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Abstract

The classification of biological sequences is an open issue for a variety of data sets, such as

viral and metagenomics sequences. Therefore, many studies utilize neural network tools,

as the well-known methods in this field, and focus on designing customized network struc-

tures. However, a few works focus on more effective factors, such as input encoding method

or implementation technology, to address accuracy and efficiency issues in this area. There-

fore, in this work, we propose an image-based encoding method, called as WalkIm, whose

adoption, even in a simple neural network, provides competitive accuracy and superior effi-

ciency, compared to the existing classification methods (e.g. VGDC, CASTOR, and DLM-

CNN) for a variety of biological sequences. Using WalkIm for classifying various data sets

(i.e. viruses whole-genome data, metagenomics read data, and metabarcoding data), it

achieves the same performance as the existing methods, with no enforcement of parameter

initialization or network architecture adjustment for each data set. It is worth noting that even

in the case of classifying high-mutant data sets, such as Coronaviruses, it achieves almost

100% accuracy for classifying its various types. In addition, WalkIm achieves high-speed

convergence during network training, as well as reduction of network complexity. Therefore

WalkIm method enables us to execute the classifying neural networks on a normal desktop

system in a short time interval. Moreover, we addressed the compatibility of WalkIm encod-

ing method with free-space optical processing technology. Taking advantages of optical

implementation of convolutional layers, we illustrated that the training time can be reduced

by up to 500 time. In addition to all aforementioned advantages, this encoding method pre-

serves the structure of generated images in various modes of sequence transformation,

such as reverse complement, complement, and reverse modes.

Introduction

Classification, assigning input data to known classes of samples with similar features, has risen

as an essential problem in biology studies so far. As a popular application of classification in

biology, it categorizes creatures into various classes with specific evolutionary levels [1].

Depending on the type of creatures, the classification can be adopted in various fields; from
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evolutionary studies [2] to virus subtyping [3, 4], which is utilized for virology, epidemiology,

and studying rate of disease progress and susceptibility drug treatment [5]. Subtypes (also

known as clades or genotypes) are a crucial unit of viral nomenclature within a certain species,

with each subtype representing a cluster of genetic similarities among isolates from the global

population. Despite the fact that the genome sequences of the recognized subtypes of viruses

can diverge, there is no obvious boundary between viral species. Several viral subtypes are clin-

ically significant due to their ties to the variances in etiology, disease progression rates, and

susceptibility to pharmaceutical treatments and vaccines. Since disease progression rates vary

substantially among subtypes, newly discovered infections should be identified based on their

genetic similarity to the curated reference subtypes [4]. Consequently, many studies try to pro-

pose automated methods for detecting viral subtypes using genomic data [3–5]. Moreover,

classification, as a means of taxonomy analysis using meta-genomic reads, is applicable to bio-

technology, ecology, bioremediation, and the medical field like diseases diagnosis and gut

microbe studies [6]. Moreover, it can solve practical challenges in various areas, such as biofu-

els, biotechnology, food safety, agriculture, medications, and etc. [7]. Metagenomes data is

obtained directly from the environment. As a result, the sequences of this dataset are not iso-

lated and contain a variety of noises. Furthermore, since these datasets are made up of genomic

reads, they necessitate use of sequencing procedures and alignment steps to specify their sub-

type. However, metagenomic analysis avoids these steps, as well as the use of cell cultures to

characterize bacterial community composition derived from a specific environment. The later

property permits bacteria to be cultured and isolated without the need for laboratory condi-

tions, as many of them are difficult to culture.

According to the basic idea of classification approaches, they are categorized into two gen-

eral classes [7, 8]; a) alignment-based methods, and b) alignment-free methods. As the align-

ment-based classifiers, BLAST [9], USEARCH [10], and REGA [11, 12] are considered as

high-accurate classification methods [5], while their computational complexity, high run time,

and resource consumption motivate [8] us to utilize alignment-free methods in most cases.

Moreover, alignment-based methods necessitate some initial assumptions [8]. These assump-

tions (e.g. pre-defined substitution matrix or choosing a reference sequence for those methods

based on phylogenetic likelihood [5, 13]) can highly impacts the classification result. As an

another drawback of alignment-based classification methods, they need to compare any new

input sequence with all previously classified ones, while this requirement limits the applicabil-

ity of the methods for big data sets. Moreover, alignment-based classifiers suffer from high

false-positive rate in the case of input samples with high mutation rates within each class. The

later scenario usually happens for classifying sequences with limited similar fragments among

samples [13].

On the other side, alignment-free classification methods can be categorized as either

computational (deterministic) methods or learning-based methods. Regardless of the decision

making approach (i.e. deterministic or learning-based), alignment-free methods are parti-

tioned into two classes; feature-based and model-based methods [5, 13]. In feature-based

methods, sequences are converted to feature vectors to feed the classification method. To per-

form this conversion, we can adopt either learning-based methods, such as like SVM and Ada-

Boost [8], or less computational process, such as multivector [14] and FCGR [15]. However,

vector production from input sequences requires time-consuming pre-processing steps, and

limits applicability of the classification method. Moreover, most vector-based methods, such

as multivector [14] and RFLP-based (Restriction Fragment Length Polymorphism) [3], adopt

heuristic approaches taking advantages of biological features of the input data. In this manner,

despite their feature extraction capability, some of vector-based methods suffer from informa-

tion loss. For example, k-mer frequency-based methods (e.g. FCGR-based method [15] and
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MLDSP [8]) eliminate spatial information, while multivector based methods ignore informa-

tion of local patterns within the sequences (e.g. multivector [14]). As the last but not the least

drawbacks of the k-mer based methods, these methods, such as MLDSP [8] and FCGR-based

method [15], requires specific assumption on the size of K-mers and their distributions. All

aforementioned issues raised for vector-based methods restrict their applicability. For

instance, k-mer frequency-based methods, such as [15], or multivector methods, such as [14],

cannot address problems involving motif finding, local information discovery within the

sequences, locating transcription factor binding sites, or structural variations discovery, spe-

cially at the presence of high mutation rate within the input sequences. On the other hand,

most aforementioned issues discussed for feature-based methods are raised for model-based

methods as well. For instance, COMET [3], as a model-based classification method for HIV-1

subtypes, utilizes variable-order Markov model for all reference sequences and obtains likeli-

hood of queries’ occurrence within each reference sequence. This method, similar to other

methods in this category, necessitates selection of the best model order, adjustment of the win-

dow size, as well as the threshold value for recombination detection [5]. Although this method

achieves good accuracy in classifying special taxa (HIV-1 subtypes), it is incompatible with

other taxa (such as Influenza A) [3].

All the aforementioned challenges with various categorization approaches necessitate the

development of genome classifier tools that are accurate, quick, and simple to use. In this

regard, employment of Convolutional Neural Network (CNN), as a class of deep neural net-

works, has been proposed to address various concerns about accuracy [16]. Indeed, mostly fed

by visual inputs, CNN is very successful in extracting essential features from the input images

at the presence of noise [6]. During the last decades, the popularity of CNNs has been arising

as a result of increased availability of computational resources, data sets, algorithms for train-

ing, and developed simple libraries for implementation [17]. On the other hand, since CNNs

are generally successful in image processing, bioinformatics scientists came up with the idea of

visualizing biological sequences as images [18–20]. Specifically, sequences visualization meth-

ods can encode various features of the input sequence, produce fixed size output image regard-

less of the input sequence length, and generate distinct signature from each bio sequence [18,

21]. However, these achievements come at the cost of reduced system performance [16]. This

has led to the widespread adoption of vector formats on CNN, such as one-hot encoding,

rather than image formats [5, 22]. However, the aforementioned advantages mentioned for

visualizing biological sequences, as 2D or 3D images, are preserved. On the other hand, it

should be noted that sequences visualization method can be also adopted in computational

methods for encoding input sequences [15, 23].

