in blood pressure (BP) control are common in
this population (Colosia et al., 2013). This is all very important because more than 34 million
Americans currently live with T2D, a number projected to increase nearly 50% by 2050 (Boyle
et al., 2010; Prevention, 2020). Notably, the prevalence of T2D and prediabetes in young adults
is also increasing (Mayer-Davis et al., 2017; Prevention, 2020), which is alarming considering
that an earlier disease onset is associated with high lifetime risk of cardiovascular disease (Song,
2016). These rates are, in part, attributable to the accelerated rates of sedentary lifestyle in our
society (Mayer-Davis and Costacou, 2001). Indeed, physical inactivity has been shown to be an
important modifiable risk factor that contributes to the development of T2D (Bowden Davies et al.,
2019; Antwi et al., 2020). Although exercise is a well-recognized tool in the management of T2D
due to its many cardiometabolic benefits, accumulating evidence suggests that T2D negatively
affects cardiovascular responses to exercise. The most alarming consequence is an exaggerated
exercise-induced BP (Scott et al., 2008; Regensteiner et al., 2009; Pinto et al., 2014; O’Connor et al.,
2015; Holwerda et al., 2016a), a response associated with a heightened risk of acute adverse cerebral-
and cardiovascular events (Kurl et al., 2001; Laukkanen et al., 2006). Furthermore, several studies
also report reductions in contracting skeletal muscle blood flow (BF) in T2D, which likely hinders
the ability to sustain exercise contributing to the well-known exercise intolerance in this population
(O’Connor et al., 2012; Reusch et al., 2013; Sacre et al., 2015; Senefeld et al., 2019). Therefore,
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understanding the underlying mechanisms contributing to
altered cardiovascular responses to exercise in T2D is crucial
to identifying strategies that can reduce the heightened
cardiovascular risk in this population, while at the same time
improving their ability to perform and sustain physical activity.

The sympathetic nervous system plays an integral role in
controlling the cardiovascular adjustments to exercise. Increases
in sympathetic nerve activity (SNA) to the heart facilitate
increases in cardiac output and sympathetic outflow to periphery
and viscera elicits vasoconstriction of inactive skeletal muscle
and tissue beds, respectively. These actions contribute to
elevations in BP while facilitating increases in BF to contracting
muscles (Fisher et al., 2015). Moreover, within contracting
muscles, the interaction between sympathetically mediated
vasoconstrictor drive and local vasodilatory factors determines
active skeletal muscle BF. In this regard, locally released
vasoactive compounds attenuate sympathetically mediated
vasoconstriction (i.e., functional sympatholysis) (Remensnyder
et al., 1962) to further facilitate increases in active muscle
BF. Several neural mechanisms work in concert to facilitate
these adjustments. Feedback signals from the contracting
skeletal muscle (i.e., exercise pressor reflex) and feedforward
signals from higher brain centers (i.e., central command) both
contribute to increase SNA during exercise (Alam and Smirk,
1937; Goodwin et al., 1972; McCloskey and Mitchell, 1972).
These signals also contribute to the resetting of the arterial
and cardiopulmonary baroreflex, which play important roles
in modulating exercise-induced increases in BP via alterations
in SNA (Scherrer et al., 1990; Fadel et al., 2001; Joyner, 2006).
Thus, proper neural adjustments are essential to ensuring the
appropriate sympathetic and thus cardiovascular responses
to exercise.

Emerging evidence suggests that T2D impairs the ability to
adjust the circulation during exercise, which is highlighted by
reports of exaggerated muscle SNA (MSNA) (Holwerda et al.,
2016a; Vranish et al., 2020), BP (Scott et al., 2008; Regensteiner
et al., 2009; Pinto et al., 2014; O’Connor et al., 2015; Holwerda
et al., 2016a), and attenuated increases in contracting skeletal
muscle BF (Menon et al., 1992; Kingwell et al., 2003; Lalande
et al., 2008; Mac Ananey et al., 2011; Kiely et al., 2014; O’Connor
et al., 2015; Groen et al., 2019; Bock et al., 2020). Therefore,
the purpose of this review is to provide a brief update on
the current understanding of these altered exercise responses
in T2D and the potential underlying mechanisms, with an
emphasis on the sympathetic nervous system and its regulation
during exercise. Furthermore, we discuss emerging evidence
supporting a contribution of the exercise pressor reflex and
central command along with proposed future directions for
studies in this important area of research.

