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S U M M A R Y

Since the outbreak of Covid-19, several observational studies on diabetes and Covid-19 have reported a
favourable association between metformin and Covid-19-related outcomes in patients with type 2 diabetes
mellitus (T2DM). This is not surprising since metformin affects many of the pathophysiological mechanisms
implicated in SARS-CoV-2 immune response, systemic spread and sequelae. A comparison of the multifacto-
rial pathophysiological mechanisms of Covid-19 progression with metformin’s well-known pleiotropic prop-
erties suggests that the treatment of patients with this drug might be particularly beneficial. Indeed,
metformin could alleviate the cytokine storm, diminish virus entry into cells, protect against microvascular
damage as well as prevent secondary fibrosis. Although our in-depth analysis covers many potential metfor-
min mechanisms of action, we want to highlight more particularly its unique microcirculatory protective
effects since worsening of Covid-19 disease clearly appears as largely due to severe defects in the structure
and functioning of microvessels. Overall, these observations confirm that metformin is a unique, pleiotropic
drug that targets many of Covid-190s pathophysiology processes in a diabetes-independent manner.

© 2022 Elsevier Masson SAS. All rights reserved.
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Introduction

Since the start of the coronavirus disease 2019 (Covid-19) pan-
demic, the impact of various widely prescribed drugs (such as renin-
angiotensin system blockers and statins [1]) on Covid-19-related out-
comes has been closely scrutinized. The antidiabetic agent metformin
(MET) deserves particular attention in this respect because type 2
diabetes mellitus (T2DM) is one of the main comorbidities associated
with the severity of Covid-19 [2], and most current guidelines recom-
mend MET as the first-line drug treatment for T2DM [3]. Indeed, MET
is a pleiotropic drug with beneficial effects that go far beyond its
impact on blood glucose homoeostasis [4]. This pleiotropic profile
makes MET a good drug candidate for attenuating the severity of
Covid-19 [5]. Indeed, several observational studies of patients with
diabetes have found an association between MET treatment and bet-
ter COVID-related outcomes [6].

The “metformin hypothesis” is supported by the large body of lit-
erature data on MET’s ability to reduce inflammation and infection as
well as its unique favourable effects on the microcirculation [7]. Here,
we review a range of mechanisms that might explain how MET could
improve outcomes for patients with Covid-19.
A rational set of protective mechanisms

The complexity of the pathophysiology of Covid-19 suggests that
its treatment should be multifaceted. With this regard, it has been
suggested that cationic drugs are more likely to be effective in treat-
ing Covid-19 [8]. As such, MET − probably the most pleiotropic drug
known [9] − might therefore be a good candidate for treating Covid-
19, especially given the current trend towards repurposing drugs
[10]. Indeed, besides its antihyperglycaemic effects (first reported in
the late 1920s), MET reappeared in 1949 as an anti-influenza agent
named flumamine [11], before being launched in 1957 as a treatment
for T2DM. Over the last few decades, observations of MET’s world-
wide use have progressively revealed the drug’s numerous effects in
a broad range of disease settings [12].

Pleiotropic protective effects of metformin

A growing body of preclinical and clinical data has highlighted
MET benefits in nephropathy [13], cancer prevention and/or
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treatment [14], neurodegenerative diseases [15], ageing [16], infec-
tions, lung fibrosis, polycystic ovary syndrome (PCOS), and many
more.

MET and infections

As mentioned earlier, MET was first marketed as a drug for influ-
enza. In obese mice with influenza, MET increases the survival rate
[17]. There are also reports of MET’s activity against hepatitis B virus
[18], hepatitis C virus [19], and Zika virus [20]. For dengue, MET
showed good efficacy in patients with diabetes [21]. Effects against
prions have also been suggested [22]. A recent publication described
MET’s inhibition of virus-host interactions in human papillomavirus-
positive cancer cells [23]. In people with diabetes, MET use was asso-
ciated with a significantly reduced risk of infections compared to
insulin or sulphonylureas [24]. It was recently suggested that bigua-
nides could be administered by inhalation in the treatment of influ-
enza and possibly Covid-19 [25] and that MET might even be
repositioned as an antimicrobial. Over the last decade, many studies
have shown that MET influences the gut microbiota and suggested
that this is one of the major mechanisms of action for its beneficial
effect on “meta-inflammation” and associated metabolic disorders
[26]. MET also shows anti-Plasmodium activity [27].

MET, the immune response, and inflammation
The initial immune response to infecting pathogens is character-

ised by the acute production of pro-inflammatory molecules by Th17
T cells, M1 macrophages, and neutrophils, possibly leading to what
has been termed a “cytokine storm” [28]. This pro-inflammatory
phase is followed by healing processes mediated by regulatory T cells
(Tregs) and a switch in the macrophage phenotype from M1 to M2.
This step is critical for recovery and might be modulated by MET.

Interference with the cytokine storm might be one mechanism by
which MET alleviates the severity of Covid-19. During the past years
MET effects on inflammation have been the subject of many reports.
Indeed, MET decreases cytokine levels in vascular cells [29], experi-
mental myocarditis [30], sepsis [31], gut inflammation [32], interleu-
kin (IL)-10 deficient mice [33], lipopolysaccharide (LPS)-stimulated
mouse colon cells [34], metabolic syndrome induced by fructose [35],
PCOS [36], and animals or patients with diabetes [37]. Interestingly,
these effects of MET are independent of its antihyperglycaemic action
[38].

