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Abstract: Smart cities can effectively improve the quality of urban life. Intelligent Transportation
System (ITS) is an important part of smart cities. The accurate and real-time prediction of traffic flow
plays an important role in ITSs. To improve the prediction accuracy, we propose a novel traffic flow
prediction method, called AutoEncoder Long Short-Term Memory (AE-LSTM) prediction method.
In our method, the AutoEncoder is used to obtain the internal relationship of traffic flow by extracting
the characteristics of upstream and downstream traffic flow data. Moreover, the Long Short-Term
Memory (LSTM) network utilizes the acquired characteristic data and the historical data to predict
complex linear traffic flow data. The experimental results show that the AE-LSTM method had
higher prediction accuracy. Specifically, the Mean Relative Error (MRE) of the AE-LSTM was reduced
by 0.01 compared with the previous prediction methods. In addition, AE-LSTM method also had
good stability. For different stations and different dates, the prediction error and fluctuation of the
AE-LSTM method was small. Furthermore, the average MRE of AE-LSTM prediction results was 0.06
for six different days.
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1. Introduction

In recent years, the increasing number of vehicles aggravates traffic congestion. The traffic
congestion often brings a series of problems such as environmental pollution, which greatly reduces
the quality of urban life. To improve the urban living environment, there are emerging fields
such as smart cities and Internet of Things (IoTs) [1,2], which mainly utilize various information
technologies to optimize urban resources and services. As an important part of smart cities, Intelligent
Transportation Systems (ITSs) can effectively alleviate urban traffic congestion [3,4]. Hence, ITSs have
received significant interest and have become one of the important development directions of modern
transportation. The prediction of traffic flow plays a key role in ITSs. The normal operation of
many large systems relies on accurate prediction of traffic information, such as the Split Cycle Offset
Optimization Technique (SCOOT) system and Sydney Coordinated Adaptive Traffic (SCAT) system [5].

The early traffic flow prediction methods mainly include AutoRegressive Integrated Moving
Averaging (ARIMA) [6], Kalman filter [7,8], Support Vector Machine (SVM) [9], Markov chain
model [10], etc. These prediction methods are simple and can be implemented easily. However,
these models cannot mine the deep relationship between data. For this reason, neural network models
are used to predict the traffic flow since these models can mine big data and discover internal structure
and potential characteristics. Recently, Deep Belief Network (DBN) [11,12], Long Short-Term Memory
(LSTM) neural network [13–15] and prediction methods based on deep architecture [16,17] have been
widely used in traffic flow prediction. Huang et al. [17] used the Gated Recurrent Unit (GRU) to
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predict the traffic flow, but this method only considers the temporal patterns of the traffic flow and
ignores its spatial patterns. Because of the network structure of urban roads, the change of traffic flow
in adjacent position is one of the important factors affecting traffic flow. Considering the temporal and
spatial patterns of traffic flow, Lv et al. [16] exploited the deep learning architecture to predict traffic
flow. However, compared with LSTM network, the deep learning model requires a large amount of
data and computation. In addition, the LSTM network can effectively preserve the long-term effect of
the data for time series data. Therefore, the LSTM network is a very promising prediction model for
time series data.

In this paper, we consider the temporal and spatial patterns, and propose a prediction model,
called AutoEncoder Long Short-Term Memory (AE-LSTM) prediction method. The AutoEncoder is
used to obtain the traffic flow characteristics of adjacent positions. The adjacent positions represent the
upstream and downstream location of the current location. We also use LSTM to predict the traffic flow
at the current location. Compared with other prediction methods based on neural networks, AE-LSTM
prediction model not only mines big data deeply, but also considers the influence of upstream and
downstream traffic flow. Experimental results show that the proposed method has better performance
on real datasets. The main contributions of this paper are as follows:

• We propose an AE-LSTM model to predict traffic flow. This method combines AutoEncoder
with LSTM, where AutoEncoder is used for feature extraction and LSTM model is used for
data prediction.

• We propose a traffic flow prediction algorithm based on AE-LSTM. The AutoEncoder and LSTM
network are trained, respectively. Then, we fine-tune the whole network.

• We evaluated the performance of AE-LSTM by experiments. We conducted AE-LSTM on real
datasets, and experimental results show that the performance of AE-LSTM was better than the
other prediction methods.

