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Non-alcoholic fatty liver disease (NAFLD) has recently become the most common liver

disease with a global prevalence of over 25% and is expected to increase. Recently,

experts have reached a consensus that “fatty liver disease associated with metabolic

dysfunction or MAFLD” may be a more appropriate and inclusive definition than NAFLD.

Like the former name NAFLD, MAFLD, as a manifestation of multiple system metabolic

disorders involving the liver, has certain heterogeneity in its pathogenesis, clinical

manifestations, pathological changes and natural outcomes. We found that there is a

delicate dynamic balance among intestinal microflora, metabolites and host immune

system to maintain a healthy intestinal environment and host health. On the contrary,

this imbalance is related to diseases such as MAFLD. However, there are no clear

studies on how dietary nutrients affect the intestinal environment and participate in

the pathogenesis of MAFLD. This review summarizes the interactions among dietary

nutrients, intestinal microbiota and MAFLD in an attempt to provide evidence for

the use of dietary supplements to regulate liver function in patients with MAFLD.

These dietary nutrients influence the development and progression of MAFLD mainly

through the hepatic-intestinal axis by altering dietary energy absorption, regulating bile

acid metabolism, changing intestinal permeability and producing ethanol. Meanwhile,

the nutrients have the ability to combat MAFLD in terms of enriching abundance of

intestinal microbiota, reducing Firmicutes/Bacteroidetes ratio and promoting abundance

of beneficial gut microbes. Therefore, family therapy with MAFLD using a reasonable diet

could be considered.

Keywords: fatty liver disease associated with metabolic dysfunction, MAFLD, dietary nutrients, intestinal-hepatic

axis, non-alcoholic fatty liver disease, NAFLD

INTRODUCTION

Since ancient times, oral feeding has been an important way for human survival. Humans obtain
various nutrients required for life through food consumption, which consists of carbohydrates,
lipids, amino acids, dietary fiber, minerals, and vitamins. In addition to the common nutrients,
there are other dietary components such as coffee (rich in caffeine) and tea (containing tea
polyphenols) which are an integral part of our daily diet. In this review, nutrients and dietary
components are collectively referred to as dietary nutrients.
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The intestinal tract is the largest digestive organ of the
human body and is called the second brain of the human
body. As the intestine contains a variety of digestive juices,
it is the main place for the absorption of various dietary
nutrients (1). Besides, the gut microbiota is an important
component in maintaining healthy homeostasis in the intestine.
The strains of the gut microbiota vary widely from individual
to individual and are strongly influenced by the host genotype,
initial colonization by vertical transmission at birth and dietary
habits (2–5). In general, there is a delicate dynamic balance
between the gut microbiota, metabolites, and the host immune
system to maintain a healthy intestinal environment and host
health (6). Conversely, this imbalance has been associated
with disease ranging from localized gastrointestinal disorders
to neurological, respiratory, metabolic, and cardiovascular
diseases (7).

Non-alcoholic fatty liver disease (NAFLD) has recently
become the most common liver disease with a global prevalence
of over 25% (8) and is expected to increase (9). It includes
simple steatosis (NAFLD) and non-alcoholic steatohepatitis
(NASH) (10), and is characterized by excessive intracellular
fat deposition in the liver, which does not include alcohol
and other well-defined hepatic impairment factors. There is a
bidirectional material exchange pathway (intestine-liver axis)
between the liver and the intestine (11), so the occurrence
and development of NAFLD may be closely related to
intestinal microorganisms.

Recently, experts have reached a consensus that “fatty liver
disease associated with metabolic dysfunction or MAFLD”
may be a more appropriate and inclusive definition than
NAFLD (12). Like the former name NAFLD, MAFLD, as a
manifestation of multiple system metabolic disorders involving
the liver, has certain heterogeneity in its pathogenesis, clinical
manifestations, pathological changes and natural outcomes.
MAFLD is diagnosed on the basis of evidence of hepatic
steatosis (by imaging, blood biomarkers, or hepatic histology)
associated with any one or more of the following: evidence
of overweight/obesity, T2DM, metabolic disorders (13). Recent
studies have shown a higher global prevalence of MAFLD
than NAFLD (14). A study of a representative sample of
the general population in the United States found that the
prevalence of MAFLD in the United States from 2017 to
2018 was 39.1%, while approximately 7.4% of patients with
MAFLD had advanced hepatic fibrosis (15). In China, the
prevalence of MAFLD in adults 40 years of age and older
is estimated at 40.3% and high risk of advanced fibrosis
based on fibrosis-4 was highly prevalent (14.7%) in lean
MAFLD with T2DM (16). In conclusion, MAFLD is a major
factor affecting health and would evolve into a serious public
health problem.

However, there are no clear studies on how dietary
nutrients affect the intestinal environment and participate in
the pathogenesis of MAFLD. This review summarizes the
interactions among dietary nutrients, intestinal microbiota and
MAFLD in an attempt to provide evidence for the use of dietary
supplements to regulate liver function in patients with MAFLD.

HEALTHY GUT MICROBIOTA:
COMPOSITION AND FUNCTION

The gastrointestinal microenvironment plays a central role
in maintaining homeostasis of healthy host, consisting of
monolayer cell epithelium, a local immune system, and the
microbiome (17). Among them, the intestinal epithelium
has the function of absorbing nutrients, resisting invading
microorganisms in the intestinal lumen (through physical
and chemical means) and providing a semi-permeable barrier
between the host and the intestinal lumen (17). Besides, as more
than 80% of the body’s lymphocytes are found in the gut, the
microbiome forms a local intestinal immune system with both
surveillance and effector arm functions (18). Most importantly,
the gut microbes, known as the “second brain” of the body, are
the third component of the intestinal microenvironment. It is
involved in the composition of the intestinal microenvironment
and in regulating the dynamic balance of it.

The human gut microbiome is a complex ecosystem of
bacteria, yeasts and viruses that regulate the interactions between
the human host and its environment (19). There are more than
1,000 species of bacteria in the intestine, 90% of which are
from Firmicutes (mainly composed of Gram-positive Clostridia)
and Bacteroidetes (mainly composed of Gram-negative bacteria
such as Bacteroides fragilis) (20). In addition, Actinobacteria,
Proteobacteria, Fusobacteria and Verrucomicrobia are also the
dominant microbial phyla of the intestine (21).