The NLRP3 inflammasome (which is overactivated in Covid-19) is
largely responsible for the cytokine storm [39]. MET reduced the
NLRP3 inflammasome’s activity in various settings: subjects with
obesity and T2DM [40], diabetic cardiomyopathy [41], and myocar-
dial injury [42], as well as periodontitis and LPS-induced lung injury
in rodents [43]. MET also blocked the NLRP3 inflammasome and IL-
1b secretion in keratinocytes suggesting possible protection against
psoriasis [44]. MET also reduces CD4 T cell counts, increases CD8 T
cell counts [45], and binds high mobility group box 1 (HMGB1) [46].
In rodents with LPS-induced sepsis, MET reduced infiltration by neu-
trophils and macrophages [47].

IL-6 is considered to be the main cytokine involved in Covid-19
pathogenesis, although this has been challenged: some studies found
that the IL-6 levels in Covid-19 were similar to (or even lower than)
those in other forms of acute respiratory distress syndrome (ARDS)
[48]. A Covid-specific cytokine profile (with elevated levels of IL-1
receptor antagonist and IL-8) has been linked to higher mortality
[49]. It is noteworthy that MET reduced the secretion of IL-6 and IL-
1b by macrophages primed with the Covid-19 spike protein [50].

Several reports indicate that MET reduces the number of proin-
flammatory Th17 cells and increases the number of Tregs. This effect
has been reported in autoimmune insulitis [51], liver submitted to
ischaemia/reperfusion, liver transplantation [52], experimental
arthritis [53], autoimmune encephalomyelitis [54], and experimental
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multiple sclerosis [55]. MET also increased the number of Tregs in
obese individuals with asthma [56].

Monocytes and macrophages (MPs) are part of the front line in
immune defence and are strongly involved in combating infection by
severe ARDS [57]. High MP counts are indeed found in the lung
alveoli [58]. MPs can broadly be divided into M1 (pro-inflammatory)
and M2 (anti-inflammatory) phenotypes. Oxidative phosphorylation
is blunted in M1 MPs, which prevents the switch to M2 [59]. Many
studies have shown that MET stimulates the M1 to M2 phenotype
switch. In obese mice, MET reduced the number of M1 MPs and the
level of monocyte chemoattractant protein-1 in adipose tissue and
increased the M2:M1 ratio [60]. Expression of M2-like genes was pro-
moted by MET in MPs from hyperlipidaemic rats [61]. In the context
of ischaemia, MET increased M2 polarisation in microglia [62]. In the
bone marrow, MET increased M2 count and reduced osteolysis [63].
In skin, topical treatment with MET favoured wound healing by
reducing NLRP3 activity and increasing the MP2 count [64]. In
another study, MET reduced tumour progression and angiogenesis by
increasing the M2 switch [65]. These data evidence MET’s ability to
correct the balance between M1 and M2 MPs and thereby reduce the
severity of inflammation.

Inflammation is accompanied by oxidative stress, which has an
important role in Covid-19 [66]. There is a large body of evidence on
MET’s antioxidant effects in hyperglycaemia [67], advanced glycation
end-product (AGE)-induced injury [68], the response to palmitic acid
[69], and LPS-activated MPs in vitro [70] and in vivo; in the latter set-
ting, MET was found to act at the mitochondrial level. A recent study
demonstrated that MET activated the transcription factor fork head
box O3 (FOXO3) and thus reduced the level of oxidative stress in
immune cells [71]. MET inhibited the proliferation of pancreatic can-
cer cells by reducing the level of oxidative stress − notably by inhibit-
ing NADPH oxidase 4 (NOX4) [72]. Another suspected source of
oxidative stress in Covid-19 is serum iron load, due to interaction
between the virus and haemoglobin; this leads to Fe3+ accumulation
and hyperferritinaemia [73]. MET’s ability to bind iron might provide
an additional means of limiting oxidative stress in Covid-19 [74].

MET, virus entry, and virus fate
Unfortunately, it is not known whether or not MET modifies the

viral load in patients with Covid-19. However, a MET-associated
reduction in the severity or progression of the disease is suggested by
the association between metformin treatment on admission and
more favourable Covid-19 outcomes. The uptake of SARS-CoV-2 by
cells occurs mainly through angiotensin-converting enzyme 2 (ACE2)
and transmembrane serine protease 2 (TMPRSS2). Studies of ACE2’s
organ distribution have highlighted the lung and gut as particularly
receptor-rich areas [75]. Moreover, the vascular endothelium can be
affected by SARS-CoV-2, leading to endothelialitis. This effect appears
to be due directly to the viral spike protein per se [76].

It has been suggested that by activating AMP-activated protein
kinase (AMPK), MET causes ACE2 to be phosphorylated, leading to a
conformational change that might prevent SARS-CoV-2 from binding
to the receptor [77]. In vitro, MET increases the mRNA expression of
ACE2 and TMPRSS2 in human hepatocytes [78]. Lastly, the level of
ACE2 activity is modulated by the local microbiome [79]. In view of
MET’s well-known effects on the composition of the microbiota, this
might constitute another means of action for the drug [80].

A large proportion of Covid-19 patients presents gastrointestinal
symptoms because ACE2 and TMPRSS3 are strongly expressed in the
intestine, which is a potential site of virus replication [81]. Therefore,
the intestinal microbiota might play a key role in Covid-19, and the
persistence of dysbiosis in survivors is common [82]. It is well known
that MET interacts with intestinal microbiota and reduces intestinal
inflammation [83], as illustrated by its effects on the IL-18 level.

Lastly, MET might dampen a viral attack by acting on proteases. If
the virus is to fuse with cell membrane and inject RNA into cells, the
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SARS-CoV-2 spike protein must be cleaved into two subunits. The
spike protein has several possible sites for cleavage by cysteinyl pro-
teases or cathepsins [84] (particularly cathepsin L). Studies with MET
and its complex with Zn have evidenced inhibitory effects on cys-
teinyl proteases and cathepsin [85].