The rest of this paper is organized as follows. In Section 2, we give a brief review of the related
works of other researchers. In Section 3, we briefly introduce the AutoEncoder and LSTM, and then
describe the AE-LSTM prediction model presented in this paper. In Section 4, we describe the
implementation of the model in detail, including the training of the prediction network and data
processing In Section 5, we provide the experiment results. In Section 6, we conclude the whole paper.

2. Related Work

The prediction of traffic flow is necessary for traffic plan and plays an important role in the
mobile opportunistic networks [18–20]. For a long time, researchers have been working on traffic
flow prediction and proposed many research methods. Early prediction models were very simple,
such as random walks, historical averages [21], etc. Although these models are easy to implement,
the prediction accuracy is not enough. In addition, people pay more and more attention to privacy
protection [22], and many traditional prediction methods have difficulty guaranteeing privacy.
Subsequently, many more complex and effective prediction models emerged.

Researchers usually use some time series models to make predictions, such as ARIMA, Markov
chains, Gaussian processes, etc. Williams et al. [23] presented a multivariate ARIMA model containing
upstream traffic data. Stathopoulos and Karlaftis [24] proposed a state space model of multiple
time series, which uses upstream flow detector to obtain data. Kamarianakis and Prastacos [25]
proposed a spatiotemporal autoregressive integrated moving average model to predict urban traffic
flow. Min and Wynter [26] developed a time-based extension prediction method that takes into
account the interaction between time and space. Kumar et al. [27] proposed a prediction scheme
using the Seasonal ARIMA (SARIMA) model. This scheme predicts traffic flow through limited data.
The authors used the difference method to stabilize the input data and the maximum likelihood method
to estimate the model parameters. Pan et al. [28] introduced the spatial-temporal correlation to the
short-term traffic flow prediction by using the random region transmission framework. Considering
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the interpretability of the prediction model, Xu et al. [29] proposed an interpretable spatial-temporal
multiple adaptive bayesian regression model. Bayesian derivation is used to train model parameters.
Because the traffic flow of adjacent sections affects each other, Sun et al. [30] constructed a bayesian
network for traffic flow of each section to predict the traffic flow. However, when the traffic network
is too complex, the accuracy of this method is not enough. Due to the dynamics and randomness
of highway traffic, a short-term highway traffic prediction method based on the hidden Markov
model [31] is proposed. This method uses the observed velocity statistics to define the traffic state in
two-dimensional space. Xie et al. [32] used Gauss regression process to model and forecast traffic flow.
Because of the interconnection between roads, traffic flow data are a kind of multivariable time series.
Dynamic systems have good performance in simulating multivariable time series data. Therefore,
Zhao and Sun [33] modeled the traffic flow according to the Gaussian process dynamic model. Then,
a dynamic prediction model based on fourth-order Gaussian process is proposed, and the weighted
neural network is introduced into the model to train the model parameters.

The Urban Traffic Control (UTC) systems and highway management systems put into use collect
a large amount of traffic condition data every day. The big data in the field of transportation have
attracted the interest of many scholars [34,35]. The previous prediction models cannot give full play
to the advantages of big data, and have some shortcomings such as the lack of high accuracy and
the inability to fully mine the historical information. In contrast, the neural network is very good
at processing big data. Therefore, many prediction models based on neural networks are applied
to traffic flow prediction. Tan et al. [36] proposed an aggregate prediction method based on neural
network, which combines four prediction methods: neural network, ARIMA, exponential smoothing
and moving average. The periodic similar time series are constructed from the original time series,
and then the traffic flow is predicted by multiple prediction models. Tan et al. [11] proposed two DBN
traffic prediction architectures based on Restricted Boltzmann Machines (RBMs). Lv et al. [16] exploited
AutoEncoder model to forecast traffic flow. AutoEncoder is widely used in denoising processing, and
can also be used as feature extractor. Chen et al. [37] used the deep learning model to predict the
traffic flow in the case of special events, and proved that the RNN has good performance in traffic
flow prediction. Considering the influence of weather conditions on traffic flow, Fu [14] proposed
a forecast model combining RNN and GRU. GRU is a kind of RNN, but its cell structure is simpler
than LSTM cell structure. Because GRU simplifies the structure of memory unit, some important
information may be ignored in the prediction process, and the prediction accuracy is reduced. Similar
to GRU, LSTM is also an improved RNN, which can retain the influence of data for a longer time,
and improve the gradient disappearance for RNN. Therefore, LSTM is often used as a time series
prediction model. Because future traffic conditions may be related to events that occurred long ago,
Ma et al. [13] proposed a new LSTM neural network prediction model that can learn time series and
automatically determine the prediction delay.