So far, we have discussed various benefits of adopting CNNs feed by input images for

genome classification, but it should be noted that some serious drawbacks, especially in the

case of large input data, limit their applicability [17]. Performing convolution operations at the

consequent layers causes high run time, power, and storage consumption, and so, have other

side effects, such as environmental impact [24, 25]. Alongside, considering exponential growth

of biological data sets as a result of improved sequencing technology, these issues become

more critical. Although the processing time of training an ML model is not often considered

within the run time of the classifier, its reduction has been targeted by many studied in the

recent decade [5, 6]. To resolve the computational complexity of CNN architecture, in this

paper, we propose to migrate the implementation technology from electrical to optical domain

to considerably improve run time and energy consumption of CNNs. Theoretically, we can

achieve the computation speed of light and save energy up to 90%, and thus, reduce environ-

mental degradation [26]. This solution is possible due to the easy implementation of convolu-

tion with two simple lenses in the field of optics and the use of data as an image [26], and a lot
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of works have been done to implement it in the both form of free space [27–29] and on-chip

[25, 26]. In this way, by converting sequences to standard images format, this solution can be

used, and in addition to the very good extraction of features that CNN provides, the best time

and the best energy consumption can be achieved compared to all other methods of ML.

All aforementioned advantages for sequences visualization motivate researchers to visualize

bio sequences in the form of 2D or 3D images [15, 30–32]. Theoretically, all kinds of K-mer

histogram of sequences [6, 8, 30], one hot representation, representation methods based on

physicochemical properties [33], representation methods based on a combination vector of

several types of information [34], and DNA-walk representation can be adopted to encode bio-

logical sequences as 2D images. Of course, it should be noted that methods like [33] that

emphasize physicochemical properties are often developed for protein sequences, since the

physicochemical properties of amino acids are much more diverse, and therefore, create a rich

set of information. However, it should be mentioned that the corresponding generated images

do not necessarily satisfy the standard image format required for their adoption in CNNs,

which is a 2D arrays of color triplets whose values are in the range of 0 and 255. In addition,

there are some flaws in genomic visualization techniques, as reported in Table 1, for some

well-known visualization methods. As mentioned in this table, in [6], a one-dimensional

matrix containing the K-mer frequencies feeds two types of CNN and DBN networks, similar

to the encoding scheme adopted in [8]. This matrix contains 4K entries of decimal numbers,

each represents the frequency of the corresponding K-mer’s state. Although the proposed K-

mer counting method [6] can create a vector in particular and limited dimensions, its classifi-

cation accuracy is significantly affected by the length of the substrings, or the value of k. As a

result, reducing vector dimensions is limited to guarantee adequate precision. As another chal-

lenging issue for this encoding, it should be mentioned that for the small values of k, as usual

for most biological tools, the vector’s entries are extremely diverse. Therefore, information loss

occurs as the result of mapping the vector’s entries to the limited range of [0, 255] assumed for

common image formats. Finally, since this encoding scheme loses the spatial information of

the sequences, it cannot be adopted in a variety of applications, such as motif finding.

To overcome the aforementioned issues, various methods were proposed, such as Spa-

tial_K-mer [30], to encode locations as well as frequencies of the K-mers. For this purpose, the

sequences are first split into chunks of constant length, and then, the K-mer frequencies for

each substring are determined to preserve the local information of the string. However,

extracting K-mer frequencies for each substring increases the vector size, compared to the tra-

ditional K-mer counting method, while the vector’s length is not fixed and is determined by

the input sequence length. Furthermore, similar to usual K-mer frequency encoding methods,

the vector’s entries vary in a wide range, which is not the case for the common image formats.

To preserve spatial information of the sequence, DNA-walk [32–34] has been proposed,

which produces an image containing an observable and recognizable pattern. In general, in

this method, each nucleotide is represented as a two-dimensional vector, although it can be

Table 1. Comparison of well-known sequence encoding methods; S.I (Standard Image format).

Encoding methods Size Local inf. S.I. compatibility More

K-mer (FCGR) [6, 8] 4k No No–Values> 255 The best size of k is not clear—Does not store local information

Spatial_K-mer (FCGR) [30] (L×4k)/CS Yes No–Values> 255 –Image Dim The best size of k and chunk size (CS) is not clear

DNA-Walkxy-plane [31, 32, 35] �L2/4 Yes No–Image Dim. data lost (because path overlap)

DNA-Walkquadrants [31, 36] � L2/4 Yes No–Image Dim. Pix locate -

One-hot [22, 31] 4L Yes No–Image Dim. encoding without any processed information

Integer [5, 31] L Yes No–Image Dim. encoding without any processed information

https://doi.org/10.1371/journal.pone.0267106.t001
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extended to three-dimensional versions or higher. To encode the sequences, each letter of the

sequence is substituted by the relevant vector, and so, consequent vectors form a path for the

whole sequence. Although DNA-walk produces meaningful image which can be even recog-

nized by humans, it suffers from various drawbacks, as follows: a) the image size increases by

the length of the sequence, b) data loss occurs as the result of subsequent vectors overlap,

depending on the directions of the corresponding nucleotides’ vectors. Specifically, overlap

scenarios happen when subsequent vectors are perpendicular to each other, as happens for the

method presented in [32], although there would be no data loss if the vectors do not return, as

proposed in [34]. On the other hand, by quantizing vectors’ length in the images, the DNA--

Walk presented in is unable to distinguish various vectors with angle difference less than 45

degrees.

Finally, considering sequence classification applications, several numerical encoding

approaches, such as substituting various nucleotides with integer values [5] or One Hot encod-

ing [22], have been proposed. However, since the size of the resultant encoded data depends

on the sequence lengths, these methods cannot produce proper images for an optical CNN

architecture. As reported in Table 1, the column "Size" in this table indicates the vector size for

each method depending on string length or K value (for k-mer based methods). The "Local

inf." column also shows whether the method keeps local data. The "S.I compatibility" column

shows whether the encoding method is compatible with the Standard Image (S.I) format (3D

matrix for RGB channel with finite integers in the range of 0 to 255).

To resolve most concerns mentioned in Table 1, this paper presents a novel image genera-

tion method to preserve key aspects of biological sequences. Designing an encoding approach

based on DNA-walk, we can restrict output image sizes despite rising input sequence lengths

and, most crucially, eliminate usage of prior knowledge or pre-processing of input sequences.

Our goal, based on what has been discussed, is to develop an encoding method that includes

all of the following features:

• Developing an image-based encoding strategy that takes advantage of CNNs’ perfect image-

processing abilities.

• Images are generated in typical image formats

• Images include the sequence’s general and local information

• Image size that grows slowly in proportion to the sequence length.