CARDIOVASCULAR RESPONSES TO
EXERCISE IN TYPE 2 DIABETES

The first data identifying an exaggerated exercise-induced
BP response in T2D patients came from studies assessing
cardiovascular responses to maximal and submaximal exercise

testing (Kingwell et al., 2003; Petrofsky et al., 2005; Scott et al.,
2008; Regensteiner et al., 2009; Karavelioglu et al., 2013; Pinto
et al., 2014; O’Connor et al., 2015). For example, Scott et al.
(2008) reported an ∼50% greater prevalence of an exaggerated
BP response to a graded maximal treadmill test in normotensive
middle-aged T2D patients relative to controls. Furthermore,
an augmented BP during submaximal steady-state and short-
duration constant load cycling exercise has also been reported
(Andresen and Kunze, 1994; O’Connor et al., 2015). Notably,
these responses were also present at an early age in which
studies have shown augmented BP responses to exercise in
adolescents with T2D (Pinto et al., 2014; Yardley et al., 2015).
Thus, these responses highlight that T2D patients are more
likely to experience exaggerated exercise-induced BP responses,
which is a prognostic indicator for an augmented risk of acute
myocardial infarction and stroke (Kurl et al., 2001; Laukkanen
et al., 2006). A recent study by Holwerda et al. (2016a) linked the
augmented BP responses to exercise in T2D with elevated SNA
demonstrating, for the first time, that T2D patients, independent
of coexisting hypertension, had exaggerated MSNA responses to
isometric handgrip exercise compared to nondiabetic controls
(Figure 1).

Another common feature reported in studies examining
exercise responses in T2D has been reductions in contracting
skeletal muscle BF (Menon et al., 1992; Kingwell et al., 2003;
Lalande et al., 2008; Mac Ananey et al., 2011; Kiely et al.,
2014; O’Connor et al., 2015; Groen et al., 2019; Bock et al.,
2020). For example, seminal work by Kingwell et al. (2003)
showed attenuated leg BF responses to submaximal supine
cycling exercise (60% VO2 peak) in normotensive T2D patients.
Consequently, leg vascular resistance was substantially greater
in the T2D patients. Similarly, a more recent study (Groen
et al., 2019) reported attenuated increases in leg BF and vascular
conductance in T2D patients during single-leg knee extension
exercise. However, it should be noted that conflicting findings
have also been reported (Martin et al., 1995; Copp et al., 2010;
Poitras et al., 2015). For example, Poitras et al. (2015) found
similar increases in forearm muscle BF during a forearm critical
force test in T2D patients and controls. Nonetheless, there are
substantial data reporting that T2D significantly impacts the
ability to properly adjust the circulation during exercise, leading
to an augmented BP and reduced contracting skeletal muscle BF.
For complementary details on exercise impairments in T2D, the
reader is referred to other excellent reviews (Reusch et al., 2013;
Green et al., 2015; Poitras et al., 2018; Kim et al., 2020; Nesti et al.,
2020).

NEUROVASCULAR REGULATION DURING
EXERCISE IN HEALTH

In this section, we will provide a brief overview of appropriate
neurovascular regulatory mechanisms during exercise to set the
stage for future sections on what is known about the potential
impairments in neurovascular control mechanisms in T2D.
Several neural mechanisms work in concert to regulate BP
and adjust the circulation during exercise. The exercise pressor
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FIGURE 1 | Mean data and individual data showing changes in muscle sympathetic nerve activity (MSNA; A,B) and mean arterial pressure (MAP; C,D) at 60 and

120 s of 30 and 40% maximal voluntary contraction (MVC) handgrip followed by subsequent periods of post-exercise ischemia (PEI) in type 2 diabetes (T2D) patients

and control subjects. *P < 0.05 vs. control. Modified from Holwerda et al. (2016a) with permission.