These enormous numbers of bacteria can be broadly divided
into three broad categories: beneficial, pathogenic and neutral
bacteria. Beneficial bacteria, also known as probiotics, are
indispensable for human health and include various species
of Bifidobacteria and Lactobacilli (22). They are involved
in the metabolism of nutrients, promotion of intestinal
motility, inhibition of the growth of pathogenic bacteria and
decomposition of pathogenic and toxic substances. Table 1 lists
the microorganisms commonly used as probiotics (23–26).

The gut microbiome has multiple functions and supports
the balance of the intestinal microenvironment. Intestinal
microbes can symbiotically interact with the intestinal barrier
and influence its permeability (27). Intestinal permeability is
an essential marker of intestinal barrier function, which is
tightly regulated in homeostasis and is closely associated with
disease. The gut microbiome may act directly on intestinal
permeability by influencing tight junctions (TJ) characteristics
and activity, and indirectly by modulating inflammation (28).
In addition, gut microbes may influence the immune response
in the evolving tumor microenvironment by triggering a
pro-inflammatory or immunosuppressive program, ultimately
intervening in tumourigenesis and progression.

The human body takes in a variety of meals daily to meet
various growth and development needs of the body. After
being digested and absorbed by the digestive system, all kinds
of meals will mainly provide major nutrients for the human
body: carbohydrates, lipids, amino acids, dietary fibers, minerals,
vitamins and other dietary components. The intestine is the
main place for digestion, and the microflora parasitic on the
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human intestine has the function of processing nutrients. With
the participation of intestinal microflora, the relative homeostasis
of nutrients in the host is maintained. Intestinal microorganisms
further decompose nutrients into smaller units, such as bile
acids(BAs) (29), short-chain fatty acids(SCFAs) (30, 31), free fatty
acid (FFA), which contribute to the transport and absorption of
nutrients. In some cases, intestinal microorganisms generate new
substances (Figure 1).

DIETARY NUTRIENTS AFFECT THE
INTESTINAL MICROENVIRONMENT AND
GUT MICROBIOTA

Dietary nutrients enter the digestive system for digestion and
absorption and are transformed into small molecule metabolites
such as SCFAs and BAs and produce a range of biological
effects. This process may affect the intestinal microenvironment
and intestinal microbiota by altering dietary energy absorption,
regulating BAs metabolism, changing intestinal permeability and
producing ethanol.

Alter Dietary Energy Absorption
Carbohydrates
As a breakdown product of carbohydrates, the metabolism of
SCFAs is influenced by the type and number of microorganisms
in the intestinal tract (32), and is a regulator of pH, cell
volume and other functions related to ion transport, epithelial
cell nutrition, and a regulator of proliferation, differentiation
and gene expression (33). SCFAs are beneficial to the health of
the host’s intestinal environment, as they indirectly affect the
microbial communities by reducing the pH of the intestinal
environment (when the pH of the intestinal lumen is acidic,
the number of potentially pathogenic Clostridium perfringens is
reduced) (34), which contributes to the health of the host.

In addition, dietary interventions targeting people at high
risk of metabolic syndrome have demonstrated that high-
carbohydrate diets modulate glycolytic bacteria in human feces,
including Bacillus mimicus and Bifidobacterium bifidum, both of
which are independently associated with improved body energy
regulation and reduced risk factors for metabolic syndrome (35).

Lipids
The olive oil diet enhances microbial metabolism of SCFAs,
increases ketone body synthesis and degradation, and
strengthens organism immunity, whereas the corn oil diet
is closely associated with lipid metabolism and carbohydrate
metabolism (36). Both the corn oil diet and the milk fat diet
enhance carbohydrate metabolism, which may be an indirect
pathway for the action of lipids on the gut microbiota (36).

Amino Acids
Konomi et al. used a high fat diet (HFD) with casein and an HFD
with soy protein to intervene in 105 ICR 8-week-old male mice.
The pH value in the intestinal lumen of mice in the soy group
decreased and the content of SCFAs increased, showing that the
levels of acetic acid, propionic acid, lactic acid and butyric acid

TABLE 1 | Microorganisms used as probiotics.

Genus Species

Bacteria Lactobacillus species

L.acidophilus

L.bulgaricus

L.casei

L.crispatus

L.fermentum

L.gasseri

L.johnsonii

L.lactis

L.plantarum

L.reuteri

L.rhamnosus GG

Bifdobacterium species

B.adolescentis

B.animalis

B.bifidum

B.breve

B.infantis

B.lactis

B.longum

Bacillus cereus

Enterococcus faecalis

Enterococcus faecium

Escherichia coli Nissle

Streptococcus thermophilus

Yeast Accharomyces boulardii

tended to be significantly higher or higher than those in the casein
group (37).

Dietary Fiber
The benefits of dietary fiber on the intestinal flora are dependent
on the action of SCFAs, the enzymatic product of soluble dietary
fiber. SCFAs lower the colonic pH below the threshold for
pathogenic bacteria, thereby inhibiting the growth of potential
pathogens and promoting the cultivation of beneficial bacteria
such as Bifidobacteria and Lactobacilli (38, 39). Meanwhile,
SCFAs promotes the strengthening of the intestinal barrier
function, thus reducing the infestation of pathogenic bacteria
and hazardous substances to the host (40). Evidence for this is
the finding that application of a mixture of SCFAs alone and
in combination raised trans-epithelial resistance and reduced
paracellular transport markers in the rat cecum wall (41).

Minerals
Limited studies have indicated that phosphorus supplementation
affects SCFA and gut microbial diversity. The experimental
group supplemented with 1000 mg/day of phosphate showed
significantly higher concentrations of total SCFAs and acetate,
and improved gut microbiome diversity after 8 weeks (42).
In addition, elevated abundance of butyrate-producing
Faecalibacterium and Pseudoflavonifractor was detected in
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FIGURE 1 | Digestion and absorption of nutrients.

cecum samples from broilers whose diets were supplemented
with phosphorus (43).