In addition, Yang et al. [38] proposed a new traffic state prediction method, which uses
electrosleidicalography data and driving behavior to prediction traffic state. However, the data
acquisition process is more complex in this prediction method. Wang et al. [39] used Error feedback
Recurrent Convolutional Neural Network structure (eRCNN) to predict the continuous traffic.
This deep network model introduces new error feedback neurons to better deal with emergencies.
Wu et al. [40] proposed a traffic flow prediction model based on DNN. This model introduces an
attention based model to determine the importance of past traffic flow and uses convolutional
neural network to mine the spatial characteristics of traffic flow. Zhan et al. [41] combined a
variety of prediction methods and proposed an automated framework to solve the problem of traffic
flow prediction.

Different from many neural network prediction models, AE-LSTM prediction model uses
AutoEncoder to extract the characteristic of upstream and downstream data, which can not only
take into account the spatial characteristics of vehicle flow, but also not add too many calculations in
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the subsequent LSTM prediction. Meanwhile, LSTM network is used to explore the time characteristics
of vehicle flow.

3. Methodology

3.1. AutoEncoder Model

AutoEncoder is usually used to reduce dimensions or extract features [42]. Given an original input
sequence data X = {x1, x2, . . . , xk}, where xi ∈ Rd. The characteristic sequence of the original data is
obtained through the formula f . T represents the characteristic sequence of the original sequence X,
which is defined as T = {t1, t2, . . . , tk}, where ti ∈ Rl . The output of the encoder is used as the input
of the decoder. The decoder reconstructs the original data according to the characteristic sequence T.
The reconstructed data Y = {y1, y2, . . . , yk}, where yi ∈ Rd. The purpose of decoding is to verify
whether the extracted features are valid. After the training of the AutoEncoder is completed, we only
use the encoder to extract the characteristics of the original data to obtain more internal structure of
the data. Figure 1 shows the basic structure of AutoEncoder. The encoding and decoding process
follows the equations:

ti = f (wt · xi + bt), (1)

yi = g(wy · ti + by), (2)

where f (·) and g (·) are the sigmoid functions, and wt, wy and bt, by are weights and biases, respectively.
We train the AutoEncoder by minimizing reconstruction error

L(X, Y) =
1
2

n

∑
i=1
‖xi − yi‖2. (3)

When the difference between the reconstructed data Y and the original data X is small enough,
in other words, the output T of the coding process is valid, T is seen as the characteristics extracted
from the original data.

X Y

T

Figure 1. The structure of AutoEncoder. The encoder obtains the characteristic sequence T based on
the original sequence X. The decoder gets the reconstructed sequence Y according to the characteristic
sequence T.

In the urban traffic network, there is an interaction between the traffic flow at the current location
and the traffic flow on surrounding roads. Therefore, we should consider not only the historical
traffic flow data of the current location, but also the changes of upstream and downstream traffic
flow. In this model, we use AutoEncoder to extract characteristics of upstream and downstream
traffic flow data. Then, the extracted features are put into the prediction network to improve the
accuracy of traffic flow prediction at the current location. Therefore, the input of AutoEncoder is
the upstream and downstream traffic flow Xu = {xu1, xu2, . . . , xum} and Xd = {xd1, xd2, . . . , xdm},
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where xui, xdi ∈ Rd. The characteristic sequence is defined as Zt = {z1, z2, . . . , zm}, where zi ∈ Rl .
In this paper, the processes of encoding and decoding follow the equations below:

zi = f (wz · (xui + xdi) + bz), (4)

yi = g(wy · zi + by). (5)

3.2. AE-LSTM Model

LSTM [43] has been widely used in many fields and achieved great success, such as in
music generation, image caption, speech recognition and machine translation. LSTM improves
the hidden-layer cell on the basis of RNN. The improvement of cell can make up for the gradient
disappearance problem of RNN. LSTM adds some memory units, including forget gate, input gate
and output gate. The memory units can further control the data and decide which should be retained
and which should be deleted.