reflex is a feedback mechanism that responds to mechanical
(i.e., mechanoreflex) and metabolic (i.e., metaboreflex) stimuli
produced by the contracting skeletal muscle and reflexively
increases MSNA, BP, HR, and respiration (Alam and Smirk,
1937; McCloskey and Mitchell, 1972; Strange et al., 1993).
The afferent arm of this reflex is comprised of thinly
myelinated group III (predominantly mechanically sensitive) and
unmyelinated group IV (predominantly metabolically sensitive)
muscle afferents (McCloskey and Mitchell, 1972; Kaufman
et al., 1983). However, these afferents exhibit polymodal
characteristics (Rotto and Kaufman, 1988; Rotto et al., 1990).
Central command is a feedforward mechanism referring to
descending signals originating from higher brain areas that
simultaneously increase motor efferent drive and autonomic
neural outflow that, in turn, contributes to the cardiorespiratory
responses to exercise (Goodwin et al., 1972; Eldridge et al.,
1981, 1985). Furthermore, both the exercise pressor reflex and
central command contribute to the resetting of the arterial
and cardiopulmonary baroreflex (Bevegard and Shepherd, 1966;
Papelier et al., 1994; Gallagher et al., 2006). The arterial baroreflex
is a negative feedback mechanism that modulates BP at rest
and during exercise by making rapid cardiovascular adjustments

in response to beat-to-beat changes in BP. On the other hand,
the cardiopulmonary baroreflex responds to changes in central
pressure and volume by reflexively adjusting MSNA at rest and
during exercise (Ray et al., 1993; Ogoh et al., 2007). These
neural mechanisms all converge centrally in the nucleus tractus
solitarius of the medulla oblongata (Andresen and Kunze, 1994;
Potts et al., 2002) and ultimately adjust sympathetic outflow
via neurons in the rostral ventral lateral medulla. It is worth
noting that skeletal muscle afferents also increase SNA via direct
projections to the rostral ventral lateral medulla (Potts, 2006). For
more in-depth discussions on neurovascular control, we refer the
reader to several comprehensive reviews (Fadel and Raven, 2012;
Fisher et al., 2015; Holwerda et al., 2015; Michelini et al., 2015;
Nyberg et al., 2015; Grotle et al., 2020).

The resultant increases in SNA directed to visceral and
peripheral blood vessels have powerful vasoconstrictor and BP-
raising effects during exercise (Fairfax et al., 2013). Indeed,
sympathetic vasoconstriction of inactive tissue and skeletal
muscle vascular beds increases to effectively redistribute cardiac
output to active skeletal muscle (Joyner et al., 1992; Rowell,
1997; Saltin et al., 1998). At the same time, sympathetically
mediated vasoconstriction is attenuated in active skeletal
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FIGURE 2 | A schematic of potential neural mechanisms responsible for neurovascular dysregulation in type 2 diabetes (T2D). Current evidence supports a

contribution of the exercise pressor reflex and central command (solid lines), whereas the contribution of the arterial and cardiopulmonary baroreflex remains unclear

(dotted lines). Briefly, T2D patients exhibit exaggerated muscle sympathetic nerve activity (MSNA) responses, which increases the release of norepinephrine (NE)

binding to α1 and α2 adrenergic receptors causing constriction of peripheral vascular beds. T2D may also impair the normal ability to attenuate sympathetically

mediated vasoconstriction in active skeletal muscle (i.e., reduced functional sympatholysis). Additionally, enhanced endothelin-1-mediated vasoconstriction and

reduced nitric oxide (NO) and adenosine triphosphate (ATP) mediated vasodilation may also contribute to the reduced exercise hyperemia in T2D. These alterations

favor vasoconstriction, leading to reduced active skeletal muscle blood flow and exaggerated BP responses to exercise. Thus, it is plausible that T2D leads to a

positive feedback scenario where enhanced MSNA and reduced functional sympatholysis combined with other impaired local vascular control pathways augment

metabolic distress, which in turn further enhances MSNA by stimulating the muscle metaboreflex.

muscle beds by local vasoactive compounds (i.e., functional
sympatholysis) (Remensnyder et al., 1962) to further facilitate
increases in contracting skeletal muscle BF. Although extensively
studied, the sympatholytic compounds responsible for functional
sympatholysis and their mechanism(s) of action are not well
understood. Nevertheless, accumulating evidence supports a
significant contribution played by ATP (Rosenmeier et al., 2004;
Saltin and Mortensen, 2012), which appears to mediate its effect,
in part, by attenuating the sensitivity of α-adrenergic receptors
(Mortensen et al., 2009). Although less clear, NO also appears to
contribute (Thomas andVictor, 1998), but its rolemay depend on
the presence of other compounds such as prostacyclin (Dinenno
and Joyner, 2004; Mortensen et al., 2007). Regardless, numerous
studies demonstrate the presence of functional sympatholysis
and its importance for increasing contracting skeletal muscle
BF. Of note, functional sympatholysis does not mean complete
“lysis” of sympathetic vasoconstriction but rather an attenuation
that allows for increases in active skeletal muscle BF while still
contributing to the maintenance of BP.