Other Dietary Components
After entering the body, coffee is metabolized by the gut
microbiota into fermentation products such as SCFAs (44, 45).
In an animal experiment, mice with metabolic syndrome fed with
chlorogenic acid and caffeine (themain component of coffee) had
a 1.5- to 4-fold increase in propionate and a 1.5- to 3-fold increase
in butyrate, in addition to restoring the already reduced levels of
acetate in mice with metabolic syndrome compared to controls
(46). Meanwhile, Sergio et.al extracted mannooligosaccharides
from spent coffee grounds and submitted them to an in vitro
fermentation with human feces. They observed that SCFAs
production increased in a dose-dependent manner (44).

Regulate BAs Metabolism
BAs are an essential part of the molecular environment of the
healthy human gut (47) and are synthesized from cholesterol
mainly in the hepatocytes and then transported to the gallbladder
for storage. Ingestion of the diet will stimulate the excretion
of BAs into the duodenum, of which 95% will be reabsorbed
in the intestine and returned to the liver via the enterohepatic
circulation, while the remaining 5% is excreted in the feces
(48, 49). BA functions as a digestive activator, facilitating the
dissolution and digestion of lipophilic exogenous substances,
fat-soluble vitamins, fatty acids and glycerol monoesters (50).

The rationale is that amino acid intervention increases
Clostridium perfringens cluster XIVa, which has the ability to
promote the production of secondary BAs from primary BAs,

in the feces of mice and can influence the metabolic process of
BAs (51). In addition, it was suggested that the microbiota may
contribute to changes in BA translocation and circulating BA in
the gut, and that BAs and gut microbes interact to influence each
other’s abundance and size (52).

BAs use the immune system to remodel the intestinal flora
through farnesoid X receptor(FXR) mediation (53, 54), while the
intestine-hepatic FXR-FGF(fibroblast growth factor)15-FGFR4
signaling axis can regulate the relationship between BAs
metabolism and intestinal microbes (55). Bile salt hydrolase
(BSH) is an important substance in the metabolism of BAs, and
it has been suggested that BSH may be an important link in
the effect of BAs on intestinal flora (55). Studies have shown
that theaflavins inhibit BSH-associated microorganisms and BSH
activity, which leads to increased BA binding in the ileum, further
inhibiting the intestinal FXR-FGF15/19 signaling pathway and
enhancing hepatic BA production (55), ultimately affecting the
number and composition of intestinal microorganisms.

Change Intestinal Permeability
The intestinal barrier is the functional entity that separates
the intestinal lumen from the internal host and consists
of mechanical components (mucus, epithelium), humoral
components (defensins, IgA), immune components
(lymphocytes, innate immune cells), muscles and neuronal
components. Intestinal permeability is understood to be a
measurable characteristic of the intestinal barrier. Impaired
intestinal permeability, on the other hand, implies a non-
transitory alteration of permeability disturbance, leading to loss
of intestinal homeostasis, dysfunction and disease (56).
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Intestinal permeability could be regulated by prebiotics,
probiotics and diet. SCFAs are organic acids of propionate,
butyrate and valerate, which are produced by the fermentation
of intestinal microorganisms from undigested dietary
carbohydrates in the colon. In particular, butyrate plays
a particular role in maintaining the intestinal barrier. In
inflammatory bowel disease (IBD), a persistent state of
inflammation will lead to leakage of the TJs of the patient’s
intestine, and butyrate enemas help to reduce intestinal
inflammation in patients (57), while preserving TJ integrity and
directly improving intestinal barrier function by inhibiting the
release of TNF-α, IL-13, etc. (58–60). Although some studies
have reported denying the role of intestinal flora in maintaining
the integrity of the intestinal barrier, there are numerous studies
confirming it (61, 62). For example, the probiotic E. coli Nissle
1917 (EcN) has been shown to prevent barrier disruption
caused by intestinal pathogenic E. coli strains infecting T84
and Caco-2 cells (63). Metabolites secreted by Bifidobacterium
infantis Y1 (one of the components of the probiotic product
VSL#3) lead to increased expression of ZO-1 and occludin,
while decreasing the expression of claudin-2, thereby enhancing
the effect on trans-epithelial resistance and ion secretion (64).
Both high-fat diets and Western-style diets characterized by
high carbohydrate and high-fat diets are thought to enhance
intestinal permeability and cause metabolic endotoxemia
(65–67). The effect of diet on intestinal permeability is largely
dependent on the host’s intestinal microbiota and genetic
susceptibility. 4-week-old C57Bl/6 male mice fed a high-fat diet
for 3 months found that increased intestinal permeability in
the ileum and cecum of diabetic mice promoted the effects of
specific microbiota and resulted in enhanced endotoxaemia (67).
Oligofructose has been shown to promote selective microbiota
changes (Bifidobacterium) leading to increased endogenous
glucagon-like peptide 2 (GLP-2) production, thereby improving
intestinal barrier function and providing tighter junctions and
less inflammation (68).

Carbohydrates
Easily digestible carbohydrates (e.g., sucrose, fructose, glucose,
maltodextrin and corn starch) and indigestible carbohydrates
(i.e., fibers such as, cellulose, methylcellulose, psyllium, pectin,
inulin, linseed, marshmallow root, potato starch and slippery
elm) have an effect on the density of intestinal flora, thereby
altering intestinal permeability and affecting the degree of colonic
inflammation in mice (69).

Lipids
The effects of saturated and unsaturated fatty acids on
intestinal endotoxin transport and postprandial endotoxaemia
in pigs were assessed by Venkatesh et al. who found that
coconut oil (high in saturated fatty acids) increased intestinal
permeability, whereas cod liver oil and fish oil (very high in
monounsaturated oleic acid) reduced intestinal permeability (70)
(very high in monounsaturated oleic acid) reduced intestinal
permeability, suggesting that dietary oils may differentially
alter intestinal endotoxin transport through the regulation of
intestinal membrane permeability by fatty acids (70).

Amino Acids
Konomi et al. found that the alpha diversity was significantly
higher in the soya group than in the casein group, and
significantly higher in the Bacteroides, Proteus, Bifidobacterium,
Enterococcus, Vibrio vulnificus and Vibrio desulfuricans than
in the casein group. Meanwhile the thick-walled phylum
was significantly lower than in the casein group, with
Vibrio desulfuricans being associated with intestinal barrier
dysfunction (71).