MET, lung pathology and fibrosis
Several animal studies have shown that MET diminishes the lung

injury induced by LPS administration. MET relieved ARDS [86] and
reduced TLR4 signalling and permeability across the pulmonary
endothelium [87]. In rabbits submitted to high-pressure ventilation,
lung injury was reduced by MET [88]. In humans, MET had contrast-
ing effects on mortality in patients with chronic obstructive pulmo-
nary disease [89] and non-Covid-19 ARDS [90]. Moreover, Oh and
Song published the results of two population-based cohort studies
from South Korea: in their first study [91], pre-treatment with MET
did not reduce hospital mortality in ARDS patients, but in the second
study, decreased the risk of developing Covid-19 by 30% [92]. An
important question is therefore whether or not MET’s putative bene-
ficial effects on lung injury are due to MET treatment prior to hospital
admission and/or to MET maintenance during the hospital stay. Sev-
eral lines of evidence suggest that MET pre-treatment has a critical
role: i) MET reduces tuberculosis in patients with diabetes; ii) ongo-
ing use of MET versus other antidiabetic agents was associated with a
duration-dependant 15% reduction in the risk of severe COPD exacer-
bations [93]; iii) in a recent cohort study, long-term MET use was
associated with a lower risk of pneumonia and pneumonia-related
death [94]; and iv) it is noteworthy that MET use was linked to a
lower computed tomography score in Covid-19 patients [95]. The rel-
evance of these observations to Covid-19 should, however, be consid-
ered with caution because SARS-CoV-2 spreads throughout the body
in a particularly rapid aggravation phase. Indeed, albeit in a rather
short series, in patients with diabetes hospitalised for Covid-19 and
categorised into “continuation of metformin throughout the hospital
stay”, “discontinuation of metformin on admission”, and “no metfor-
min” groups, the beneficial association between Covid-19 outcomes
and metformin treatment was related to the drug’s continuation dur-
ing the hospital stay, rather than previous exposure [96].

With regard to the time course of MET administration, it is criti-
cally important to note that lung fibrosis can start as early as 2−3
weeks after the SARS-CoV-2 infection. This is a consequence of inten-
sive inflammation [97] and is therefore not unexpected − particularly
in severe cases. MET’s antifibrotic effects have only been described
recently but have been observed in various cell systems and tissues.
In lung fibroblasts, MET reduced collagen synthesis through AMPK
activation [98]. In lung tissue, MET reduced bleomycin-induced fibro-
sis [99]. In radiation-induced pneumonitis, MET decreased levels of
fibrosis markers such as inflammatory cell infiltration, oedema, alve-
olar thickening, and collagen deposition [100]. With regard to the
kidney, MET was found to reduce interstitial fibrosis in cyclosporin
A-induced fibrosis [101]. Fibrosis in adipose tissue after doxorubicin
treatment [102] was reduced by MET in insulin-resistant rodents and
in obese animals [103]. These effects have recently been reviewed
[104].

MET and the reduction in mortality

Many in vitro and animal studies have shown that MET protects
against mortality or cell death in various disease situations (reviewed
in [105] or following exposure to toxins [106]). An impressive exam-
ple is the spectacular survival of animals submitted to haemorrhagic
shock and treated with MET upon reperfusion [107]. In humans, MET
has been associated with a decrease of all-cause mortality and major
adverse cardiovascular events in people with pathologies or condi-
tions as diverse as diabetes [108,109], patients in the ICU [110], peri-
operative patients [111], sepsis [112], stroke [113], heart failure
3

[114], acute coronary syndrome [115], and chronic kidney disease
[116]. Importantly, MET’s beneficial effect was independent of the
degree of prevailing hyperlactataemia in critically ill patients [117].

Putative mechanisms underlying MET’s protective effects

Effects on the microvasculature

In this chapter, we will consider successively aspects relative to
COVID-infection then to MET’s effects.

Clinical research has started to show that with increasing duration
and severity, Covid-19 becomes a predominantly vascular disease
with generalised endotheliopathy [118]. The microcirculation is an
important but often unappreciated player in early pathological vascu-
lar processes [119]. Microvascular dysfunction is evident in reactivity
tests and is linked to the cytokine storm [120].

A growing body of evidence reflects the unexpected extent and
intensity of microvascular lesions throughout the body. Evidence for
endothelialitis, hyperpermeability, and disturbed haemostasis is
increasingly reported [121]. Evidently, the fact that subjects with dia-
betes, arterial hypertension or obesity are more prone to more severe
Covid infection is not a coincidence since these diseases are well
known to impair (micro)vascular function. Several experts have sug-
gested that SARS-CoV-2 replicates in endothelial cells; this replica-
tion might be further promoted if the endothelium has already been
damaged [122]. The virus spike protein’s disorganising effects on the
microvasculature were reviewed recently [123]. Interestingly,
autopsy material indeed showed early lesions in capillaries and
microthrombi in arterioles; as well as some damage to larger vessels
[124]. In cardiac autopsy tissue, high levels of ACE2 and TMPRSS2
expression were found in capillaries but not in larger vessels [125].
This finding indicates that SARS-CoV-2 infection strongly affects pro-
cesses that are specific to small vessels [126]. It is particularly note-
worthy that one study observed the persistence of vascular
dysfunction in patients convalescing from Covid-19 [127] − possibly
due to the persistence of ACE2 activity in plasma [128] and a lasting
reduction in capillary volume [129].