In addition to sympathetic control, non-adrenergic
vasoconstrictor and vasodilatory compounds also contribute
to the regulation of contracting skeletal muscle BF (Saltin and
Mortensen, 2012; Holwerda et al., 2015). These can be released by
skeletal muscle, endothelial cells, nerve terminals, and circulating
erythrocytes in response to increased mechanical stimuli and
metabolic activity during exercise. The interplay between these
factors is complex and incompletely understood due, in part,

to significant redundancy. Moreover, the participation of each
pathway or compoundmay change from the onset to steady-state
exercise (Clifford and Hellsten, 2004). Vasodilatory compounds
include nitric oxide (NO), prostacyclin, adenosine, potassium,
and ATP (Clifford and Hellsten, 2004; Clifford, 2007), which can
act through endothelial-dependent or independent pathways.
Additionally, non-adrenergic vasoconstrictors such as interstitial
ATP, neuropeptide Y, endothelin 1, and angiotensin II also
contribute to the vasoconstrictive influence during exercise
(Holwerda et al., 2015); however, it should be noted that an
attenuation of non-adrenergic vasoconstrictor pathways in
active skeletal muscle has been reported (Brothers et al., 2006;
Wray et al., 2007). Of note, the contribution of non-adrenergic
vasoactive compounds to BF responses during exercise may
not be as prominent in healthy individuals; however, it appears
to increase with aging and disease (Schreuder et al., 2014;
Barrett-O’Keefe et al., 2015; Nyberg et al., 2015).

NEUROVASCULAR DYSREGULATION
DURING EXERCISE IN TYPE 2 DIABETES

Until recently, little was known regarding the underlying
mechanisms for the impaired cardiovascular responses to
exercise observed in T2D. In this regard, emerging evidence
suggests that the exercise pressor reflex plays a prominent role
in evoking exaggerated MSNA and BP responses to exercise
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in T2D (Figure 2). For example, T2D rats have exaggerated
renal SNA and BP responses to electrically evoked static muscle
contractions in the absence of central command (Grotle et al.,
2019; Kim et al., 2019). Both the mechanoreflex andmetaboreflex
have been shown to contribute to the exaggerated exercise
pressor reflex in T2D. Indeed, T2D rats exhibit augmented BP
responses to isolated mechanical stimuli (i.e., tendon stretch),
suggesting an augmented mechanoreflex (Grotle et al., 2019).
Furthermore, studies in humans suggest T2D also augments
the metaboreflex (Holwerda et al., 2016a; Roberto et al.,
2019). Specifically, Holwerda et al. (2016a) showed exaggerated
MSNA and BP responses to postexercise ischemia (PEI)
following isometric handgrip exercise (30 and 40% maximal
voluntary contraction: MVC; Figure 1). This maneuver traps the
metabolites produced during exercise and isolates the muscle
metaboreflex. Interestingly, the magnitude of MSNA response to
PEI was positively correlated with metabolic markers of disease
severity (glucose, HbA1c, and HOMA-IR), which suggests that
the severity of disease has significant impact on the enhanced
expression of the exercise pressor reflex in T2D. In this regard,
a recent study (Roberto et al., 2019) that reported a normal
BP response to PEI following rhythmic handgrip exercise (30%
MVC) had a cohort of T2D patients with relatively well-
controlled blood glucose (106.41 ± 11.2 mg/dl; HbA1c 7.05
± 0.10%). Although it is possible that the lower-intensity
rhythmic exercise did not produce sufficient metabolic stimuli
to unmask a difference in metaboreflex-induced BP responses
between groups, notably T2D patients in this study exhibited
exaggerated vasoconstriction during PEI. Interestingly, a recent
study showed enhanced BP responses to ischemic rhythmic
handgrip exercise (30% MVC) in nondiabetic individuals with
greater insulin resistance than those with lower insulin resistance
(Hotta et al., 2020). Overall, the existing literature supports that
both components of the exercise pressor reflex (i.e., mechano-
and metabo-reflex) may be enhanced in T2D (Figure 2).