More features are discussed in the following sections. The next step is to employ our new

images in a very basic CNN with the goal of accurately classifying many different types of data

sets in a generalized manner without any special settings for each data set. In reality, additional

accuracy can be attained by fine-tuning CNN for each data set. In this study, we focus on

DNA, but it can be generalized to RNA and Protein too.

Materials and methods

Designing deep learning methods involves two parts: a) input data pattern and its encoding,

and b) neural network design, while optimized co-design of input coding method and neural

network affects output accuracy. Although most studies focused on optimized network design

to achieve high accuracy, it comes at the cost of increased network complexity, as well as high

runtimes of learning and evaluation processes [6, 8]. As discussed in this paper, the type of

input data and its encoding approach can help us alleviate these problems. However, it should

be emphasized that the encoding method should not be overly complicated, which in turn

increases pre-processing time. So in this paper, a novel encoder-classifier method, named as

PLOS ONE WalkIm: Compact encoding for high-performance classification of biological sequences using tuning-free CNNs

PLOS ONE | https://doi.org/10.1371/journal.pone.0267106 April 15, 2022 5 / 26

https://doi.org/10.1371/journal.pone.0267106


WalkIm (DNA-walk based Image), is introduced to resolve the aforementioned issues. As

shown in Fig 1, WalkIm consists of an encoding unit to perform input data processing, and a

CNN unit to accomplish data classification. As follows, we explore input data encoding and

CNN design of WalkIm in more details.

Input data

Since we do not customize WalkIm for a specific data type, to evaluate its accuracy, we prepare

two assessments by addressing three frequently referred usages of sequence classification

methods in various levels of evolution: a) viral classification [5], b) bacterial classification

based on metagenomics data [6], and c) metabarcoding classification [37]. The viral classifica-

tion itself includes five tests to classify various types of Dengue, Hepatitis B, Hepatitis C, HIV-

1, Influenza A, and corona. Except corona, the corresponding data sets are collected as

described in [5]. The corona data set is collected separately, with access details listed in the sec-

tion “Data” of S1 File. It should be noted that the conditions for downloading data sets are

given in [5], and as a result, the number of files available for each data set may vary based on

the download time. Therefore, our data sets have different numbers of samples, compared to

those of [5]. Specifically for the HIV (1) data set, with 37 categories mentioned in [5], we have

imported 36 categories, while there was no sample for one of the categories mentioned in [5].

Bacteria taxonomy consists of four tests to classify the same samples generated using Amplicon

(AMP), the next generation sequencing technology, into four levels of evolution (i.e. class,

order, family, and genus), while these samples are accessible from [6]. The last data set is a bar-

coding data set consisting of cytochrome c oxidase subunit I (COI) DNA barcode sequences to

taxonomic kingdoms [37]. Specifications of these data sets are summarized in Table 2, while

all access information for these data sets are provided in section "Data" of S1 File.

WalkIm encoder unit

As the encoding unit of WalkIm, we modify DNA-walk encoding method to eliminate special

process, as well as pre-knowledge requirements of input data and its distribution. This feature

enables WalkIm to target any type of input sequences, either biological or non-biological text-

based data. Moreover, outputs of the WalkIm encoding unit represent signature of the input

sequences, which are distinguishable for varying human beings. In this manner, taking advan-

tages of input signature, it avoids complex CNN structure to perform classification. This prop-

erty is illustrated in Fig 2, which represent several sample images from several corona

categories.

As the key advantages of DNA-walk representation, we can mention that it preserves loca-

tional information, and depicts nucleotides distribution within various fragments of the

Fig 1. Schematic of WalkIm method; WalkIm consists of two units; encoder unit and CNN-based classifier unit.

https://doi.org/10.1371/journal.pone.0267106.g001
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sequence, as well as the whole sequence. However, it offers various variations as follows; the

earlier model of DNA-walk uses four main directions (i.e. west, east, north, and south) for rep-

resenting each nucleotide, and hence a DNA (or RNA) sequence is plotted by consequent unit

vectors in these directions [32, 35, 38]. As its main drawback, overlapping and crossing of the

curves, representing DNA segments, cause information loss. As a modified version of the

DNA-walk representation, [36] proposes adoption of four vectors with direction angles in the

range of 0 to 90 degree to avoid path return. Despite this improvement, all variations of DNA-

walk encoding methods lead to output images whose size depends on the length and distribu-

tion of the nucleotides. Nonetheless, almost all variations of DNA-walk encoding methods

achieve good accuracy in comparing and classifying biological sequences [32, 39].

As discussed, various versions of DNA-walk encoding method are designed to address its

main drawbacks, such as information loss. However, even its recent versions still face some

challenging issues. Specifically, Fig 3 shows the growing trend of DNA-walk encoding methods

and their main challenges. For example, various studies set target to avoid probable overlaps of

DNA pathways, as the main drawback of DNA-walk representation, by preventing loop for-

mation through the pathway [40, 41]. But this improvement comes at the cost of increased

image size. On the other hand, various studies deal with DNA-walk encoding as a variable-size

visual representation, since its output image’s size depends on the input sequence pattern. To

address these challenges, and many other ones, WalkIm encoding method is proposed to gen-

erate fixed-size output images, with fixed range of pixel values, which can be fed to any image-

based CNN classifier. Finally, although many studies target accuracy improvement of DNA-

walk encoding, a few of them [32, 39] discuss variety of its applications.

WalkIm’s encoding unit is designed to generate standard output image format (i.e. discrete

space, fixed size image with pixel values in the range of 0 to 255). It should be noted that it has

two versions; 3 layers for RGB color channels and 1 layer for Grayscale format. Every pixel of

the image, except for those on the sides, has 8 neighbor pixels alongside its sides and corners,

as shown in Fig 3, and so has 8 directions to move forward. As follows, various steps of Walk-

Im’s encoding unit are presented:

1. Consider a square of size M×M.

Table 2. Summarized information of utilized data sets; � one class of this data set has over 300 thousand samples, and we take a random subsample of it with 2000

samples to balance the data set, as described in [37].

Data sets #Classes #Samples Min. sequences’ length Max. sequences’ length

Viral Dengue 4 5446 10161 11195

Hepatitis B (1) 8 6560 3182 3257

Hepatitis B (2) 13 7443 3182 3257

Hepatitis C 9 2017 24751 24751

HIV-1 (1) 12 7669 19685 24307

HIV-1 (2) 36 11391 19685 24307

Influenza A (1) 56 121454 173 2867

Influenza A (2) 113 123050 173 2867

Corona 7 874 15572 30818

Metagenomics� 3 28000 210 257

20

39

100

Metabarcoding (COI DNA barcode) 5 9406 93 2070

https://doi.org/10.1371/journal.pone.0267106.t002
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2. Select the central pixel with coordinates O = (M/2 and M/2) as the starting point to facilitate

initial move in any direction.

3. Assign each square corner to one of the four possible nucleotides (i.e. A, C, G, and T).

4. Pars the input DNA sequence (from 3’-end to 5’-end). By reading each nucleotide, move

toward the corresponding direction by one pixel, and increase the pixel value by a constant

Fig 2. Recognizable similarities of several images generated by DNA-Walk for four sample genomes of the four groups of coronavirus.

https://doi.org/10.1371/journal.pone.0267106.g002
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value. This step is done for a grayscale format in a single-layer 2D matrix. While for a three-

layer format, three of the four letters are assigned to each of three layers of RGB image, and

the fourth letter is assigned to two of three layers.