Minerals
In a 54-day nutritional intervention, high calcium
supplementation (12 g/kg) modulated the intestinal microbiota
in a high-fat diet mouse model, as evidenced by an increase in
the number of Bifidobacteria and the Bacteroidetes/Probacteria
ratio in cecum samples (72). The mechanism could be that
dietary calcium reduces the cytotoxicity of intestinal contents
and intestinal epithelial cell lysis by precipitating cytotoxic
surfactants (e.g., BAs). The reduced tubular cytotoxicity not
only enhances the barrier function of the intestinal mucosa
but also the protective endogenous microbial community (73).
Zinc(Zn) is a mineral associated with the maintenance of the
mucosal barrier and is essential in the maintenance of intestinal
homeostasis (74). Shigella infection was reported to cause
significant phosphorylation of extracellular signal-regulated
kinase (ERK), leading to barrier disruption, while Zn2+ reversed
this ERK activation and enhanced barrier integrity (75). Animal
studies show that zinc-amino acid complexes diminish the
pathological changes in intestinal permeability caused by
Clostridium perfringens in broilers (76).

Vitamins
Vitamin D contributes to maintaining TJs to safeguard the
integrity and function of the intestinal barrier. It has been
suggested that vitamin D3/VDR(vitamin D receptor) signaling
could regulate the number and distribution of tight junction
proteins (77, 78). Simultaneously, vitamin D supplementation
in the presence of a functional VDR strengthens the epithelial
barrier by reducing the paracellular permeability of polarized
epithelial cells (79, 80).

Vitamin A also affects the metabolism of SCFAs, as evidenced
by significantly higher levels of butyrate and acetate and bacterial
genes associated with butyrate production (but and buk) in
the cecum of A+ mice compared to A- mice (81). It is worth
noting that retinoic acid (RA, a metabolite of vitamin A) induces
the expression of IL-22 binding protein in dendritic cells and
promotes intestinal homeostasis (82). IL-22 is a cytokine involved
in the homeostasis and repair of intestinal barrier function and
affected the permeability associated with the epithelial TJs of
claudin-2 (83).

Vitamin C has a similar role in maintaining the
barrier function of the intestinal tract. Dietary vitamin C
supplementation decreased intestinal barrier defects in alcohol-
fed guinea pigs as observed in an animal study (84). A possible
reason for increasing vitamin C intake to improve intestinal
barrier function is the ability of vitamin C to increase collagen
synthesis in the intestine (85). This proposed mechanism
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is consistent with the vitamin C’s coenzyme function of
hydroxylating proline and lysine to cross-link collagen (86).

Produce Ethanol
Endogenous ethanol is usually derived from the breakdown of
carbohydrates by intestinal bacteria and is metabolized in the
liver by the enzyme ethanol dehydrogenase. Various diets are
associated with high levels of ethanol-producing bacterial strains
[e.g., Escherichia coli, Bacteroides, andClostridium (87–89)] in the
intestine. The number of Bacteroides in the cecum of vitamin A-
deficient (A-) mice was significantly lower than that of vitamin
A-sufficient (A+) mice (81). Coffee decreases the amount of
Clostridium and Escherichia coli (90, 91). The abundance of
Clostridium is closely related to fat intake and can be reduced by
the consumption of almond (36) and soybean oil (92).

INTERACTION OF GUT MICROBIOTA WITH
MAFLD

Definition and Potential Mechanisms of
MAFLD
MAFLD is a clinicopathological syndrome characterized by
excessive fat deposition in hepatocytes (10). Patients with
MAFLD suffer from hepatocellular damage, inflammation and
fibrosis—significant risk factors for the development of cirrhosis
and hepatocellular carcinoma (HCC) (93). This means that a
certain percentage of MAFLD patients may develop cirrhosis and
hepatocellular carcinoma, posing a serious risk to human life and
health (94).

However, the potential mechanisms of MAFLD occurrence
and progression have not been fully elucidated. It is generally
accepted that MAFLD is the result of a combination of multiple
factors such as diet, genetics, environment, overweight or obesity,
hormones secreted by adipose tissue (leptin, adiponectin), and
crosstalk between different organs or tissues (95).

MAFLD Patients May Have Gut Microbial
Disorders
Several studies have indicated that patients with MAFLD
often suffer from dysregulated gut flora to some degree.
The gut microbiota of patients with MAFLD is characterized
by a low abundance of microorganisms, an increase in
Firmicutes/Bacteroidetes ratio, and a decrease in the abundance
of certain bacteria.

An observational case-control study using multi-label
pyrophosphate sequencing to determine fecal microbial
characterization in patients with suspected MAFLD and
healthy subjects found a significant reduction in gut microbiota
abundance in patients with MAFLD (96). Among 73 obese
children and adolescents in the pediatric clinic, subjects with
MAFLD had significantly lower bacterial alpha-diversity than
those with simpleobesity (97). A prospective cross-sectional
study showed that the relative abundance of anthropoid bacteria
in NASH was low and non-related to BMI and energy intake
from dietary fat (98).

The F/B ratio is a marker of ecological dysregulation
associated with a variety of metabolic diseases (99). Ayesha et al.
observed that subjects with MAFLD showed a higher F/B ratio
compared with those without MAFLD (97). Increased F/B ratios
are commonly found in patients from MAFLD with comorbid
obesity. In a cross-sectional study from Indonesia, researchers
stratifiedMAFLD patients by BMI and found amoderate positive
correlation between the Thick-walled phylum/Bacteroid phylum
ratio and steatosis in the obese group (r= 0.435; P= 0.030) (100).