The underlying mechanisms for an augmented exercise
pressor reflex in T2D remain unknown. Specifically, it
will be important to determine whether these mechanisms
involve greater metabolite accumulation during skeletal
muscle contraction, enhanced afferent sensitivity, or increased
expression of mechanically or metabolically sensitive receptors
and/or channels, or abnormal central integration of afferent
feedback. It is possible that a slowed and attenuated hyperemic
response to contracting skeletal muscle during exercise
enhances muscle metabolite buildup, thereby increasing the
activation of the metaboreflex and simultaneously sensitizing
the mechanoreflex (Adreani and Kaufman, 1998; Holwerda
et al., 2016a; Nesti et al., 2020). Additionally, there are reports
of increased reliance on carbohydrate metabolism (Martin et al.,
1995; Scheuermann-Freestone et al., 2003), reduced capillary
density and recruitment, increased fast twitch muscle fiber type
recruitment (Marin et al., 1994; Padilla et al., 2006; Womack
et al., 2009), and increased leg lactate output during exercise
(Martin et al., 1995) in T2D. These alterations may indicate a
greater propensity for metabolite production during exercise
in T2D. Furthermore, oxidative stress may also contribute as
it is an important mediator of well-known complications of

T2D (e.g., vascular dysfunction and peripheral neuropathy)
(Giacco and Brownlee, 2010) and may directly influence thin
fiber afferent activity (Delliaux et al., 2009). Indeed, studies have
reported that reactive oxygen species may play a role in evoking
the exaggerated exercise pressor reflex in common comorbidities
of T2D (e.g., hypertension, peripheral artery disease, and heart
failure) (Koba et al., 2009, 2013; Wang et al., 2009; Muller
et al., 2012; Harms et al., 2017). Thus, it is plausible that the
increased presence of metabolites and/or reactive oxygen species
may contribute to the exaggerated exercise pressor reflex in
T2D (Grotle and Stone, 2019). However, additional studies
are needed.

Recent evidence suggests that insulin and glucose may also
play a role in augmenting thin fiber afferent activity. Specifically,
Hotta et al. (2019) used a whole-cell patch-clamp preparation
to show that local application of insulin to small dorsal root
ganglion in healthy mice decreased their mechanical threshold
and augmented the amplitude of mechanically activated currents,
whereas antagonizing insulin receptors attenuated this response.
Furthermore, they used an isolated muscle-nerve preparation to
show that application of insulin decreased the threshold, but not
themagnitude, of mechanically evoked group IV afferent activity.
In terms of glucose, a recent study showed that acutely infusing
glucose into the hindlimb to concentrations observed in T2D
rats did not affect the exercise pressor reflex or either of its two
components (i.e., mechanoreflex and metaboreflex) in healthy
rats (Huo et al., 2020). However, these responses may be different
in T2D rats. Notably, Ishizawa et al. (2021) recently reported
an augmented pressor and renal SNA response to capsaicin
(chemically sensitive TRPV1 receptor agonist) administration in
the hindlimb of T2D rats compared to controls. Furthermore,
group IV muscle afferents isolated from T2D rats exhibited
exaggerated capsaicin-induced discharge frequency, which was
related to blood glucose concentrations. This aligns with findings
in T2D patients showing a positive association between the
MSNA response to isolated muscle metaboreflex activation and
fasting blood glucose and HbA1c (Holwerda et al., 2016a). Thus,
together these findings suggest that both insulin and glucose may
play a role in augmenting the exercise pressor reflex in T2D.
However, further studies are warranted.

Whether central command is impacted by T2D has received
less attention. However, a recent study by Vranish et al. (2020)
reported augmented MSNA and BP responses in T2D patients at
the early onset of exercise, evident as early as 10 s into isometric
handgrip. Although by no means direct evidence for central
command involvement, these data at least suggest the possibility
of heightened central command responses in T2D. A recent
study (Kim et al., 2019) using a high-fat diet and streptozotocin-
induced T2D model in rats supports a contribution of central
command in evoking exaggerated SNA and BP responses to
exercise (Figure 2). These investigators reported that neural
stimulation of the mesencephalic locomotor region, a putative
area for the central command pathway, resulted in greater renal
SNA, HR, and BP responses in T2D rats compared to controls.
The underlying mechanisms for these responses are not known
but could involve direct alterations to brain areas responsible for
central command, or the central integration of signals. Possible
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contributors include enhanced central angiotensin II or oxidative
stress-mediated reductions in NO within the NTS, both of which
have been proposed as contributors to augmented SNA reactivity
to exercise in hypertension, a common comorbidity in T2D (Song
et al., 1994; Zimmerman et al., 2002; Leal et al., 2012, 2013). T2D
also appears to impair dynamic cerebral autoregulation during
exercise, which suggests the potential for direct cerebral vascular
contributions (Vianna et al., 2015). For more information on the
effects of T2D on cerebral vascular regulation during exercise, the
reader is directed to a recent review (Kim et al., 2020).