5. If next move hits the image sides, return to point O and go to step 4. O.W., continue to step 6.

6. End of encoding.

For more clarity, the above procedure is schematically depicted in Fig 4. It is worth noting

that the constant value, added to the matrix cells in each step, can vary. For high image resolu-

tion and contrasts, it is recommended to set this value to more than 10 (instead of one). In this

case study, this value is set to 255. Although the produced values in the matrix may exceed 255,

the maximum pixel value, Python automatically converts these values to the range of 0 to 255

when saving the image content, and hence, it preserves the information during the encoding

procedure.

Main points of the proposed encoding method are described as follows:

1. Considering non-binary pixel values, overlaps of the pathway can be mostly traced, and

hence, information loss is avoided, unlike previous versions of DNA-walk [32, 35]. This

property is illustrated in Fig 5A.

2. In the case that each pair of complement nucleotides (i.e. (C and G), (A and T)) is assigned

to two corners on the same diameter, the encoded sequences, either from 3’-end to 5’-end

or from 5’end to 3’-end, would be in similar shapes, as well as symmetric with respect to the

central pixel of the square, as shown in Fig 5B. This also happens for the reverse comple-

ment sequence, as shown in Fig 5C.

3. Overall distribution of nucleotides throughout the input sequence and their statistical fea-

tures can be visually analyzed by studying the pathway directions, as shown in Fig 5D. For

example in this sample figure, the instance shape is placed on top half of the image which

means the numbers of A and C are more than those of G and T, Moreover, there is an equal

number of pixels in the left and right halves and a reciprocating path is created between the

two halves, which means that both halves of the sequence have almost the same numbers of

A and G, compared to those of C and T.

4. Encoding an input sequence within a square with specific size can be performed in two ways;

a) the proposed encoding method generates coded image within a square with desired size, or

b) it produces a larger image, and afterward, downscales it to an image with the desired size. In

Fig 3. Some challenges of applying DNA-walk method; a) untraceable path due to various overlaps of DNA pathways,

which results in data loss, b) infinite space required for curve generation, which makes it impossible to store the

generated image within a confined space.

https://doi.org/10.1371/journal.pone.0267106.g003
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the latter case, while reducing the number of times the pathway hits the sides of the square, the

overall shape of the pathway is preserved, as shown in Fig 5E. In this manner, we can increase

classification accuracy with providing more directions for various moves.

WalkIm classifier unit

Due to the nature of genomics data, it is not possible to adopt popular and powerful convolu-

tional networks (e.g., LeNet [42], AlexNet [43], GoogLeNet [44], ResNet [45], or VGG [46])

Fig 4. a) Flowchart of WalkIm encoder unit, b) Sample run of WalkIm encoder. This image is set to grayscale format without loss of comprehensiveness, and it

is similar to its format. In addition, the constant value at each step is considered as one.

https://doi.org/10.1371/journal.pone.0267106.g004
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straightforwardly [5]. This complexity arises from the different data dimensionality of

genomes, compared to traditional image formats. Specifically, one-dimensional genomes can-

not be easily feed to convolutional networks operating on two-dimensional images. On the

other hand, although various studies propose restructured CNNs [5, 6, 17] to be compatible

with genomic data, they reduce data processing capability of these networks.

In this manner, we propose a novel encoding method to facilitate adoption of powerful con-

volutional architectures for genomics data processing. Specifically, we encode each sequence

as an image and feed it to a CNN. Moreover, instead of using complex convolutional architec-

tures, we adopt a simple and shallow convolutional neural network, named as WalkIm classi-

fier unit, for four reasons:

• Powerful encoding method: To emphasize the capability of WalkIm encoding method, and

its impact on the classification accuracy, we take advantages of a few convolutional layers,

unlike popular DNNs.

• Facilitating optical implementation: Taking advantages of optical implementation of convo-

lutional layers [26, 27], the proposed neural network can be easily implemented in the optical

domain. Specifically, Well-known 4f optical correlator is a common architecture for per-

forming convolution operation in free space optics [27, 47]. This system is based on the

notable Fourier transforming properties of converging lenses. Specifically, the structure of a

4f correlator system consists of an input plane, first lens, Fourier plane, second lens, and

Fig 5. Some key features of WalkIm encoder; a) usually, input sequences can be rebuilt (i.e. decoded) from the encoded image

and the generated shape is traceable, b) the shape generated from the reversed sequence (Sr) is symmetric about the x axis,

compared to its original shape, c) the shape generated from the reverse-complemented sequence (Src) is symmetric about the x

axis, compared to its original shape, d) the generated shape contains some statistical information.

https://doi.org/10.1371/journal.pone.0267106.g005
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output plane [47]. Detailed explanations on this configuration are provided in S1 File section

"Optical CNN setup."

• Facilitating PC-based implementation: Due to the large size encoded images and the massive

data sets, a shallow convolutional neural network is proposed to enable network implemen-

tation on normal desktop computers.

• Eliminating parameter initialization: As a key advantage of WalkIm, it does not require ini-

tialization of network parameters for varying (or new) data sets.

Considering all aforementioned explanations, we provided the WalkIm classifier unit in

two versions, simple and a little deeper, in order to investigate the effect of network depth on

the classifier’s accuracy. It should be noted that almost all recently developed neural network

for sequence classification [5, 6] are customized with specific parameters values for each data

type and species to achieve acceptable classification accuracy. However, as a key advantage of

our proposed encoding method, we do not impose such network settings. In this manner, to

clarify the power of the WalkIm encoder, we just employed the most basic networks to attain

similar accuracy, compared to the alternative tools. Of course, so much better results can be

obtained by configuring a classifier unit for each category. The architectures of two versions of

WalkIm networks proposed for genome classification is presented in Fig 6. These are convolu-

tional classifier models whose input images are produced by WalkIm encoder. It is worth not-

ing that unlike most existing methods, such as VGCD and [48] size of the input images in

WalkIm network does not depend on genome length. Specifically, without loss of generality,

we resize encoded images to 256 by 256. In this manner, our input images have dimensions of

Fig 6. The proposed structures for WalkIm classifier unit;a) simple CNN structure named as CNNsimple, b) deeper CNN structure named as

CNNcomplex.

https://doi.org/10.1371/journal.pone.0267106.g006
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256 × 256 × 3 (for RGB format) and 256 × 256 × 1 (for grayscale format), while these sizes can

be increased or decreased, with no impact on the classification accuracy.

CNN characterization

The proposed CNN architecture produces a vector P of size 1 × N, where N is the total number

of classes (i.e., viral subtypes) for the given problem, and entry Pi 2 P (1� i� N) represents

the probability of a given genome, encoded and fed as the input image to CNN, belonging to

the i-th class.

As depicted in Fig 6, there only exist two parts dedicated to a) the convolutional layers, per-

forming feature extraction, and b) the fully-connected layers, predicting the genome subtype,

based on the features extracted by the convolutional part. The detailed explanations are pro-

vided as follows.

a. Convolutional layers: Input images are fed to three consequent and similar convolutional

blocks (shown as Conv Block1, Conv Block2, and Conv Block3), each has one and two 2D

convolutional layers for simpler network (CNNsimple in Fig 6A) and more complex network

(CNNcomplex in Fig 6B), respectively. Each convolutional layer is followed by a ReLU (Recti-

fied Linear Unit) activation layer to improve training performance [49].