There is a delicate dynamic balance between microorganisms
in the human gut, with beneficial bacteria being the dominant
force in a healthy intestinal microenvironment. When the
balance is disturbed by factors such as inflammation, the
abundance and ratio of various microorganisms will become
disordered. Contrary to expectations, elevated abundance of
Lactobacillus, which is often used as a probiotic, is generally
observed in patiets with MAFLD. Jiang et al. measured the
fecal microbiota of histologically confirmedMAFLD patients and
healthy controls and found that the abundance of Lactobacillus
was increased in MAFLD patients (101). The same results were
observed in other studies by Da Silva et al. (102) and Raman
et al. (96). In a prospective cross-sectional study, 39 adults with
biopsy-proven MAFLD and 28 healthy controls were evaluated
for gut microbiome and the researchers found lower Coprococcus
abundance in patients with MAFLD (102). Coprococcus is a
microorganism involved in the metabolism of alcohol and the
pathogenesis of MAFLD (103). Furthermore, Escherichia is an
endogenous alcohol-producing bacterium that is inextricably
linked to MAFLD, as evidenced by the increased abundance of
Escherichia in patients with MAFLD (87, 101, 104–106).

Gut Microbes Could Influence the
Development of MAFLD
Microbiota can ameliorate or exacerbate MAFLD through a
variety of mechanisms. However, the relationship between the
factors and the development or progression of MAFLD remains
controversial. These parameters are briefly described here.

Firstly, gut microbes may influence energy extraction,
absorption, utilization and storage, and these processes may as
well be involved in the pathogenesis of MAFLD. Studies have
reported that gut flora may increase the absorption of SCFAs,
FFA and carbohydrates. Furthermore, it upregulates ChREBP
and SREBP-1c and inhibits fating induced adipose factor (Fiaf),
leading to the activation of lipoprotein lipase inhibitors (LPL)
(107), ultimately leading to increased adipogenesis and the
development of a pathological environment for MAFLD (108).

Secondly, intestinal microorganisms have the ability to reduce
the levels of choline, converting it into toxic methylamine which
is associated with the risk of inducing hepatic steatosis (109). In
addition, BAs are another substance that gut microbes influence
the pathogenesis of MAFLD. Not only does BAs contribute
to lipid absorption and transport, but they are increasingly
being considered as nuclear receptor binding agents and play a
putative role in altering the microbiome. Experimental animal
studies show that treatment of MAFLD mouse models with
dual FXR/TGR5(Takeda G protein-coupled receptor 5) bile acid
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receptor agonists improves disease and alters the phenotype
of the intrahepatic macrophage population (110). In another
animal study, treatment with antibiotics or the potent antioxidant
tempol altered the gut microbiota in mice with increased levels of
bound BAs compared to controls (111). Simultaneously, after a
high-fat diet was given to both the control and treatment groups,
the treatment group had an increase in bound BA metabolites
(tauro-β-rhodopsin) and inhibited intestinal FXR signaling
(111). Specifically, FXR inhibition enhanced gluconeogenesis and
glycogenolysis in the liver and increased insulin sensitivity in fat
and skeletal muscle (108), as evidenced by enhanced lipolysis
and decreased triglyceride accumulation, in agreement with the
results observed in the experiment (111).

Thirdly, gut microbes are instrumental in maintaining the
integrity of the intestinal barrier function. Loss of intestinal
barrier integrity raises the exposure of the liver to bacterial pro-
inflammatory products (e.g., LPS) and toxic bacterial metabolic
by-products, and this could be another possible hypothesis for
the impact of intestinal microbes on MAFLD and NASH (112).
Li et al. implemented a dietary intervention experiment in rats
and showed that intestinal mucosal barrier dysfunction may be
an important contributing factor in NASH rats (113).

Finally, fermentation of carbohydrates by intestinal bacteria
leads to the production of endogenous ethanol which could
promote MAFLD (87). Mezey et al. identified ethanol in the
blood of morbidly obese patients (114). Similarly, Cope et al.
detected ethanol in the exhaled gas of obese mice with no alcohol
intake (115). Children with NASH have elevated blood ethanol
concentrations compared to healthy individuals or children
with MAFLD, suggesting that endogenous ethanol production
may contribute to worsening liver damage by stimulating
inflammatory signals (87).

The Intestine-Liver Axis Is the Structural
Basis for the Interaction of Intestinal
Microorganisms With MAFLD
The bidirectional exchange of substances between the intestine
and the liver cannot be achieved without the intestine-liver axis
(11), a communication pathway that realizes its anatomical and
functional bidirectional action in the intestine and liver mainly
through the portal vein and bile ducts (116, 117). In this process,
the liver secretes nutrients such as BAs and antibodies and other
biologically active substances through the bile duct to the upper
part of the small intestine, where these components travel down
the intestinal tract. The portal vein absorbs endogenous BAs
and other substances of exogenous origin from the metabolism
of the gut (and microorganisms in the gut) into the blood
for transport to the liver (11). For instance, on the one hand,
the metabolite bile salts utilize nuclear receptors (e.g. FXR,
TGR5) as essential signaling molecules to regulate hepatic bile
acid synthesis, glucose metabolism, lipid metabolism and energy
utilization in the diet (11), affecting the composition of the
intestinal flora and the integrity of the intestinal barrier (118). On
the other hand, intestinal factors conversely influence bile acid
synthesis, glucose and lipid metabolism in the liver (119). It has
been suggested that intestinal flora can have a profound effect
on BA metabolism by promoting uncoupling, dehydrogenation

and dehydroxylation of primary BAs in the distal small intestine
and colon, leading to improved chemical diversity of BAs and
involvement in the gut-liver axis (119).

DIETARY NUTRIENTS AFFECT MAFLD
THROUGH INTESTINAL
MICROENVIRONMENT AND MICROBIOTA

Dietary nutrients enter the digestive tract and are digested
and absorbed, with the liver and intestines being the key
digestive organs. The liver and the intestine communicate in
both directions through the portal vein, the bile duct and the
body circulation. Dietary nutrients such as BAs and amino
acids are metabolized endogenously by intestinal tract (and
microbes in intestinal tract) into blood, and then transported
to liver (11). The presence of the intestinal microbial-intestinal-
liver axis is an essential physiological basis for nutrients to
influence the development of MAFLD through gut microbes
(Figure 2A). However,few studies have focused on the effects of
dietary nutrients on the development of MAFLD by affecting the
intestinal microflora. Therefore, we present all the studies that
conducted dietary nutrients as interventions and documented
the changes in gut microbiota and metabolic parameters in
MAFLD animals or patients in Supplementary Table S1 (120–
131). Most of these studies are limited to the intervention of fiber.
In addition, we sought additional evidence to elucidate the effects
of dietary nutrients on MAFLD through intestinal microbiota
and the intestinal microenvironment.