MET’s effects: Over the past 30 years, the results of many animal
and clinical studies have highlighted the exquisite effects of MET on
microvessels. A particular feature of MET is that it has a greater effect
on microvessels (arterioles and capillaries) than on large vessels
[130]. Preservation of microvascular responsiveness, inhibition of
capillary permeability and of leucocyte adhesion are amongst the
hallmark properties of MET, which largely explain the drug’s long-
term effects on diabetic complications and other ischaemia-related
diseases [7].

Microvascular blood flow and pericytes
Microflow distribution is regulated by precapillary “sphincters”

and scattered capillary pericytes (corresponding to smooth muscle
cells in large vessels) that generate a cyclic flow motion in capillary
beds [131]. Intravital microscopy reveals so-called “vasomotion”,
which regulates the opening and closing of microvascular units so
that the available blood is used as efficiently as possible, adapting
supply to meet local metabolic needs. This phenomenon is highly
specific to microvessels and has a key role in tissue health.

Pericytes (or their podocyte equivalents in kidneys) are contractile
cells that regulate microvessel haemodynamics and are closely con-
nected to endothelial cells. Pericyte or podocyte loss leads to uncon-
trolled endothelial damage and results in angiogenesis and
retinopathy or nephropathy. The involvement of pericytes in viral
pathologies is increasingly recognised: loss of pericytes is indeed
observed in Covid-19 [132], and pericyte disruption by the virus has
been shown in heart [133] and in neurological complications of
Covid-19 [134]. Although the presence of pericytes in lung microves-
sels is subject to debate [135], it is important to note that the SARS-
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CoV-2 receptor ACE2 is mainly located on pericytes [136] and peri-
cytes are also subjected to fibrin deposition [137]. If the presence of
pericytes is confirmed, it could mean that pericytes (rather than the
endothelium) might be the virus’s first point of attack in systemic
deterioration − at least in the lungs. The putative sequence of the
phenomena seems to be that of a primary infection of pericytes lead-
ing to endothelial dysfunction and increased permeability. This
hypothesis is supported by the observation that pericytes regulate
neutrophil extravasation during inflammation [138].

MET’s effects: Under basal conditions, MET barely stimulates vas-
omotion. In the diabetic hamster cheek pouch and bat wing, MET
restored post-ischaemic vasomotion [139]. In a skin flap model, MET
increased capillary perfusion and reduced oedema [140]. These
effects have been confirmed in humans, as seen for skin capillary
responsiveness in prediabetes [141] and in first-degree relatives of
patients with diabetes. A recent report showed that MET acutely
increased functional capillary density during the postprandial period
in obese diabetic patients [142]. These effects can easily explain
MET’s beneficial effects on insulin resistance, since the latter is
closely related to poor microflow distribution [143]. Capillary micro-
flow is also closely dependant on haemorheological factors, such as
red cell flexibility; indeed, a recent report highlighted this type of
abnormality in erythrocytes from patients with Covid-19 [144]. MET
has been shown to improve red cell membrane flexibility/viscosity in
several studies [145].

MET has been shown to protect retinal pericytes primed with
AGEs and podocytes of diabetic rats from death, as also evidenced by
a lower level of the podocyte marker podocalyxin [146].

Microvascular permeability
Microvascular permeability is regulated largely but not exclu-

sively by the glycocalyx (GC) and the tight junctions between endo-
thelial cells [147]; both of these structures are highly sensitive to
inflammation. Abnormally high (disease-induced) permeability leads
to oedema and damage to surrounding tissues − essentially due to
the oxidative stress generated by adhering or extravasated leuko-
cytes. Pre-existing activated inflammasomes and increased perme-
ability in patients with diabetes may underlie the greater severity of
Covid-19 in this context. The viral spike protein is known to disrupt
the blood-brain barrier [148].

MET’s effects: MET has prominent anti-oedematous effects in
pathological situations. In the Syrian hamster model of diabetes, MET
completely blocked microvascular leakage [149]. Reductions in
oedema were also seen in non-diabetic situations, such as brain and
peripheral ischaemia [150], middle cerebral artery occlusion [151],
traumatic brain injury [152], glioma-related oedema [153], cultured
pulmonary endothelial monolayers, LPS-induced lung injury, and car-
rageenan-induced swelling [154]. Clinically, MET reduced cyclic
oedema with a remarkable success rate and independently of glycae-
mic changes [155].

The endothelial barrier is also strongly regulated by the proteins
constituting the tight junctions, whereby paracellular permeability is
controlled. It has been suggested that bacterial translocation across
the gut wall might modulate the immune response to SARS-CoV-2.
MET attenuated the loss of tight junctions in the small intestine
[156], in the ileum of IL-10 deficient mice and in experimental colitis,
and thereby prevents the translocation of bacteria out of the intes-
tine. MET also increased tight junction protein expression in the brain
of septic rats and in retinal pigment cells challenged with glyoxal
[157]. In airway epithelial cell cultures, MET increased the number of
tight junctions in the presence of Staphylococcus aureus [158] or Pseu-
domonas aeruginosa [159]. As in the intestine, this effect was due to
increased phosphorylation of occludin and zonulin-1 by AMPK.
Indeed, the tightness of endothelial junctions is also controlled by
AMPK − a key target for MET [160]. Furthermore, it has been shown
that occludin regulates AMPK activity in pericytes [161].
4

Haemostasis
Atypical microthromboembolism is probably the most surprising

and yet largely unexplained finding in Covid-19. It testifies to a state
of thrombo-inflammation and is considered as a main if not the key
cause of death in Covid-19. Patients with Covid-19 exhibit microvas-
cular thrombosis that mimics classical disseminated intravascular
coagulation. Haemorrhage is also observed [162].