In the proposed CNN architecture, each convolutional layer convolves the corresponding

input image with a set of learnable filters whose coefficients are learned through the net-

work training process. In WalkIm network, filters of size 3 × 3 are assumed, while the num-

ber of filters is increased by a factor of two from each convolutional block to the next.

Specifically, it varies from 8 (for CNNsimple in Fig 6A) and 64 (for CNNcomplex in Fig 6B) for

the first convolutional block to 32 and 256 for the third one.

The rectified linear activation layers (ReLU), following the convolutional layers, introduce

non-linearity to reduce over-fitting. Specifically, ReLU reduces the vanishing gradient prob-

lem, and avoids back propagation errors, while it is much faster, compared to sigmoid acti-

vation function.

As the last layer of convolutional block, 2D pooling layers follow ReLUs and perform max-

pooling operation with the pooling filter of size 2 × 2 and the stride of 2 for both simpler

and complex networks. Although pooling operation reduces the input size, it extracts char-

acteristic genomic features and propagates them to the dense layers. Finally, the output of

the last max-pooling layer is converted into a 1D feature vector to be used by the classifier

part of the network, as follows.

b. Classifier layers: As the classifier part of the network, WalkIm takes advantages of two

dense layers with the decreasing number of neurons, from 128 neurons in the first dense

layer to N neurons in the second one, where N is the number of subtypes within each data

set. The first dense layer, followed by a ReLU layer and a dropout layer, feeds the last layer

implementing softmax activation function. Finally, WalkIm produces probabilities of a

given genome sequence belonging to each class. It is crystal clear that the genome is classi-

fied as the subtype with the highest probability value.

Training parameters

To evaluate classification accuracy and runtime of WalkIm network for various data sets, five-

fold cross-validation for viral [5] and metabarcoding [37] data sets, and ten-fold cross-valida-

tion for metagenomics [6] data sets are performed. In each experiment, the network is trained

for a maximum of 30 epochs, unless the early stopping condition is fulfilled, when the training
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is stopped after several successive epochs with no training improvement. According to our

simulation studies, usually, the training converges at about 15 epochs. Adam optimizer [50]

with the learning rate of 0.001 is adopted to minimize the categorical cross-entropy loss func-

tion, and the mean squared error is utilized to measure performance of the model. The batch

size is assumed to be 64, except for the large number of training samples, where we assume the

batch size of 256. Finally, it should be noted that the aforementioned values of hyper parame-

ters are determined in a trial-and-error manner balancing training time versus training

performance.

It is worth noting that as a key advantage of WalkIm classifier, values of CNN parameters,

e.g. filter size w, do not depend on the length of input genomes and can be constant for all data

sets. The size of CNN input vector (i.e. n) is equal to the product of image’s dimensions.

While, the size of output vector (i.e. N), generated by the CNN, is equal to the number of virus

subtypes to be predicted.

System specification

The proposed CNN is implemented in Python 3.6, with the Keras library running on top of

TensorFlow. The experiments are performed on a normal desktop computer (i7-6500 2.5 GHz

CPU, 8 GB RAM) with GeForce GTX 920M GPU equipped with 2 GB of DDR3 RAM.

Results and discussion

Metrics for comparison

Performance of a classifier is generally measured by popular metrics combining four basic

metrics, i.e. TP (True Positive), TN (True Negative), FP (False Positive), and FN (False Nega-

tive). TP is the number of cases correctly identified as members of a class. FP is the number of

cases incorrectly identified as members of a class. TN is the number of cases correctly identi-

fied as non-members of a class. And finally, FN is the number of cases incorrectly identified as

non-members of a class. We also use five reputable metrics, based on four basic ones [5]. Spe-

cifically, these five reputable metrics, i.e. sensitivity (Se), specificity (Sp), precision (PREC),

accuracy (ACC), and F1-score (F1) are defined by Eqs 2 to 5 respectively.

Se ¼
TP

TPþ FN
Eq 1

Sp ¼
TN

TN þ FP
Eq 2

PREC ¼
TP

TPþ FP
Eq 3

ACC ¼
TPþ TN

TP þ TN þ FP þ FN
Eq 4

F1 ¼
2TP

2TPþ FPþ FN
Eq 5

For a more detailed description, we should note that Se indicates the percentage of a class

members correctly identified as members of that class. Sp shows the percentage of a class non-

members correctly identified as non-members. PREC indicates the percentage of items identi-

fied for a class and actually belong to it. ACC indicates the percentage of correct diagnoses
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have been made in total (whether the class members or non-members are correctly identified),

and finally, F1-score is the harmonic mean of precision and sensitivity values, and it is advis-

able when a balance between precision and sensitivity is required and many actual negatives

exist. In addition to these metrics, as follows, we also present confusion matrices obtained

from each test to analyze WalkIm performance and features of data sets in Section “Confusion

matrices” of S1 File.

As a comprehensive simulation study, WalkIm method is investigated and analyzed from

several aspects. Specifically, we have created some comparative simulation scenarios as

follows:

1. First, we use CNNsimple to compare the grayscale and RGB modes of the created images

in terms of classification accuracy. Afterwards, considering the more accurate image mode

from the previous analysis, CNNcomplex is employed to investigate accuracy of WalkIm encod-

ing method for various data sets in more details. In this manner, the impact of image type and

network depth on classification performance can be deeply analyzed. As the key advantage of

the proposed encoding method, these CNNs are adopted, with no specific initial settings, to

analyze performance of WalkIm encoding. They are fed by data sets of three types of biological

data, i.e. virus classification data [5], metagenomics data [6], and metabarcoding data [37],

with variations in the number of samples, categories, and string lengths.

2. We estimate the training runtime of the optical CNN architecture, adopting WalkIm

method, for each data set and compare it to the values published in the reference papers.

Performance comparison

As discussed above, we adopt three types of data from three most relative papers [5, 6, 37] to

analyze encoding capability of WalkIm feeding the neural networks and for a fair comparison,

similar comparison scenarios are adopted. We first evaluate both grayscale and RGB formats

with CNNsimple, as indicated in the previous section, while the comparison metrics are shown

in Tables 3 to 5. At the next step, depending on which image format works with the simpleset

network (i.e. CNNsimple), we analyze it in more details with a deeper network (CNNcomplex).

These results are also given in Tables 3 to 5 for each data set, while the corresponding discus-

sion are presented as follows. Moreover, confusion matrices are reported in the appendix’s

"Confusion matrices" section.

Viruses

In Table 3, we compare the WalkIm results for viral data sets with three tolls: a) COMET (as a

Markov-based approach customized for HIV and Hepatitis C viruses) [51], b) CASTOR (as a

RFLP-based web tool) [3], and c) VGDC tools (as a viral genome data collection tools based

on sequence ASCII encoding and CNN) [5]. Of course, as mentioned in the previous section,

the results of corona data set are reported separately.

According to Table 3, the fact that increasing the number of categories reduces the classifi-

cation accuracy can be deduced in all approaches. It may appear that all formats of WalkIm

are less accurate than other approaches, albeit by a modest margin. However, the point is that

the CNNs, used in WalkIm, are not customized for any data set, whereas in other approaches

they are finely tuned. So, although the difference is not significant, WalkIm classifier would

achieve better results if it is customized as well. Especially, for datasets like the influenza A,

accuracy improvement is readily achievable by neural network customization. The influenza A

genome is made up of eight single strands, as found in each class of the datasets utilized in this

study. As a result, any imbalance of each item in these classes, as well as the range of their

encoded shapes, makes classification difficult, considering that these sequences, compared to
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Table 3. Classification performance measures achieved by various virus classifiers.