Dietary Nutrients May Reverse Intestinal
Disorders in Patients With MAFLD
Gut microbial disorders in patients with MAFLD are
characterized by a low intestinal microbiota abundance
(96), an increased F/B ratio (132), and a reduced abundance of
beneficial bacteria (96, 101, 102) to reestablish the balance of gut
microbes. However, dietary interventions may have the opposite
benefit on the gut microbiota (Figure 2B).

Enrich Intestinal Microbiota Abundance
Carbohydrates can alter the composition and function of gut
microbes (133, 134). Some animal experiments have shown that
fructose intake is responsible for altering intestinal microbiota,
mucosal status, and liver homeostasis in mice. The main
manifestations were a decrease in the ratio of the thick-
walled phylum/Bacillus phylum (69). In a dietary intervention
study, the relative abundance of Bacillus/Plasmodium spp. was
changed in male rats subjected to a high-fat, high-sucrose
diet intervention (135). The relative abundance of a variety of
intestinal microorganisms reduced at different time points in the
intervention group of rats compared to the control group (135).

The effect of lipids on the gut microbiota is significant,
with high-fat diets often exhibiting increased gut microbiota
abundance compared to low-fat diets (36, 136). A three-week
randomized crossover study assessed the beneficial effects of
almond(fat-rich food) consumption on the composition of the
gut microbiota. Eighteen healthy subjects were randomized to
consume food containing almonds and food not containing
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FIGURE 2 | How nutrients affect MAFLD through intestinal microenvironment and microbiota. (A) Intestinal microbial-intestinal-liver axis; (B) Macro level evidence on

the effect of nutrients on MAFLD; (C) The mechanisms by which nutrients affect MAFLD through the intestinal microenvironment and microflora. FFA, free fatty acids;

Fiaf, fasting-induced adipocyte factor; LPL, lipoprotein lipase; MAFLD, fatty liver disease associated with metabolic dysfunction; SCFA, short-chain fatty acid; FXR,

farnesol X receptor; TGR5, Takeda G protein-coupled receptor 5; BAs, bile acids; FGF 19, fibroblast growth factor 19.

almonds, and a comparison after 3 weeks of intervention
revealed that almond consumption had an effect on the relative
abundance of microorganisms in the gastrointestinal tract, as
demonstrated by an increase in the relative abundance of
Lachnospira, Roseburia and Dialister with almond consumption
(137). Both the milkfat and corn oil diets resulted in increased
alpha diversity, with species richness and Chao1 increasing
with corn oil and milkfat exposure, whereas the olive oil diet
resulted in similar richness to low-fat foods. Dietary lipid types
conferred differences in the core functions of each microbial
community (36).

Amino acids of dietary or endogenous origin can be utilized
by intestinal microorganisms for protein synthesis (138), and to
provide metabolic energy to the intestinal flora (139). Changes in
dietary protein content may lead to changes in the composition
and function of the gut microbiota. In a calorie-controlled
dietary intervention trial in which 80 overweight and obese
subjects were randomized to either a high-protein or a normal-
protein diet, the alpha diversity of the intestinal flora remained
unchanged from baseline in the normal-protein group after 8
weeks, whereas it increased significantly in the high-protein
group. The study noted that the high-protein diet intervention
resulted in differences in the abundance of genera compared

to the normal-protein diet group (140). Many studies have also
shown that soy protein is more closely associated with the
diversity of gut microbes than milk protein (52, 141–143).

A previous report showed that the composition of the gut
microbiota inmice affects host selenium levels and the expression
of selenoproteins in the host (144). On the other hand, selenium
levels have also been shown to enhance overall microbiota
diversity in mice (145) increased intestinal microbial diversity in
adult male rats following ingestion of a magnesium-rich marine
mineral mixture (146).

An association between vitamin A and gut microbes is
potentially possible. Hibberd and colleagues investigated the
effects of different micronutrients (vitamin A, folic acid, iron
and zinc) on the regulation of intestinal microbiology and
found that vitamin A deficiency had the greatest impact on gut
microbes metabolism (147). It has been found that the microbial
communities of vitamin A-enriched children are more diverse
than those of vitamin A-deficient children (148).

It was found that the intestinal microbiota of subjects
who drank coffee daily presented significantly higher relative
abundance of synergistic flora compared to subjects who drank
coffee regularly (P = 0.01, FDR = 0.10) or not at all (P = 0.01,
FDR= 0.08) (149).
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FIGURE 3 | Interactions between nutrients, intestinal microbiota and MAFLD. (A) A low intestinal microbiota abundance in MAFLD patients; (B) Dietary interventions

enrich the intestinal microbiota abundance of MAFLD patients; (C) An increased Firmicutes/Bacteroidetes(F/B) ratio in MAFLD patients; (D) Dietary interventions

reduce F/B ratio of patients with MAFLD; (E) A reduced abundance of beneficial bacteria in MAFLD patients; (F) Dietary interventions promote abundance of beneficial

gut microbes to reestablish the balance of gut microbes; (G) How nutrients affect MAFLD through intestinal microenvironment and microbiota.

Reduce F/B Ratio
Mice fed with fructose syrup for 12 weeks showed a rise in the
genera Coprococcus and Ruminococcus of Firmicutes compared
to mice fed a standard diet with water (69). A recent animal
study intervened in 32 three-week-old C57BL/6 mice on a high-
fat and low-fat diet, with the high-fat derived from olive oil,
corn oil or anhydrous milk fat (36). Studies have shown that
olive oil high-fat diets are associated with intestinal oxygen-
tolerant microorganisms and lead to increased abundance of
various thick-walled phyla such as Clostridiaceae (P = 0.003)
and Streptococcaceae digestiveis (P = 0.01). Corn oil, in turn,
increased the abundance of members of the genus Clostridium
faecalis and the Firmicutes family from theTuricibacteraceae (P=
0.008) (36). Dairy fat promoted different families of thick-walled
bacteria, including Bacillus tansy (P = 0.008) and several genera
of ruminal cocci (P = 0.003) (36). Animal experiments found
that coffee reduced the percentage of the thick-walled phylum
Bacillus/bacteroidetes in the intervention group after 10 weeks
compared to the control group without caffeine or coffee in the
water (150, 151).