The clinical importance of haemostatic abnormalities is
highlighted by the reported associations between elevated D-dimer,
fibrinogen, C-reactive protein (CRP), ferritin and cytokines levels on
one hand and the severity and mortality of Covid-19 on the other
[163]. Even though some reports are discordant, most experts agree
that patients display both hyperfibrinolytic and hypercoagulant
activities, and the clots strongly resist conventional anticoagulant
therapies. Microthrombosis might also be due to microparticles that
circulate after inflammation [164]. However, some findings about
fibrinolysis are discordant because hyperfibrinolysis is reportedly
characterised by both higher D-dimer levels and fibrinolytic shut-
down [165]. According to a novel “ferric ion” hypothesis, the pres-
ence of D-dimers and the persistence of fibrin clots suggest that the
clots’ structure is modified by the elevated ferric ion levels produced
by haemolytic anaemia [166]. This free iron might induce the forma-
tion of an insoluble fibrin structure called parafibrin [167].

Plasminogen activator inhibitor-1 (PAI-1) is a major regulator of
fibrinolysis. Covid-19 was associated with an increase in PAI-1 [168],
the reason for it is still debated [169]. Another study discriminated
between non-severe and severe/critical Covid-19 on the basis of
endothelial-derived factors, including PAI-1 [170]. Platelets are
amongst the other important factors in thrombotic processes;
unusual platelet hyperreactivity has been reported [171].

MET’s effects: The fibrinolytic effects of biguanides have been
known for decades [172]. MET’s main action was found to be the inhi-
bition of plasminogen activator inhibitor-1 (PAI-1) in patients with
diabetes, thereby favouring fibrinolysis [173]. MET also decreased
levels of PAI-1 antigen, factor VII, and CRP [174]. In patients with dia-
betes and patients with PCOS, MET reduced D-dimer levels [175]. In
view of the obvious complexity of fibrinolysis in Covid-19, it is diffi-
cult to know whether MET’s effect on PAI-1 could have clinical conse-
quences. If the above-described “ferric iron hypothesis” turns out to
be true, MET might exert a key action through its metal-binding abil-
ity. It should be remembered that MET also reduces levels of factors
favouring PAI-1 activation, such as cytokines. MET also has beneficial
effects on levels of von Willebrand factor (vWF), vascular cell adhe-
sion protein-1 (VCAM-1) and tissue factor [176] and on factor XIII
and fibrin fibre thickness, resulting in changes in the structure of
fibrin. MET reduced in vivo platelet activation in diabetic rats by
decreasing mitochondrial DNA release [177]. A lower level of platelet
activation was also observed in patients with diabetes [178], inde-
pendently of changes in metabolic parameters. In rats, MET-inhibited
electrical stimulation-induced thrombus formation in situ in carotid
arteries [179] and mesenteric arteries [180]. It is noteworthy that this
effect was as large as with aspirin.

The glycocalyx: the cornerstone of worsening Covid-190s
pathophysiology?

A better understanding of the structure and physiology of the GC
is probably the most recent novel contribution to vascular physiol-
ogy, notably that of small vessels. Although the GC covering endothe-
lial cells in the vasculature is only 10 to 100 nm thick, it is a key “gate
keeper” for vascular homoeostasis. GC acts as a protective coating by
preventing clotting at the endothelium, limiting interaction with
blood cells, regulating vessel permeability, and transmitting signals
for endothelial dynamics via shear stress-induced mechanotransduc-
tion. The GC has a hair-like appearance, constituted by a matrix of
glycosaminoglycans bound to proteoglycans and encased in hyalur-
onan. It thereby acts as a sieve by excluding molecules heavier than
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70 kDa. Due to its direct contact with blood, the GC is stimulated per-
manently by many circulating factors and therefore constantly
requires repair by resynthesis. This resynthesis notably concerns hep-
arin sulphate (HS), the GC’s main constituent.

Low shear stress induces GC degradation by lowering AMPK lev-
els, while increasing AMPK levels blocks VCAM-1 and ICAM-1 and
thus reduces macrophage recruitment in vivo [181]. Thus, loss of
laminar flow in small vessels is a potential cause of endothelialitis
and highlights the importance of controlled flow in microvascular
units. It should be noted that GC thickness decreases with advancing
age, which renders the endothelium more vulnerable.

An abnormal GC has been linked to kidney injury, respiratory fail-
ure, hepatic dysfunction, and fibrosis. Many circulating factors can
attack the GC, reduce its thickness, and release GC components into
peripheral blood. Inflammatory factors associated with sepsis (such
as CRP, TNFa, and the interleukins) are amongst the factors that
induce GC shedding. Moreover, GC synthesis is related to plasma pro-
tein levels and so might be impaired by hypoalbuminaemia.