Data set Method Se Sp PREC ACC F1

Dengue WalkImgrayscale-simple 1.000 1.000 1.000 1.000 1.000

WalkImRGB-simple 0.999 1 0.999 1 0.999

WalkImRGB-deep 0.998 0.999 0.998 0.999 0.998

VGDC 1.000 1.000 1.000 1.000 1.000

CASTOR 1.000 1.000 1.000 1.000 1.000

Hep. B (1) WalkImgrayscale-simple 0.996 0.999 0.996 0.999 0.996

WalkImRGB-simple 0.996 0.999 0.996 0.998 0.996

WalkImRGB-deep 0.995 0.998 0.995 0.998 0.995

VGDC 0.999 1.000 0.999 0.999 0.999

CASTOR 1.000 1.000 1.000 1.000 1.000

Hep. B (2) WalkImgrayscale-simple 0.933 0.983 0.926 0.982 0.925

WalkImRGB-simple 0.933 0.983 0.926 0.982 0.925

WalkImRGB-deep 0.929 0.986 0.927 0.981 0.927

VGDC 0.954 0.988 0.953 0.987 0.952

CASTOR 0.949 0.985 0.945 0.986 0.945

Hep. C WalkImgrayscale-simple 0.970 0.987 0.967 0.990 0.968

WalkImRGB-simple 0.972 0.988 0.969 0.991 0.97

WalkImRGB-deep 0.969 0.988 0.970 0.981 0.969

VGDC 0.996 0.999 0.996 0.999 0.996

CASTOR 0.996 1.000 0.996 0.999 0.996

COMET 0.958 0.984 0.962 0.984 0.957

HIV-1 (1) WalkImgrayscale-simple 0.941 0.965 0.933 0.98 0.935

WalkImRGB-simple 0.920 0.938 0.903 0.967 0.905

WalkImRGB-deep 0.925 0.985 0.946 0.974 0.934

VGDC 0.979 0.993 0.978 0.995 0.978

CASTOR 0.942 0.985 0.940 0.984 0.940

COMET 0.904 0.964 0.862 0.975 0.870

HIV-2 (2) WalkImgrayscale-simple 0.908 0.995 0.921 0.986 0.91

WalkImRGB-simple 0.904 0.962 0.904 0.975 0.892

WalkImRGB-deep 0.911 0.976 0.899 0.982 0.902

VGDC 0960 0.993 0.956 0.995 0.955

CASTOR 0.912 0.985 0.907 0.985 0.909

COMET 0.864 0.970 0.783 0.976 0.816

Infl. A (1) WalkImgrayscale-simple 0.777 0.969 0.771 0.961 0.768

WalkImRGB-simple 0.756 0.963 0.759 0.955 0.740

WalkImRGB-deep 0.79 0.974 0.787 0.965 0.785

VGDC 0.847 0.981 0.845 0.977 0.843

CASTOR 0.811 0.981 0.817 0.977 0.811

Infl. A (2) WalkImgrayscale-simple 0.773 0.971 0.792 0.970 0.768

WalkImRGB-simple 0.742 0.96 0.7738 0.953 0.72

WalkImRGB-deep 0.78 0.974 0.781 0.972 0.778

VGDC 0.849 0.985 0.848 0.979 0.847

CASTOR 0.803 0.981 0.802 0.977 0.802

Corona WalkImgrayscale-simple 0.998 0.999 0.998 0.999 0.998

WalkImRGB-simple 0.995 0.999 0.995 0.999 0.995

WalkImRGB-deep 0.984 0.998 0.985 0.996 0.984

https://doi.org/10.1371/journal.pone.0267106.t003
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other datasets’ sequences, are shorter and have a higher mutation rate. As a result, compared

to alternative datasets, the influenza A genomes are more difficult to categorize, and hence,

establishing certain hyperparameters for the network, as addressed in many related studies [5,

6], can facilitates the classification task. Moreover, it should be noted that considering CNNsim-

ple performance, it achieves higher accuracy with the grayscale input format, compared to the

RGB format. On the other hand, while RGB format scored better (on average) across all data

sets (i.e. viruses [5], metabarcoding [37], and metagenomics [6]), we adopt it for evaluating

virus database with CNNcomplex. The results show that the RGB format, fed to the CNNcomplex,

leads to higher accuracies compared to the other two test modes (RGB and grayscale images

fed to the CNNsimple). Finally, it should be emphasized that the differences in classification

accuracies of adopting WalkIm to different networks are so small that can be compensated

with minor adjustments, such as increasing the sample size of each class or the test data. As a

result of the lesser amount of required data, it can be claimed that grayscale produces an

acceptable output. WalkIm images, on the other hand, provide key advantages over other

approaches, particularly VGDC [5] as a CNN-based counterpart, as follows:

Table 5. Classification performance measures achieved by various metagenomics classifiers for four evolutionary levels (i.e. class, order, family, and genus). Char-

acter “-”means that the corresponding measure is not reported by the reference article.

Se Sp PREC ACC F1

AMP Class WalkImgrayscale-simple 97.43 97.90 97.43 97.72 97.43

WalkImRGB-simple 98.55 98.85 98.55 98.74 98.55

WalkImRGB-deep 99.33 99.33 99.33 99.33 99.33

DLM-CNN - - - 99.41 -

Order WalkImgrayscale-simple 87.42 98.52 87.24 97.72 87.12

WalkImRGB-simple 90.34 98.87 90.19 98.28 90.07

WalkImRGB-deep 94.35 99.40 94.33 99.03 94.31

DLM-CNN - - - 98.83 -

Family WalkImgrayscale-simple 76.99 99.12 76.84 98.44 76.67

WalkImRGB-simple 82.09 99.35 81.93 98.82 81.90

WalkImRGB-deep 88.30 99.58 88.38 99.24 88.32

DLM-CNN - - - 97.38 -

Genus WalkImgrayscale-simple 71.58 98.51 71.70 98.22 71.41

WalkImRGB-simple 67.29 98.44 67.35 98.11 67.12

WalkImRGB-deep 89.03 98.65 89.17 98.55 89.05

DLM-CNN 91.32 - 91.57 91.33 91.18

https://doi.org/10.1371/journal.pone.0267106.t005

Table 4. Accuracies of various classification algorithms fed by metabarcoding data set (all methods, except WalkIm, have used 4-mer encoding). Since [37] only

reports accuracy of five classification methods and the confusion matrix of DNN, we computed performance metrics of DNN by means of its confusion matrix. Character

“-”means that the corresponding measure is not reported by the reference article.

Se Sp PREC ACC F1

WalkImgrayscale-simple 0.945 0.987 0.945 0.978 0.945

WalkImRGB-simple 0.966 0.992 0.966 0.987 0.966

WalkImRGB-deep 0.945 0.987 0.945 0.978 0.945

DNN 0.975 0.989 0.978 0.976 0.976

SVM - - - 0.974 -

K Nearest Neighbors - - - 0.927 -

Random Forest - - - 0.861 -

XGBoost - - - 0.972 -

https://doi.org/10.1371/journal.pone.0267106.t004
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1. Increased scalability: The length of input sequences has no linear effect on the size of input

image. However, since [5] employs integer numbers to encode each nucleotide of the input

sequence, increasing the length of input sequence directly affects the network input

dimensions.