Promote Abundance of Beneficial Gut Microbes to

Reestablish the Balance of Gut Microbes
Probiotics have been widely studied for their protective effects
on intestinal and host health, particularly Lactobacillus and
Bifidobacterium (152). The protective effects of probiotic
intestines may be attributed to their ability to resist harmful
substances, lower intestinal pH value, reduce colonization
by other microorganisms and repair the intestinal barrier
(26, 153). These microorganisms reestablish the balance of
gut microbes by lowering the intestinal pH and competing
with pathogenic microbes for survival (154). Certain
probiotics have been shown to improve intestinal barrier
function by restoring mucus layer thickness, strengthening
TJs proteins and producing specific antimicrobial and
bioactive lipids with anti-inflammatory properties (155).
On the other hand, probiotics also produce SCFAs that
affect intestinal barrier function by activating GPR-41
and GPR-43, which are expressed on enteroendocrine
L cells and promote the secretion of intestinal peptides
(GLP-2) (156, 157).
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There are numbers of fiber and carbohydrates that
increase the abundance of prebiotics (158). Prebiotics
include oligosaccharides, inulin, fructooligosaccharides and
isomalto-oligosaccharides, which cause specific changes in the
composition and/or activity of the gastrointestinal microbiota,
are degraded by bacterial enzymes in the intestine and inhibit
the growth of pathogenic bacteria by producing bacteriocins
and SCFAs, thereby promoting the growth of probiotics (159).
A comparable research by liu et al. found significant increases
in Bifidobacterium spp. and Lactobacillus spp. in the almond and
almond peel groups, moderate changes in E. coli populations
and significant inhibition of Clostridium perfringens growth in
both almond intervention groups compared to the control group
(92). In addition to this, many studies have reported that nuts
such as walnuts and other plant-derived fats such as soybean oil
increased Bifidobacterium spp., Rhodobacter spp. and Bacillus
faecalis spp. showing biological benefits and protective properties
(160). An animal study used saturated and unsaturated fatty acids
as fat sources for a high-fat diet and a low-fat diet intervention
in C57BL/6N mice, respectively. This study showed that mice
fed on soybean oil (high in polyunsaturated fat) exhibited
lower relative abundance of Aspergillus, Clostridium perfringens,
Heterobacterium, and Deltaproteobacteria compared to mice fed
on coconut oil (high-saturated fat).

One hundred and thirty-nine Ivorian children who received
iron-fortified biscuits (Fe:20 mg/d) for 6 months presented
with reduced abundance of intestinal microbiota, increased
abundance of harmful bacteria and reduced abundance of
Lactobacilli (161). However, an interventional study of iron
in healthy infants discovered that consumption of high iron
formulas was linked to a significant reduction in the abundance
of Bifidobacteria compared to low iron formulas, while no
enhanced growth of pathogenic bacteria was detected (162). The
impact of iron on the intestinal flora is influenced by the chemical
form of dietary iron (163), the dose (162, 164, 165) and the
mode of administration (162, 166). Animal experiments with zinc
supplementation (120 mg/kg) in the “Salmonella typhimurium
attack”model have suggested that zinc supplementation regulates
the cecum by enhancing the number of total bacteria and
beneficial Lactobacillus bacteria and reducing the number of
Salmonella microbiota (167). Shen et al. used the same dose of
iodine (18 µg/kg/day) for 8 weeks in obese mice on a high-fat
diet and normal mice on a normal-fat diet (168). It was observed
that the elevated thyroid hormone concentrations in the obese
mouse model were accompanied by dysbiosis of the intestinal
flora, as evidenced by an increased abundance of harmful bacteria
and a decrease in beneficial bacteria, such as Fecalibacterium
prausnizii, which is associated with butyrate production (168).
However, in normal mice, iodine had a beneficial effect on the
intestinal microbiota by increasing the levels of Bifidobacterium,
Lactobacillus, Fecalibacterium and Allobaculuum (168). It has
been reported that magnesium deficiency for 4 days reduces
the level of Bifidobacteria in the cecum of mice, but with
longer duration of magnesium deficiency (3 weeks), the level of
Bifidobacteria and Lactobacilli in the intestine improves (169).

Clinical trials have provided extensive evidence that a high-
fiber diet can decreases the F/B ratio and increases the abundance

of beneficial microflora, including mainly Bifidobacterium (170–
172), Lactobacillus (172), Bacillus (173, 174) and Prevotella
(175, 176). Similar conclusions have been drawn from animal
experiments. Intestinal Bifidobacterium spp., Lactobacillus spp.
and Rhodobacter spp. increased in male obese rats after a
continuous 6-week intervention with 10% oligofructose. A study
showed that inulin and oligofructose diets stimulated the growth
of Lactobacillus intestinalis in rats (177).

Rodent studies demonstrate that vitamin D deficiency by
dietary restriction, lack of CYP27B1, or lack of VDR promote
increases in the Bacteriodetes (178–181) and Proteobacteria (178–
180). In a cross-sectional study involving 98 healthy individuals,
vitamin D intake was found to be negatively associated with the
abundance of Prevotella and strongly positively associated with
those of Bacteroides (182). However, some researchers reached
different conclusions, presumably because the results were
influenced by methodological differences in vitamin D “doses”
(e.g., sunlight exposure, diet and nutrient supplementation) (165,
183, 184).