Since the upstream and downstream traffic flow will affect the traffic flow at the current location,
we need to take these factors into account when predicting the current traffic flow. If all upstream and
downstream traffic flow data are put into the prediction model, the data dimension will increase and
the calculation will be too complicated. To solve this problem, we use the AutoEncoder to extract the
characteristics of the upstream and downstream vehicle flow data. In other words, the dimensionality
of the traffic flow data is reduced. The acquired characteristics are taken as a part of the input data of
the prediction network. In this way, not only the impact of upstream and downstream traffic flow is
considered, but also the data dimension is not increased too much. The input data of LSTM consists of
two parts: the characteristics of upstream and downstream traffic flow data zt and the historical traffic
flow data of the current position xt.

The current position of the traffic flow data is expressed as X = {x1, x2, . . . , xm}, where xi ∈ Rd.
The characteristics of upstream and downstream traffic flow data are represented by Zt. The input
information of the forgotten gate includes three parts: the current flow xt, the upstream and
downstream characteristic zt, and the previous unit state ht−1. The forgetting gate determines the
information that should be discarded. The input information of the input gate is similar to that of the
forgot gate. The input gate is used to select the information that should be input. Ct represents the
input of the cell, which is added to the cell state. Ct indicates that the status of the cell was updated.
This step means removing part of the cell state at the previous time and adding part of the cell state at
this time. The input information of the output gate is similar to that of the forgot gate. The output
gate is used to select the information that should be output. Finally, the cell state is processed by
tanh and multiplied by the output of output gate, among them σ(x) = 1

1+e−x and tanh(x) = ex−e−x

ex+e−x .
The detailed structure of the LSTM is shown in Figure 2. The relevant formulas of AE-LSTM model are
shown below:

ft = σ(w f 1 · xt + w f 2 · zt + w f 3 · ht−1 + b f ), (6)

it = σ(wi1 · xt + wi2 · zt + wi3 · ht−1 + bi), (7)

Ct = tanh(wc1 · xt + wc2 · zt + wc3 · ht−1 + bc), (8)

Ct = ft · Ct−1 + it · Ct, (9)

ot = σ(wo1 · xt + wo2 · zt + wo3 · ht−1 + bo). (10)

ht = ot · tanh(Ct) (11)
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Figure 2. The structure of LSTM network. The input of the neuron is composed of xt and zt,
xt represents the traffic flow data of the current node, and zt represents the characteristic of the
traffic flow data of the upstream and downstream.

To consider the influence of upstream and downstream traffic flow but not increase the amount of
calculation, we propose AE-LSTM prediction model, which combines the AutoEncoder and LSTM.
Firstly, we use the AutoEncoder to extract the characteristics of original upstream and downstream
traffic flow data. Then, we use LSTM model to predict the traffic flow. The specific prediction steps are
shown below:

• The encoder of the AutoEncoder is used as the feature extractor to obtain the characteristics of
upstream and downstream traffic flow data. The extracted features are put into the prediction
network. Considering the influence of upstream and downstream on the traffic flow at the current
location, the accuracy of traffic flow prediction can be improved.

• The characteristics of upstream and downstream traffic flow and the traffic flow data of the
current position are combined as the input of LSTM. LSTM model predicts the traffic flow data at
the next moment.

The AutoEncoder is a kind of unsupervised learning, which can be used as feature extractor
of data. We determine the initial value of the weight matrix before the training. The weight matrix
plays a very important role in the network. we hope to retain the characteristics of the original
data after training the weight matrix. If the extracted feature can reconstruct the original data well,
it indicates that the features of the original data can be effectively retained through the weight matrix.
After the training of the AutoEncoder, we divide the AutoEncoder into two parts, which are the
encoder and the decoder. The encoder, as a data feature extractor, is part of the AE-LSTM prediction
model. The decoder is used to verify the validity of the extracted characteristics, and is discarded after
the training. We attached a LSTM model after the encoder to form the AE-LSTM prediction model.
The structure of the AE-LSTM model is shown in Figure 3.

In this paper, the Rectified Linear Unit (ReLU) function is selected as the activation function of
the output layer in the whole network. The tanh function is selected as the activation function of other
layers in the network. In this paper, the loss function is set to

L(x, x) = ∑N
n=1(xn − xn)2

2N
, (12)

where xn represents the observed value, xn represents the predicted value, and N represents the
number of predicted values.
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Figure 3. The structure of AE-LSTM for traffic flow prediction. AutoEncoder model is used to extract
features and LSTM model is used to predict the traffic flow.