Recent studies have highlighted the GC’s key pathophysiological
role in Covid-19 [182]. Observations of the sublingual microcircula-
tion in patients infected with SARS-CoV-2 revealed strong heteroge-
neity in capillary flow, a lower proportion of perfused capillaries, and
a lower erythrocyte velocity [183]. These findings were confirmed by
a clinical report on Covid-19 patients, showing a loss of perfused cap-
illary density of up to 90% and a great reduction in GC thickness, par-
ticularly in mechanically ventilated patients. These changes were
accompanied by the systemic elevation of levels of indicators of
endothelial dysfunction (such as vWF-cleaving protease and VEGF-
A), which increased with the length of hospital stay [184]. Many
observations also report elevated levels of various products shed
from the GC (such as chondroitin sulphate and syndecan-1), which
makes the endothelial surface thrombotic [185]. Circulating synde-
can-1 levels and their temporal change are predictive of patient out-
come [186], making syndecan-1 a relevant indicator of disease
severity and evolution. Circulating endothelial GC components are
distributed throughout the body and hylaruonan fragments induce
more generalised endothelial dysfunction [187].The shedding can be
partly corrected by the administration of low-molecular weight hep-
arin, which is a heparanase inhibitor [188]. Heparanase activity
increases in sepsis and it is known that the lower GC thickness in sep-
sis is correlated with the mortality rate [189]. Similarly, the GC is
thinner in cases of post-influenza ARDS. These observations have
prompted some researchers to suggest that the GC has an essential
role in the pathophysiology of Covid-19 [190]. HS is by far the most
prominent component of the GC, and was found to bind SARS-CoV-2
[191]. Under normal circumstances, the GC shields the ACE2 receptor
from interacting with the SARS-CoV-2 spike protein [192]; however,
HS degradation induces severe endothelial dysfunction and further
favours the spreading of endothelial damage throughout the organ-
ism via the release of HS by-products [193]. Levels of HS are con-
trolled by commensal bacteria, the number of which decrease with
age; this might explain why older adults are more susceptible to
Covid-19. Recently, several clinical investigations confirmed the pres-
ence of microcirculatory lesions in Covid-19 patients. Accordingly,
therapies aimed at increasing HS levels might be of value. Moreover,
as observed in ARDS, heparanase activity was elevated in Covid-19
patients and was correlated with disease severity [194]. Interestingly,
sulphated polysaccharides block SARS-CoV-2 infections in vitro
[195].

MET’s effects: Although few data are available for MET, the drug’s
established pharmacological effects fit with putative protection
against GC damage. Indeed, in diabetic rats, MET maintained the GC’s
thickness despite the lack of an effect on hyperglycaemia - indicating
a direct protective effect [196]. In animals fed a high-fat diet, MET
protected the myocardial perfusion reaction to an adenosine chal-
lenge (a marker of GC integrity) [197]. In rats with chronic diabetes,
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MET decreased the adhesion of cancer cells to endothelium by
increasing the GC’s barrier activity. In human diabetics, MET treat-
ment led to decreased urinary glycosaminoglycan excretion, suggest-
ing protection against endothelial GC shedding [198].

MET protects cells

In both diabetic and non-diabetic situations, many reports have
shown the beneficial effects of MET on cell survival in vitro or on
organ/function preservation. It is noteworthy that this protection has
been observed in several studies of ischaemia or ischaemia/reperfu-
sion in the heart, brain, and peripheral organs [199]. For example,
MET was associated with a reduction in myocardial infarct size [200],
an almost 100% survival rate in hamsters submitted to haemorrhagic
shock, and good outcomes in patients with diabetes after a stroke
[201]. Interestingly, MET protects against ischaemia injury at doses
that are much lower than those used to treat diabetes.

MET and membrane homoeostasis
Hormone signalling is strictly dependant on membrane receptor

binding and subsequent post-receptor signalling. These key processes
require an optimal membrane composition and structure, which
depends on the positions of interactions between membrane lipids
and proteins and on links with the cell cytoskeleton. For example, the
insertion of glucose transporters and the latter’s intrinsic activity are
closely related to membrane structure. In turn, the membrane’s
structure defines its fluidity (viscosity). Many factors reduce mem-
brane fluidity, including hyperinsulinaemia, hyperglycaemia, and a
lipid-rich diet.

It has long been known that biguanides are membrane-active
compounds, due to their structure and cationic nature. Several in
vitro and ex vivo experiments have evidenced a bell-shaped dose-
effect curve for MET in lipid membranes, erythrocytes submitted to
hyperglycaemia [202], and erythrocytes from MET-treated patients
with diabetes [203]. Interestingly, MET’s major pharmacological
effects are mirrored by its effect on membrane fluidity [204]. Hence,
membrane fluidity might be an important contributor to the efficacy
of MET.

MET and cell death
Cell death is a major consequence of infection by SARS-CoV-2. The

cells can be killed through various mechanisms (including necrosis,
apoptosis, pyroptosis, and ferroptosis), depending on the initial cause
of cell stress and the stimulatory pathway(s).

Apoptosis results from the loss of cellular energy due to hypoxia
or ischaemia. As mentioned above, are strongly affected by severe,
virus-associated inflammation. Microvascular function depends
closely on endothelial function, which is under the control of peri-
cytes or podocytes. Given that endothelial cells and pericytes/podo-
cytes interact, pericyte loss leads to severe diseases such as
retinopathy, collapse of the blood-brain barrier, and kidney dysfunc-
tion. Pericyte/podocyte apoptosis is typically induced by cytokines or
oxidative stress in the context of inflammation or hyperglycaemia
[205]. Both elevated levels of angiotensin II (potentially a key factor
in SARS-CoV-2 infection) and hyperglycaemia reduce AMPK activity
in podocytes [206]. The same factors can induce the apoptosis of
endothelial cells. MET inhibits apoptosis in retinal pigment epithe-
lium cells [207], hyperglycaemia-cultured endothelial cells and insu-
lin islets [208], and many more.

Pyroptosis (cell death induced by inflammation) was inhibited by
MET after myocardial infarction via an action on AMPK and the
NLRP3 inflammasome [209]. MET also inhibited pyroptosis in intesti-
nal ischaemia/reperfusion and diabetic periodontitis.