It is also plausible that enhanced SNA responses during
exercise in T2D include an altered interaction between central
command and the exercise pressor reflex (Amann et al., 2008).
Painful peripheral diabetic neuropathy is a common feature in
T2D and affects similar sensory afferents as those evoking the
exercise pressor reflex (Davies et al., 2006). Thus, considering
that effort sense influences central command (Williamson et al.,
2001), it is possible that activation of sensory afferents (i.e.,
ergoreceptors and nociceptors) evoking augmented SNA and
muscle pain also increases central command by influencing
one’s perceived effort during exercise. Indeed, ischemia-induced
muscle pain has been shown to increase effort sense during light
resistance exercise in healthy individuals (Hollander et al., 2010).
Moreover, attenuating afferent feedback during dynamic exercise
lowers ratings of perceived exertion during exercise, a marker
for central command activation (Amann et al., 2010). Notably,
there is some evidence of higher perceived effort during exercise
in T2D (Huebschmann et al., 2009; Kim et al., 2015). However,
these interactions are complex and require further investigation.

Whether T2D impairs arterial and cardiopulmonary
baroreflex function during exercise has not been directly tested
(Figure 2). Several studies indicate that T2D attenuates cardiac
baroreflex sensitivity at rest (Holwerda et al., 2016b; Cseh et al.,
2020; Kuck et al., 2020). However, this may not be specific to
T2D, as weight-matched controls also exhibit impaired cardiac
baroreflex control at rest compared to lean controls suggesting
that obesity rather than T2D impairs arterial baroreflex control
of HR (Holwerda et al., 2016b). In contrast, arterial baroreflex
control of MSNA appears to be preserved at rest in T2D
(Holwerda et al., 2016b; Moura-Tonello et al., 2016). However,
whether this is true also during exercise has not been directly
tested. This is important because the arterial baroreflex plays
an essential role in restraining sympathetic outflow during
exercise (Joyner, 2006). Likewise, to our knowledge, no study has
investigated the effect of T2D on cardiopulmonary baroreflex
control of MSNA (Figure 2), which also has restraining effects
on MSNA responses during exercise. There is a clear need for
further studies.

In addition to an exaggerated MSNA response to exercise,
recent research suggests T2D also appears to impair the
ability to attenuate sympathetically mediated vasoconstriction
in active skeletal muscle (i.e., functional sympatholysis;
Figure 2). Specifically, Bock et al. (2020) demonstrated greater
vasoconstrictor responses to intra-arterial infusion of α1 and α2–
adrenergic receptor agonists in active muscle during rhythmic
handgrip exercise in T2D patients compared to nondiabetic
controls. It is important to note that these findings contrast

with Thaning et al. (2011), demonstrating preserved functional
sympatholysis in T2D. However, in this study, the T2D patients
were relatively healthy and had normal vasodilatory responses
to acetylcholine, suggesting normal endothelial function. This is
interesting because recent work (Hearon et al., 2020) suggests
that the degree of functional sympatholysis may be dependent
on endothelial function and thus, could, in part, explain these
disparate findings.