4. Model Implementation

The training of prediction network is one of the most important works, which is directly related to
the final performance of prediction. We used the corresponding traffic flow data to train AutoEncoder
and LSTM, respectively. Then, we fine-tuned the whole network and optimized the network
parameters. The upstream and downstream traffic flow data xu and xd were put into AutoEncoder.
We used back propagation to train parameters in AutoEncoder. The effective characteristics of traffic
flow Z was obtained after encoding and decoding. In this way, the upstream and downstream
traffic flow data could be considered in the prediction process, and the increasing of computational
complexity could be avoided at the same time. The condition for the end of AutoEncoder training
was that L(X, Y) was less than a threshold. L(X, Y) less than the threshold indicated that the decoder
could reconstruct the original data through characteristic Zt, and the error between the reconstructed
traffic flow data and the original data was small enough. In other words, the extracted characteristics
Zt was valid, and could reflect the internal structure of the original data. The characteristics Zt and the
original data of current traffic flow Xt were put into the network for training LSTM model. We still
used the back propagation method to train the LSTM network. The AutoEncoder combined with
LSTM to form AE-LSTM, and the whole network was fine-tuned. Algorithm 1 shows the pseudocode
of AE-LSTM network training. The input data Xu, Xd and Xt represent upstream traffic flow data,
downstream traffic flow data and current position traffic flow data, respectively.

Next, to further discuss the implementation of the model, we briefly describe the data processing,
which is expressed as a matrix. The upstream and downstream traffic flow datasets are represented as

Xu =
[

Xu1 Xu2 · · · Xum

]T
(13)

and
Xd =

[
Xd1 Xd2 · · · Xdm

]T
, (14)

where Xui, Xdi ∈ Rd. After extracting the characteristics by AutoEncoder, we obtain the characteristics
set of upstream and downstream vehicle flow

Zt =
[

Z1 Z2 · · · Zm

]T
, (15)

where Zi ∈ Rl , Zi = {zi1, zi2, . . . , zil}. The historical prediction data Xt are represented as

Xt =
[

X1 X2 · · · Xm

]T
, (16)
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where Xi ∈ Rd, Xi = {xi1, xi2, . . . , xid}. Xt and Zt are combined to obtain a entire dataset as

St =
[
S1 S2 · · · Sm

]T
, (17)

where Si ∈ Rd+l , Si = {xi1, xi2, . . . , xid, zi1, zi2, . . . , zil}. To accelerate the training and prediction
process, we use the normalized method to process the original data. Before training the network,
the original data are normalized. After obtaining the predicted results, the normal traffic flow predicted
value can be obtained by reversing the normalization process.

Algorithm 1 AE-LSTM prediction algorithm.

Input: the training set Xu, Xd, Xt.
Output: prediction result X.
1: Use Xu and Xd to build the AutoEncoder training set XAE.
2: Initialize the weight matrices of AutoEncoder randomly.
3: Put XAE into AutoEncoder.
4: if L(X, Y) < d then

5: Calculate the error L(X, Y) by Equation (3).
6: Use the back propagation training the AutoEncoder.
7: else

8: End the training.
9: end if

10: Generate the characteristics of upstream and downstream vehicle flow Zt.
11: for t = 0 to epoch do

12: Put Zt and Xt into the LSTM, and use Equations (6)–(11) for forward propagation.
13: Generate xt+1 = g(wz · ht + bz).
14: Calculate error.
15: Use the back propagation to update parameters.
16: Use forward propagation to update network status ht, through Equations (6)–(11).
17: end for
18: Add LSTM after the encoder of AutoEncoder to form AE-LSTM.
19: Fine-tuning the whole network, training initialization parameters.
20: Input test data in AE-LSTM to generate the predicted value X.
21: Return X.