2. Decreased runtime: For the network fed by WalkIm images, very high convergence is

achieved after six or seven epochs, whereas usually 1000 epochs are required for VGDC [5]

(of course in some cases results are achieved in 200 epochs). In this regard, runtime can be

considerably reduced. To clarify this outperformance, the corresponding diagrams for

accuracy convergence, in terms of number of epochs, for training and validation sets of

Dengue data set) as an example of viral data sets) is shown in Fig 7A.

3. Decreased input data volume: With the ability to scale WalkIm images, the amount of CNN

input data can be reduced. For example, a sequence of 11,000 characters can be encoded in

a 32 by 32 matrix with 1024 entries. Of course, this advantage is more evident in data sets

with long sequences.

Fig 7. Accuracy and loss convergence diagrams for training and evaluation sets for various epochs; a) Dengue data set, b)

metabarcoding data set, and c) AMP class data set.

https://doi.org/10.1371/journal.pone.0267106.g007
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Metabarcoding

For evaluating capability of WalkIm to encode and classify metabarcoding data set, we com-

pare it against [37] which encodes input data using a K-mer based method, and reports the

best ones (4-mers) as the basis for choosing proper classification algorithm. Afterwards, [37]

evaluates five classification algorithms (i.e. DNN, SVM, K Nearest Neighbors, Random Forest,

and XGBoost), and declares DNN to be the best one. Although not frequent, in [37], a small

and unbalanced subset of data is chosen from outside the main data set as the test data; yet,

their simulation results are given in Table 4 alongside our method’s results.

As shown in Table 4, although no customization is performed for WalkIm network to clas-

sify metabarcoding data, it can obtain higher accuracy, compared to DNN, while other metrics

are also extremely close. Since RGB format has better results in most data sets, we have evalu-

ated this format utilizing CNNcomplex. For this purpose, we employed CNNcomplex on this data,

which surprisingly leads to a similar accuracy, compare to CNNsimple fed by grayscale format.

Thus, for this type of data set, CNNsimple with RGB encoding can achieve a good result and no

more complex CNN is needed. Finally, we would like to emphasize that our network performs

brilliantly in terms of convergence speed during training phase (as shown in Fig 7B), but due

to the lack of similar result for DNN, we cannot report the comparison results in this issue.

Metagenomics

For examining Metagenomics data sets, 16S short-read data are obtained using next-genera-

tion sequencing technology amplicon (AMP) which only considers some specified 16S hyper

variable regions. The AMP data set is quite targeted, in the sense that it comprises the majority

of the information content. As this data set are created by [6], we compare our simulation

results against those reported in [6], as shown in Table 5.

[6], like other K-mer based methods, examines different k-mer sizes (i.e. 3 to 7) as well as

three classification algorithms (i.e. CNN, DBN and RDP), and so, its best achieved result (i.e.

7-mer with CNN) is chosen for our comparative study. We would like to mention that since

[6] focuses on the evolutionary level of the genus, all performance metrics are reported for this

level (while for other levels, some metrics are missing). In this regard, we can compare it with

our method at the genus level in more details and we cannot accurately compare WakIn to

DLM-CNN. Of course, genus level classification is especially important due to its challenging

issues of high number of classes and significant similarities among various samples of classes.

As shown in Table 5, the categorization becomes increasingly difficult for both approaches

as the number of categories increases. However, by increasing the number of categories, all

versions of WalkIm achieves a superior result over DLM-CNN method without requiring any

particular customization for this data set. Since RGB format has better results in most data

sets, we have included this format in CNNcomplex. For this purpose, we used CNNcomplex to

evaluate RGB encoding without any additional adjustments, and the results were as expected:

a significant improvement in all metrics. By providing more information than grayscale

encoding and deepening the network for metagenomic data sets, RGB format of WalkIm

encoding is projected to produce significantly better outcomes, compared to its counterparts

[5, 6, 37]. WalkIm not only improves accuracy and performance, but it also minimizes the size

of the input data and speeds up the training process.

It should be noted that there is no report of DLM-CNN with which we can compare the

convergence speed of training and validation processes for metagenomics data sets. However,

for runtime comparison, we obtained the convergence diagram of this data set considering

WalkIm method for sequence encoding, as shown in Fig 7C. These results indicate that the

convergence speed is considerably improved, similar to the results achieved for viruses and
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metabarcoding data sets in Fig 7A and 7B, respectively. The convergence diagrams versus the

number of epochs are shown in Fig 7C as an example for these data sets for the AMP class.

Computation time comparison

As discussed before, optical technologies can considerably speed up CNN architectures. For

detailed runtime analysis of optical CNN, we formulate the computational latency and mathe-

matically estimate the runtime of optical CNN utilized for implementation of WalkIm. As

shown in S1 Fig in S1 File, considering the conventional optical setup implementing CNN,

optical beams pass through each layer of CNN, and hence, each layer adds a certain amount of

latency to their path [27]. As a result, total latency (i.e. the time it takes for data to enter and

exit a CNN structure) can be calculated by the number of layers within the CNN, and the prop-

agation latency of each layer. In this manner, Eq 6 and Eq 7 formulate the latency of WalkIm’s

CNN architecture.

LatencysimpleCNN ¼ Tinput þ 3Tconv þ 3TReLU þ 3TMP þ Tcamera þ TtransferData Eq 6

LatencydeepCNN ¼ Tinput þ 6Tconv þ 6TReLU þ 3TMP þ Tcamera þ TtransferData Eq 7

Where, Tinput is the time it takes to feed the input image to the network, Tconv, TReLU, and TMP

represent propagation latencies through each optical convolution layer, optical ReLU layer,

and optical max pooling layer, respectively, Tcamera is the time it takes to capture network’s

output image by the CCD camera, as the end point of the optical setup, and finally TtransferData

represent transfer delay of the cable interconnecting CCD camera to the computer system. As

obvious, various coefficients in Eq 6 and Eq 7 represent number of corresponding optical lay-

ers within the optical setup. For more detailed description, Section "Speed analysis and estima-

tion of optical WalkIm CNN" in S1 File provides more information on this topic.

Considering conventional values for optical latency parameters, as listed in Table 6, we can

estimate runtime of the proposed optical structure for both CNNs (i.e. CNNsimple and

CNNcomplex) as 0.45 ms, taking into account input to output data propagation through the

WalkIm optical CNNs. The reason for the lack of time difference between the optical struc-

tures of the two CNNs is the negligible propagation delays of the extra optical layers included

in CNNcomplex architecture, compared to CNNsimple architecture. In this manner, multiplying

the number of input samples in each training set by the calculated "latency" is all that is

required to compute the training time. Since 80% (for five-fold assessments) or 90% (for ten-

fold assessments) of each data set is usually considered as the training set, the corresponding

training time of the optical network can be easily calculated for various architectures, as shown

in Table 7.

According to Table 7, runtime of DNNmetabarcoding is not reported in [37], while the authors

only confirm that runtime and memory utilization can be a serious concern during the

Table 6. Latency estimation for different parts of the free-space optical CNN.