Non-adrenergic pathways may also contribute to the reduced
BF responses in active skeletal muscle reported in T2D patients.
Indeed, an imbalance favoring blunted endothelial-dependent
vasodilation and enhanced non-adrenergic vasoconstrictors may
be involved (Figure 2) (Mather et al., 2004; Malik et al.,
2005; Frisbee et al., 2019). Although limited studies have been
performed, there is some evidence that warrants discussion. For
example, one study (Kingwell et al., 2003) showed that attenuated
leg BF responses to dynamic exercise were significantly correlated
with vasodilatory responses to acetylcholine but not to sodium
nitroprusside infusion, suggesting that an impaired endothelial-
dependent but not independent NO-mediated vasodilation may
contribute. Furthermore, impaired ATP-mediated vasodilation,
perhaps due to reduced ATP bioavailability or purinergic
receptor sensitivity, may also be involved (Thaning et al., 2010;
Groen et al., 2019). In terms of vasoconstrictors, blocking
endothelin-1 receptors during rhythmic handgrip exercise
has been shown to enhance muscle BF responses in T2D
patients but not in healthy controls, indicating augmented
endothelin 1-mediated vasoconstriction during exercise in T2D
(Schreuder et al., 2014). Collectively, these findings suggest that
attenuated vasodilation via reduced NO and ATP, in combination
with enhanced vasoconstrictor influence via endothelin-1, may
also impair the ability to appropriately regulate contracting
skeletal muscle BF in T2D. Notably, these changes in non-
adrenergic pathways, along with the heightened MSNA and
impaired functional sympatholysis, likely also contribute to the
exaggerated BP response to exercise reported in T2D patients.
Additionally, recent work suggests that augmented exercise-
induced increases in arterial stiffness may also contribute to the
exaggerated BP response to exercise in T2D (Cooke et al., 2020).

CONSIDERATIONS AND FUTURE
DIRECTIONS

T2D is a multifactorial disease with many potential contributing
factors to the neural vascular dysregulation reported during
exercise (e.g., diet, physical inactivity, aging, family history,
sex, ethnicity, comorbidities, etc.). This likely contributes to
variations in diabetic phenotypes (Stidsen et al., 2018) as well as
potentially differential etiologies for exercise impairments (Nesti
et al., 2020), making T2D a complex population to study. It is also
important to note that differences in T2D characteristics (e.g.,
duration of diabetes, glycemic control, and varying medications),
animal models used, and exercise modality employed (e.g.,
type, duration, intensity of exercise) may also influence the
observed neural cardiovascular responses to exercise in T2D.
In addition, the majority of studies discussed in this review
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include relatively well-controlled T2D patients and exclude
those with diabetic complications (e.g., neuropathy, uncontrolled
diabetes, coronary heart disease etc.). Thus, examining neural
cardiovascular responses to exercise in T2D patients with
associated complications warrants future investigation. Likewise,
although an augmented BP response to exercise is observed in
several age groups and in bothmales and females, the influence of
age and sex on neurovascular regulation during exercise in T2D
has not been comprehensively assessed. It would be particularly
interesting to determine the influence of sex hormones and
menopausal status as estrogen has been shown to affect the
cardiovascular responses to exercise (Schmitt and Kaufman,
2003; Fadel et al., 2004; Jarvis et al., 2011). Studies are also needed
to further understand the contribution of factors such as insulin
resistance, obesity, and physical inactivity. Notably, two studies
indicate that insulin resistance may be a stronger predictor of an
augmented metaboreflex than obesity in nondiabetic individuals
(Milia et al., 2015; Hotta et al., 2020). However, others have
demonstrated that obesity may drive negative effects on neural
cardiovascular control mechanisms in T2D patients (Holwerda
et al., 2016b). Moreover, the influence of physical inactivity
on neural cardiovascular control in T2D is unclear and also
warrants future investigation. Thus, overall, we have a lot more to
learn about cardiovascular responses to exercise and underlying
mechanisms in T2D and elucidating the role of the above
mentioned factors in future studies will be important to consider
as this field moves forward.

CONCLUSION

T2D patients are at a twofold higher risk of premature mortality,
contributing to a significantly shorter life expectancy (Raghavan

et al., 2019). Emerging evidence suggests that neurovascular
dysregulation leading to enhanced SNA and BP reactivity to
exercise or daily physical activities (e.g., carrying groceries,
walking up stairs) may increase the already heightened risk
for adverse cardiac events and stroke in this population.
Although mechanisms for this are just starting to emerge,
evidence supports a contribution of the exercise pressor
reflex and central command. However, further studies are
needed and elucidation of potential roles for the arterial and
cardiopulmonary baroreflex requires investigation. Additionally,
augmented α1 and α2 adrenergic receptor sensitivity, endothelin-
1-mediated vasoconstriction and blunted NO, and ATP-
mediated vasodilation may also contribute. Indeed, T2D may
lead to a scenario where enhancedMSNA, via the exercise pressor
reflex and central command, along with impaired local vascular
control mechanisms (adrenergic and non-adrenergic) attenuates
increases in exercising muscle BF and augments the BP response
to exercise. Nonetheless, there is a clear need for future studies
to investigate the impact of T2D on neural and vascular control
mechanisms and their interaction during exercise.
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