A human intervention study showed that consumption of
green tea for 10 days improved the proportion of Bifidobacteria
(185). Another study found that 1,000ml of green tea per day
is associated with an increase in Bifidobacteria and improved
colon bacterial characteristics (186). Animal experiments have
demonstrated something similar. With the intervention of
Gampo Tea (GTE, an emerging tea beverage produced from
the peels of pu-erh tea and citrus), well known probiotics such
as Bifidobacterium, Lactobacillus and Lactococcus were enriched
in the intestinal flora of rats in the GTE group (187). The
possible mechanism for the inhibitory effect of tea phenolics
on intestinal flora is the ability of tea phenolics to disrupt cell
membranes (188). For Gram-positive bacteria, EGCG directly
binds and disrupts their exposed peptidoglycan layer, leading to
reduced protection and bacterial inactivation. In contrast, Gram-
negative bacteria are not significantly affected by EGCG due to an
additional outer membrane protection that blocks the damaging
effect of EGCG. In addition, the outer membrane of Gram-
negative bacteria consists of lipopolysaccharides (189), which are
negatively charged even in a pH-neutral environment, and this
could repel the proximity of EGCG (189). The increased content
of bacilli (186, 190) suggests that some Gram-positive bacteria
seem to be insensitive to catechins. In addition, Hidetoshi et al.
showed that catechins can react with dissolved oxygen in aqueous
solutions to produce hydrogen peroxide (191), further damaging
intestinal flora cell surface proteins and triggering endogenous
oxidative stress (192).

Of interest is that because it contains chlorogenic acid to
acidify intestinal pH value, coffee seems to have an anti-harmful
flora effect (193, 194). Coffee increases the number and/or
activity of Bifidobacterium, Lactobacillus (90) and decreases the
amount of Clostridium and Escherichia coli (90, 91), while
the effect on the number of Enterococcus was not significant
(90). The results of the antibacterial activity assay showed that
coffee inhibited the growth of E. coli and Enterococcus faecalis.
However, one report stated that 3 cups of coffee per day for 3
weeks increased Bifidobacterium spp. without any effect on other
dominant microbiota bacteria.
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The Potential Mechanisms by Which
Dietary Nutrients Affect MAFLD Through
the Intestinal Microenvironment and
Microflora
Diet produces a variety of products through bacterial
metabolism. SCFAs reduce the pH of the intestinal
microenvironment and help maintain or reshape healthy
intestinal microbial homeostasis, as well as enhance the stability
of TJs. SCFA that are transferred to the body cycle may directly
affect intestinal physiology and motility by binding to G protein-
coupled receptors (GPRs) and participate in host metabolism
(195, 196). These receptors were found to be expressed in several
metabolically active tissues and are involved in the response and
regulation of many processes, including glucose homeostasis
and lipid metabolism (197, 198). Evidence also suggests that
SCFAs may act as histone deacetylase inhibitors to regulate gene
expression (199), and dietary SCFA intake improves hepatic
metabolic conditions via FFAR3 signaling pathway (200). SCFAs
contribute to the remodeling of TJ. As mentioned earlier, butyric
acid enema helps reduce intestinal inflammation in IBD patients
(57), preserving TJ integrity and directly improving intestinal
barrier function (58–60). In addition, gene expression of Fiaf in
intestinal epithelial cells can be inhibited by intestinal microflora
increasing plasma FFA levels by LPL.

BAs bind to FXR/TGR5 bile acid receptors. The nuclear
receptor FXR is a transcriptional regulator (201) that is involved
in both the regulation of glucose, lipid and energy homeostasis
and is also essential for regulating the homeostatic negative
feedback loop of BA synthesis and distribution. BAs activate FXR
to produce antimicrobial peptides such as human β defensin-
1 and 2, which inhibit the overgrowth of intestinal microbiota
and are responsible for maintaining intestinal mucosal barrier
function and regulating inflammation (202, 203). FXR/TGR5
inhibition enhanced hepatic gluconeogenesis and glycogenolysis
and increased insulin sensitivity in fat and skeletal muscle,
while activated FXR further facilitates that synthesis of fibroblast
growth factor 19.

Intestinal bacteria break down carbohydrates to endogenous
ethanol, which is metabolized in the liver by enzyme ethanol
dehydrogenase. Ethanol is thought to be an important
factor contributing to MAFLD. On the one hand, excess
ethanol leads to fluctuations in intracellular redox potential
changes and leads to an increased inflammatory response
(204, 205). On the other hand, ethanol metabolism produces
obligatory redox changes that promote the accumulation of
triglycerides in hepatocytes, increase portal blood ethanol
levels and induce hepatic steatosis. The possibility that a slight
increase in ethanol exposure facilitated the series of events
that eventually led to hepatic steatosis remains plausible as
found in the mouse experiments performed by Cope et al.
(115). In addition, high levels of ethanol-producing bacterial
strains in the gut [e.g., Escherichia coli, Bacteroides and
Clostridium (87–89)] can also accelerate the development of
MAFLD (88).

Intestinal permeability may have a role in the pathogenesis of
metabolism-related diseases such asMAFLD. Increased intestinal
permeability has been found to be associated with increased levels
of endotoxin in patients with MAFLD, and correlates with liver
disease severity and levels of TJ destruction (206, 207). It is
believed that changes in intestinal permeability significantly affect
metabolism because the intestinal barrier plays a key role in the
transport of nutrients and macromolecules, while providing an
effective barrier to harmful macromolecules andmicroorganisms
(208). At the same time, the loose TJs allow nutrients and other
microbial material to cross the intestinal epithelium and target
white adipose tissue, thereby increasing adipokine production
(leptin and resistin), adipocyte size and SVF cell numbers
(209–212). Dietary habits may be associated with the initial
intestinal barrier defect through direct disruptive effects of food
agents, secondary dysregulation due to low-grade inflammation
or specific changes in the microbial composition affecting the
barrier, which is the theoretical basis for interventions inMAFLD
using substances such as prebiotics (213, 214). The potential
mechanisms by which dietary nutrients affect MAFLD through
the intestinal microenvironment and microflora were showed in
Figure 2C.

CONCLUSION

The maintenance of human life and health is dependent on
the support of dietary nutrients. Our review suggests that
there is an interaction between the dietary nutrients, gut
microbiota and MAFLD. These dietary nutrients influence the
development and progression of MAFLD mainly through the
hepatic-intestinal axis by altering dietary energy absorption,
regulating BAs metabolism, changing intestinal permeability and
producing ethanol. Meanwhile, the nutrients have the ability to
combat MAFLD in terms of enriching abundance of intestinal
microbiota, reducing F/B ratio and promoting abundance of
beneficial gut microbes (Figure 3). Therefore, family therapy
with MAFLD using a reasonable diet could be considered.
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