5. Experimental and Analysis

5.1. Data Collection from Caltrans Performance Measurement System

In this experiment, traffic flow data were obtained from Caltrans Performance Measurement
System (PeMS) [44]. PeMS is widely used by many researchers in experiments. To facilitate the
comparison with other prediction algorithm, the dataset from PeMS was selected as the experimental
data. PeMS is a professional traffic data acquisition system, in which 15,000 detectors have been
deployed in California. The acquisition details of dataset are summarized in Table 1. The detectors
record relevant traffic data every 30 s and store them in the database. PeMS aggregates the data to 5 min.
The traffic flow is the number of vehicles passing through a detector over a period of time. For traffic
flow, the 5-min data sample can be obtained by adding up the 30-s traffic data samples. Of course,
the original data contain some missing or invalid data for various practical reasons. These invalid data
have been reasonably estimated using estimation methods. To verify the performance of the AE-LSTM
traffic flow prediction model, we applied it to the actual datasets. As shown in Figure 4, we obtained
the statistical data recorded at several stations near Sacramento County. In Figure 4, the red dots
represent the positions of data detection, which we marked as A, B, C, D, etc., and the red arrows
represent the direction of traffic flow. In this study, the experiment was validated at multiple locations
in Sacramento County,. Figure 4 only shows the actual location of a predicted location.
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Table 1. The acquisition details of dataset.

Directional Distance Controllers Stations Detectors Traffic Census Stations Features

41,236.0 mi 6943 18,350 45,170 16,527 Flow, occupancy and speed

Figure 4. The data are collected around Sacramento County. The data collection stations are set up on
the mainline of the four lanes.

5.2. Experimental Setup

In this method, the AutoEncoder model extract the characteristics of the upstream and
downstream traffic flow data, and the LSTM model predicts the traffic flow data. For the structure of
the AE-LSTM network, we need to determine the number of input layers, the number of hidden layers,
and the number of neurons in hidden layer. The input layer was set to 288× 3. The number of hidden
layers in the AutoEncoder model was 3, and the hidden neurons in each layer were 128, 128 and 32,
respectively. The learning rate was set to 0.001. The number of hidden layers in LSTM model was 2,
the number of neurons in each hidden layer was 128, the learning rate was set as 0.005, and the training
number of epoch was 10. We obtained the traffic data from April to September 2018. The datasets was
divided into two subsets, namely training set and test set. We used the first 176 days data of the six
months in training process, which obtained the model. For LSTM model, the previous output was part
of the input of the current iteration. Then, we used the generated model to predict the next seven days
of data, and compared it to the last seven days of data during the six months. In addition, to obtain the
impact of step ahead, we used the first five months data as training data, and predicted different steps
ahead. Considering the time patterns of the traffic flow, we used the traffic flow data of the previous
period to predict the data of the next moment. Considering the spatial pattern of traffic flow, we took
the upstream and downstream traffic flow data as the input of the prediction model.

In this study, the prediction interval of traffic flow data was 5 min. To verify the performance
of AE-LSTM prediction model, we chose the proposed algorithm [31], SVM model and CNN for
comparison. All prediction models used the same datasets. In CNN model, we set input layer as
28× 28, and convolutional layer as 20× 20× 20. Moreover, the pooling layer of CNN was set to
20× 12× 12, and learning rate was 0.1. We used ReLU as activation function in CNN. In SVM model,
we used RBF as Kernel function. Moreover, after training, the regularization parameter was 7.5 and
the Kernel function parameter was 0.54.

5.3. Model Evaluation

In the experiment, the performance of the traffic flow prediction models were measured by three
indicators: Root Mean Square Error (RMSE), Mean Relative Error (MRE) and Mean Absolute Error
(MAE). MRE is one of the most common indicators for comparing prediction accuracy. However,
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when the traffic flow value is large, the MRE will be small. Therefore, MAE and RMSE were used to
supplement the error analysis. Their expressions are as follows:

RMSE(x, x) =

√√√√ 1
N
·

N

∑
n=1

(xn − xn)2, (18)

MRE(x, x) =
1
N
·

N

∑
n=1

|xn − xn|
xn

, (19)

MAE(x, x) =
1
N
·

N

∑
n=1
|xn − xn|, (20)

where xn represents the predicted value, xn represents the observed value, and N represents the
number of data.