Ferroptosis is a consequence of uncontrolled lipid peroxidation. It
is associated with oxidative stress and exposure to labile/free iron.
Ferroptosis is downregulated by AMPK, one of MET’s main targets
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[210]. In Covid-19, haeme is attacked on its 1-beta chain, which dis-
sociates the iron from the porphyrin ring. Hyperferritinaemia, high
levels of toxic free ferric iron, and anaemia due to haemolysis have
been reported in Covid-19. Ferritin is known to have major roles in
some diseases and has been linked to the severity of SARS-CoV-2
infections [211]. Fe3+ is highly toxic, and iron overload is associated
with inflammation, hypercoagulation, and immune dysfunction. In a
study in patients with Covid-19, MET reduced circulating ferritin lev-
els [95] − an effect previously reported in patients with diabetes and
in lean and overweight women with PCOS. The ability of biguanides
to bind metals (including ferric iron) contributes to MET’s beneficial
effect in Covid-19 infection.

The mechanisms of MET’s mitochondrial effects are subject to
much debate. This is due to both the use of supratherapeutic drug
concentrations and the mitochondria’s particular features when stud-
ied in vitro. To justify the use of mM MET concentrations in vitro
(when the plasma level is about 10 mM in clinical practice), some
researchers have claimed that mitochondria are able to concentrate
the drug. Considering these critical limitations, one key mechanism
whereby MET could avoid cell death is inhibition of the mitochon-
drial transition pore (MTP), a key mechanism in cell survival/death.
MET inhibited MTP opening and the release of cytochrome c in neu-
rons [212], hyperglycaemia-cultured endothelial cells [213], pancre-
atic INS1-beta-cells, and cardiac cells submitted to hypoxia/
reoxygenation [214]. In isolated, perfused hearts from normal or dia-
betic rats, MET reduced the infarct size after post-ischaemic reperfu-
sion; this effect was partly due to inhibition of MTP opening [215].
Similar results for heart ischaemia were obtained in vitro and in vivo,
with the inhibition of mitochondrial complex 1 and MTP. This non-
exhaustive list of MET’s effects on cell death clearly demonstrates the
drug’s potential for limiting the severity and spread of disease.

Cellular and molecular mechanisms of MET, as applied to the
pathophysiology of Covid-19

MET and hypoxia

Most hospitalised patients with Covid-19 are admitted because of
respiratory complications and need oxygen or mechanical ventila-
tion. This state of hypoxia is caused by lung damage and (in some
cases) haemolytic anaemia, which reduces oxygen transport by
erythrocytes. Under normal conditions, hypoxia is countered by the
activation of hypoxia-inducible factor 1 (HIF-1). However, viral infec-
tion leads to supranormal levels of HIF-1. In order to replicate, SARS-
CoV-2 requires glycolytic conditions, such as those found in patients
with diabetes. The generation of oxidative stress by SARS-CoV-2
means that monocytes from infected patients strongly express HIF-1,
with detrimental effects on the immune system and T cell dysfunc-
tion, IL-1 secretion, and epithelial cell death [216]. Elevated HIF-1
activity might explain (at least in part) the higher mortality in obese
or diabetic patients infected with SARS-CoV-2. Furthermore, HIF-1
favours fibrosis and might be a valuable therapeutic target in the
vicious circle formed by lung hypoxia and HIF-1 induction in Covid-
19 patients.

MET was shown to lower HIF-1 expression/activity in T cells
[217], hyperinsulinaemia [218], hypoxic myeloma cells [219], oral
squamous carcinoma cells [220], and cancer fibroblasts [221].

MET and hydrogen sulphide (H2S)

The well-known physiological role played by thiol-containing
molecules is an important factor in the severity of Covid-19 [222].
Hydrogen sulphide is produced through the metabolism of sulphur-
containing molecules by several enzymes. Accordingly, the gut
microbiota is one of the major sources of H2S in the body. H2S was
notably found to be a gasotransmitter capable of acting
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synergistically and can even replace NO in the vascular endothelium.
Aside from its prominent involvement in vascular physiology and its
beneficial effects on endothelial dysfunction, H2S reduces the activity
of the NLRP3 inflammasome, participates in regulation of the
immune system, has anti-inflammatory and antiviral properties,
decreases neutrophil transmigration, inflammation and ferroptosis in
septic lung injury, inhibits autophagy and endoplasmic reticulum
stress, alleviates ventilator-induced lung injury, promotes macro-
phage M2 polarisation, and maintains the integrity of the tissue bar-
rier. These properties fit well with the pathological characteristics
and pathways of SARS-CoV-2 infection, making H2S an exciting thera-
peutic target. H2S levels are reduced in Covid-19 [223] and linked to
disease severity and death rates [224]. However, these findings must
be interpreted with caution because the dose range for H2S is narrow
and the gas typically acts in a hormetic manner. It is also interesting
to note that H2S was shown to protect the GC [225] and decrease
fibrosis [226].

The similarity between the effects of H2S and those of MET is
striking and raises the question of whether MET acts through this
gas. Indeed, it has been found that MET increases H2S levels [227]. In
vivo, exposure to MET and the H2S donor NaHS decreases renal dam-
age. Although it remains to be determined how MET leads to an ele-
vation of H2S, in vitro MET exposure led to greater expression of
cystathionine g-lyase, one of the enzymes involved in H2S synthesis
[228]. The major natural contribution of the intestinal microbiota to
H2S production through the metabolism of various thiols in food pro-
vides another potential source of H2S generation related to MET.
Interestingly, it has been suggested that sulphur donors constitute an
adjuvant therapy for Covid-19 [229]. For example, some components
of garlic bind to viral structures [230] and so might be of therapeutic
value in Covid-19.