5.4. Experimental Results

As shown in Table 2, we compared the errors of four prediction algorithms: CNN, SVM,
the prediction algorithm in [17] and the AE-LSTM prediction algorithm. We compared the predict
performance at different steps ahead. In general, the error of AE-LSTM prediction algorithm was
smaller than the other compared algorithms. When the step ahead was 4, the MRE was 0.065. When the
prediction of small step ahead was carried out, the performance of AE-LSTM algorithm had obvious
advantage. When the prediction step ahead increased, the accuracy of prediction decreased slightly.
In addition, the smaller was the prediction step ahead, the higher was the prediction accuracy and
the better was the prediction performance. The reason for this phenomenon is that the multi-step
prediction needs to use the previous prediction results. Unless the prediction is completely accurate,
there must be an error between the predicted value and the observed value. Therefore, the larger
is the step ahead of the prediction, the more errors of the previous prediction will be accumulated,
leading to greater errors in the end. This is a common problem in the process of timing prediction.
Therefore, as the prediction step size increased, the prediction accuracy of both AE-LSTM and the
algorithm proposed in [17] increased, but the error of AE-LSTM increased less. It can be seen in Table 2
that the MRE of the two prediction algorithms were not significantly different. The reason is that the
traffic flow was large, thus the difference between the predicted value and the observed value was
relatively small. The difference between the predicted value and the observed value could be seen
more intuitively from RMSE and MAE. Compared with the prediction algorithm in [17], RMSE and
MAE of AE-LSTM had significant advantages.

As shown in Figure 5, we compared the observed value with the predicted results of four other
prediction algorithms: CNN, SVM model, the algorithm proposed in [17] and the AE-LSTM prediction
algorithm. The horizontal axis represents time, and every interval is 5 min. We predicted the traffic for
24 h, thus there are 288 data points. The vertical axis represents the number of traffic flows. In fact, the
daily traffic pattern is similar. As shown in Figure 5, AE-LSTM had better prediction performance most
of the time and matched well with the observed values. Compared with other prediction methods,
AE-LSTM considered the influence of upstream and downstream traffic flow in the prediction process,
it had better prediction performance at both night with less traffic flow and day with more traffic flow.
The predictive performance of the algorithm proposed in [17] was better than that of CNN and SVM.
Neither CNN nor SVM could well match observed values, but the overall prediction performance of
SVM was worse.
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Table 2. Performance comparison.

Algorithm Step Ahead
Error Value

RMSE MAE MRE

AE-LSTM
4 26.32 16.15 0.065

6 28.23 20.16 0.072

8 76.87 43.15 0.131

The Proposed Algorithm [31]
4 35.45 25.26 0.088

6 48.16 28.48 0.125

8 99.52 52.86 0.161

CNN
4 46.22 34.59 0.011

6 59.24 36.21 0.195

8 105.16 59.86 0.198

SVM
4 49.54 39.02 0.023

6 59.24 36.21 0.211

8 107.36 62.86 0.209
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Figure 5. The blue line is the observation value on Sacramento County, the red line is the traffic
flow prediction data obtained by AE-LSTM algorithm, and the green line represents the traffic flow
prediction data obtained by the algorithm proposed in [17]. The black and light blue lines represent
CNN and SVM, respectively.

Figures 6 and 7 show the MAR cumulative distribution functions for each prediction method
under different conditions. In other words, it presents the probability statistics of MAR for each
prediction method. Figure 6 shows the MAE cumulative distribution of traffic flow prediction.
The solid line represents the prediction error of AE-LSTM algorithm, the dotted line represents
the prediction error of the algorithm proposed in [17], and the shorter dotted line represents the
prediction error of CNN. For the AE-LSTM prediction model, the probability of MAE less than 25 was
90% at three different stations. The errors of AE-LSTM prediction model on different datasets were
basically the same, which indicates that the prediction model has good robustness. For the algorithm
proposed in [17] and CNN, the cumulative distribution of MAE at different stations varied greatly,
which indicates that the performance of these methods are not stable for different datasets. For the
algorithm proposed in [17], the probability of MAE less than 25 was 60%. For CNN, the probability
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of MAE being less than 25 was 30% at Stations 1 and 2, and 30% at Station 3. Overall, the prediction
accuracy of CNN was not as high as that of the other two methods at the three stations. The prediction
accuracy of AE-LSTM was higher than that of the algorithm proposed in [17] and CNN. The prediction
error of the AE-LSTM and the prediction error of the algorithm proposed in [17] were different at
Stations 1 and 2. At Station 3, AE-LSTM and the algorithm proposed in [17] had an almost equal
probability of MAE less than 10. However, the probability of MAE less than 30 for the AE-LSTM
prediction model was 95%, and the probability of MAE less than 25 for the algorithm proposed
in [17] was less than 80%. Therefore, the prediction accuracy of AE-LSTM was higher than that of the
algorithm proposed in [17].
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Figure 6. The cumulative distribution of MAE at different stations.

Figure 7 shows the cumulative distribution of MAE at different step ahead. We predicted the
traffic flow at Steps 4, 6, and 8, respectively. As shown in Figure 7, the error distribution trend of
the two prediction algorithms was similar for different prediction steps ahead. As the step ahead
increased, the errors of the three prediction methods increased. The reason for this phenomenon is
that the circular neural network needs to use the data generated in the previous cycle in the prediction
process. The larger is the step ahead, the lower is the accuracy of the data in the previous moment.
As a result, the errors of the previous prediction are accumulated and MAE becomes bigger. When the
step ahead is small, the prediction accuracy is high. That is because the data used in the prediction are
mostly observed values. In addition, the performance of AE-LSTM model was obviously better when
the prediction step ahead was 4 and 6. However, when the prediction step ahead was 8, the prediction
accuracy of the three methods was not high because the prediction step ahead was too big.

To comprehensively evaluate the performance of the prediction algorithm in practical applications,
we analyzed forecast data for six consecutive days. Figure 8 shows the prediction error for six days.
To analyze the performance of the prediction algorithm, the MRE was calculated every 4 h. We choose
two prediction methods for comparison. Among them, the CNN prediction model directly uses the
historical data of traffic flow for prediction, excluding the upstream and downstream traffic flow data.
As shown in Figure 8, the trend of daily prediction error was similar: MRE was smaller during 0–4 and
20–24, while MRE was larger during the other times. Among them, The MRE of AE-LSTM algorithm
fluctuated around 0.065, the MRE of the algorithm proposed in [17] fluctuated around 0.08, and the
MRE of CNN was higher and fluctuated around 0.09, and the maximum value even reached 0.1.



Sensors 2019, 19, 2946 13 of 16

0 20 40 60 80 100 120 140 160 180 200
Mean Absolute Error (MAE)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

pi
ri

ca
l C

um
ul

at
iv

e 
D

is
tr

ib
ut

io
n 

Fu
nc

tio
n 

(C
D

F)
AE-LSTM(step ahead=4)
The Proposed Algorithm [30](step ahead=4)
CNN (step ahead=4)
AE-LSTM(step ahead=6)
The Proposed Algorithm [30](step ahead=6)
CNN(step ahead=6)
AE-LSTM(step ahead=8)
The Proposed Algorithm [30](step ahead=8)
CNN(step ahead=8)

Figure 7. The cumulative distribution of MAE with different step-ahead.
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Figure 8. MRE statistics of the three prediction algorithms. We calculated the MAE of traffic flow
prediction for six days.

Since the morning rush hour is from 6:00 to 9:00, the traffic flow may change greatly during this
period, and traffic congestion and other problems often occur. To have more positive effects on traffic
control, we analyzed the traffic flow data and forecast performance during this period. Figure 9 shows
the observation values and forecast values of the traffic flow for six consecutive days between 6:00
and 9:00. As shown in Figure 9, the trend of daily traffic is similar. The traffic flow is 100 at 6:00, and the
traffic flow fluctuation is 500 at 9:00. During this period, traffic flow fluctuates slightly, but the overall
trend is increasing. We can see that the traffic flow on the weekend is less than that on the weekday.
At 9:00 on the weekend, the traffic flow is about 400. In general, the predicted values of the AE-LSTM
algorithm could better match the observed values and it had better prediction performance. AE-LSTM
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fully considers the influence of upstream and downstream traffic flow on the current position, thus the
result is more stable and accurate.
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Figure 9. Observed and predicted values of traffic flow from 6:00 to 9:00.

6. Conclusions

In this paper, we propose an AE-LSTM prediction model to predict the traffic flow, which combines
AutoEncoder and LSTM. The AE-LSTM prediction model not only considers the temporal
characteristics but also uses the upstream and downstream data to capture the spatial characteristics of
traffic flow. In addition, an AE-LSTM prediction algorithm is proposed. First, AutoEncoder and LSTM
networks are trained, respectively, and then AE-LSTM is trained and fine-tuned. The algorithm is easy
to implement and has good applicability. Finally, the performance of the AE-LSTM prediction model
was verified by the real dataset from PeMS. Experimental results show that that AE-LSTM model had
outstanding performance in traffic flow prediction. This study only considered time patterns and
simple spatial patterns. In the future work, we will consider more complex spatial correlations and
integrate them in neural networks.

Data Availability: In our experiment, we verified the performance of our prediction model on the
dataset of PeMS [44].
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