MET, ER stress, and the UPR

The endoplasmic reticulum (ER) responds to various nociceptive
stimuli by developing so-called ER stress (ERS), which is notably
characterised by the unfolded protein response (UPR). ERS has a con-
stant, key role in maintaining cellular homoeostasis by eliminating
cellular debris from organelles and from viruses. Intracellular struc-
tures are in close contact with each other, and the activity and direc-
tion of these interconnected processes depend on the nature and
duration of the stimulus. Basal and short-term ERS and the UPR are
beneficial for cell life; for example, the UPR helps to maintain the
lung’s vascular barrier function. However, prolonged activation can
override these pathways’ fine control mechanisms; ERS and UPR
become toxic and ultimately lead to cell dysfunction and death.
Intensive ERS leads to foam cell formation, cytokine production, and
pulmonary fibrosis. ERS is closely linked to the production of inflam-
matory factors and can lead to obesity and cardiac dysfunction. A
reduction of ERS is associated with a lower level of inflammasome
formation [231].

MET was shown to reduce ERS in various pathological situations:
angiotensin II-induced hypertension [232], palmitate-stimulated B
cells [233] and cardiac cells, thapsigargin-induced cardiac dysfunc-
tion [234], hyperglycaemia [235], and renal fibrosis [236]. In the ner-
vous system, MET regulated the UPR in a galactose-ageing model of
neurodegeneration [237]. In cerebral ischaemia-reperfusion, MET
reduced levels of ERS-related proteins and increased neurological
scores and survival [238].

MET, lysosomes, and autophagy

Autophagy is a highly conserved physiological process through
which cells maintain homoeostasis and energy sparing. It is consid-
ered to be an important processing mechanism for virus endocytosis
and is therefore a potentially valuable therapeutic target. Many



Fig. 1. AMPK’s multifaceted involvement as a major mechanism in the physiological
and biochemical processes of multifactorial diseases (e.g. Covid-19).

AMP, adenosine monophosphate; AMPK, 50-AMP-activated protein kinase; LKB1:
serine−threonine liver kinase B1; H2S, hydrogen sulphide; ER, endoplasmic reticulum;
HIF-1, hypoxia-inducible factor 1; MMP, matrix metalloproteinase.
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factors (such as ERS and caloric restriction, for example) can stimu-
late autophagy. This process starts with the formation of autophago-
somes around the xenofactor; the cargo is then transported via early
and late endosomes to lysosomes, where it is destroyed. Cells can
thereby eliminate infections, provided that the system is not over-
whelmed. Autophagy in Covid-19 is currently a hot topic, since some
viruses can circumvent and reduce autophagy pathways and use
them for replication by blocking the fusion with lysosomes [239]. It
has therefore been suggested that limiting autophagy would be an
effective strategy soon after infection by SARS-CoV-2 [240]. Like most
other pathways involved in these processes, autophagy is a double-
edged sword. More generally, activating autophagy is considered to
be an effective means of increasing lung function in pathological sit-
uations [241]. The stimulation of autophagy is considered to be one
of MET’s main mechanisms of action in metabolic, ischaemic or
inflammatory situations (for a review, see [242]).

Some researchers have suggested that targeting lysosomes might
be a better strategy than trying to block the virus or its entry into cells
[243]. A key factor in the autophagy/lysosomal process is the organ-
elles’ pH because viruses need an acidic milieu in which to replicate.
Weak or strong bases can induce deacidification, and so small alkalis-
ing molecules might therefore block viral activity [244]. Due to its
guanidine structure, MET is a weak base capable of reaching lyso-
somes and increasing the pH. Some very elegant research on MET
and AMPK showed that MET acted at the endosomal/lysosomal level
by mimicking a starving cellular state that activated v-ATPase in lyso-
somes [245]. This promoted displacement of AXIN/LKB1 and stimu-
lated AMPK (for more details, see [246]). This energy-linked
stimulation of AMPK also explains MET’s prolongation of the life span
in C. elegans [247]. On this basis, it was recently suggested that MET
can be used to treat Covid-19 [248]. Furthermore, lysosomes can be
damaged by infectious agents. Galectins recognise these endomem-
brane lesions so that the cells respond by activating AMPK and
autophagy. A study of specific changes in galectin markers showed
that MET also induced these modifications in a macrophage cell line
[249].

Throughout this review it is seen that stimulation of AMPK could
represent at least one common denominator of these various mecha-
nisms. Indeed AMPK is known to be a hub of intracellular signalling.
Due to the great amount of evidence for AMPK stimulation by MET,
and even though not all MET effects are mediated by this pathway,
the reader is referred to the dedicated literature [250].

Fig. 1 summarises the many aspects of AMPK’s involvement in
physiological and biochemical processes related to multifactorial dis-
eases like Covid-19. This involvement ranges from effects on viral
attack (at the top of the Figure) to the development of lung and/or
vascular fibrosis (at the bottom) and thus follows the main steps in
disease progression.

Conclusion

Severe Covid-19 is characterised by an initial infection in the
upper airways, which then spreads throughout the body and appears
as a generalised microvascular disease with atypical haemostatic
defects (microthromboses) in capillaries and, ultimately, fibrosis. A
deep look into the vast body of pharmacological data on MET reveals
activities that are clearly suited to counter the main pathological
events in Covid-19. MET’s unique but often unappreciated microvas-
cular effects appear to target Covid-190s switch from an infectious
state to a vascular disease. The drug’s preservation of small vessel
integrity in terms of motricity, microflow regulation, permeability
and probably haemostasis notably − but not exclusively − provides a
realistic explanation of the impressive clinical benefit related to this
compound. Lastly, it is important to remember that all the various
pharmacological effects of MET described here can occur in a diabe-
tes-independent manner.
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