Parameters Time (s) Reference

Tinput 0.05 m [27, 52]

Tconv 10 p [27]

TReLU 25 p [27]

TMP 10 p [53]

Tcamera 0.4 m [54]

TtransferData 0.5 μ Our estimation

https://doi.org/10.1371/journal.pone.0267106.t006
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training process. For the same reason, it is not possible to compare WalkIm method in terms

of runtime for metabarcoding data set. On the other hand, since runtime of the training phase

for one fold of metagenomics data set is reported in [6], we also provide runtime of the train-

ing phase for optical and electrical implementations of WalkIm for one fold.

For a fair comparison of VGDC runtime with that of WalkIm, we should note that VGDC

reports the execution time of each epoch [6]. So, we multiply this time by the number of

epochs required for training each data set to achieve the training runtime of a fold. As shown

in Table 7, training runtimes for VGDC are reported within the ranges of minimum and maxi-

mum values, because of the fact that while the maximum number of training epochs for

VGDC is 1000, it has been claimed that some data sets had an early stop at about 200 epochs

[5]. As can be seen in Table 7, for Hepatitis B (1), Hepatitis C, HIV (1), HIV (2), metagen-

omicsfamily and metagenomicsordeer data sets, runtime of electrical implementation of Walk-

Im’s CNNcomplex exceeds the maximum runtime reported for VGDC. However, it should be

noted that when comparing the runtimes of any two methods, the corresponding hardware

specifications should be considered as well. Considering this comparative study, it is worth

noting that VGDC takes advantages of a more powerful hardware implementation, compare

to WalkIm. The detailed hardware specifications for implementing VGDC and WalkIm are

listed in Table 8. Moreover, it should be noted that while VGDC runs on a GPU, the electrical

Table 7. Runtime for training networks in three methods VGDC (viral whole-genome classifier), DLM-CNNmetagenomics (metagenomics classifier), and WalkIm

(general-purpose sequence classifier with two electrical and optical implementation modes). DNNmetabarcoding [37] that classify metabarcoding data did not report the

corresponding runtime. Character “-”means that the corresponding measure is not reported by the reference article.

Data sets Time (s)

WalkIm VGDC DLM-CNNmetagenomics

Electrical Optical

CNNsimple CNNcomplex

Viral Dengue 14 350 13.737 6000 > T > 1200 -

Hepatitis B (1) 80 2560 18.914 2000 > T > 400

Hepatitis B (2) 150 1200 40.234 5000 > T > 1000

Hepatitis C 45 22500 10.900 10000 > T > 2000

HIV-1 (1) 600 24000 41.457 11000 > T > 2200

HIV-1 (2) 700 28000 82.099 11000 > T > 2200

Influenza A (1) 12100 96500 1094.298 151000 > T > 30200

Influenza A (2) 13200 98000 1108.681 153000 > T > 30600

Corona 11 363 3.464 -

Metagenomics Class 215 5500 56.763 - 24204.754

Order 940 22000 227.052

Family 1250 27500 283.815

Genus 1590 33000 340.578

Metabarcoding 180 5100 50.843 - -

https://doi.org/10.1371/journal.pone.0267106.t007

Table 8. Hardware specifications of the systems used for simulating WalkIm, VGDC, and DNNmetagenomics.

WalkIm VGDC DNNmetagenomics

a desktop computer with the following

configuration:

• CPU: i7-6500 2.5 GHz

• RAM: 8 GB and DDR3 2GB

• GPU: GeForce GTX 920M

a desktop computer with the following

configuration:

• CPU: i7-960 3.2 GHz

• RAM: 24 GB and DDR5 12 GB

• GPU: GeForce GTX TITAN X

a cluster composed of 24 nodes with the following

configuration:

• CPU: 1 X Intel(R) Xeon(R) CPU E5-2670 0 2.60GHz

• RAM: 128 GB Memoria DDR3 1600 MHz

• GPU: 48 x GPU NVIDIA KEPLER K20

• HD: 1TB SATA

• OS: Centos 6.3

https://doi.org/10.1371/journal.pone.0267106.t008
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version of WalkIm runs on a CPU, taking into account that generally, GPUs can reduce the

runtime by, at least, 4 to 5 times [55]. In this manner, we can conclude that even the electrical

implementation of WalkIm’s CNNcomplex is substantially faster than VGDC. And of course,

the most crucial point is that, in these data sets, the electrical implementation of CNNcomplex

performed worse, whereas the electrical implementation of CNNsimple, which performed bet-

ter, is still faster even with these hardware limitations. It is crystal clear that the optical imple-

mentation of WalkIm is much faster than all other electrical counterparts, with a speed up by a

factor of 60 to more than 550.

Similar to the comparative study of WalkIm and VGDC for the virus data sets, as follows,

we compare training runtimes of WalkIm and DLM-CNN for the metagenomics data set. As

shown in Table 7, by increasing the number of categories in the family and genus data sets, the

speed of WalkIm reduces compared to DLM-CNN. However, it should be emphasized in [6],

execution runtime of DLM-CNN is reported for a cluster of 24 processing nodes (each

includes single CPU and 48 GPUs), which is tens of times more powerful than the desktop

computer on which WalkIm is executed. Therefore, we can conclude assuming similar hard-

ware specifications, even the electrical implementation of WalkIm considerably outperforms

DLM-CNN.

Finally, when it comes to WalkIm’s execution time, it is important to note that the size of

the input image influences the training speed. Initially, we used to implement this function

with the image size of 256 × 256 pixels. However, we scaled these images down to the smaller

sizes to the extent that accuracy is not reduced. As a result, we can simply reduce the input size

while increasing the training speed and preserving the accuracy. In addition to speed enhance-

ment, we demonstrated that WalkIm encodes information in a way that scaling cannot affect

them. Detailed information on data set scaling can be found in the section "Encoding details"

of S1 File.

Conclusion

WalkIm, our proposed encoding method, focuses on image representation of biological

sequences and their usage in Convolutional Neural Networks (CNN). While it is too efficient

to be implemented even on the simple desktop systems, it is compatible with free-space optical

technology, empowering CNN implementation for big data processing. WalkIm encoding, as

a novel extension of DNA-walk encoding, offers various advantages, such as statistical

interpretability of the nucleotide distribution, as well as similarity of encoded normal,

reversed, and reverse-complemented sequences. Although WalkIm, as a universal method, can

be used to classify any sequences based on their DNA and RNA strings, in this paper, we evalu-

ate it by classifying virus sequences (e.g. Coronaviruses, Dengue, HIV, Hepatitis B and C, and

Influenza A), metagenomics data, and metabarcoding data. In this study, WalkIm was able to

compete with state of the art methods of each field (VGDC [5], COMET [51] and CASTOR

[3] for viruses subtyping, DLM-CNN for metagenomics data [6], and [37] for metabarcoding

data) in terms of accuracy and training speed without imposing any network adjustments for a

specific data set Although tuning-free property of WalkIm facilitates its usage for classifying

various data sets with no initialization phase, by proper adjustment of network parameters for

each data set, WalkIm can significantly outperform other methods as well. Moreover, WalkIm

performance is such that while maintaining accuracy, compared to alternative methods, it can

improve the training speed on desktop systems from 1.5 times to 1500 for various data set. We

have also shown that taking advantages of free space optical technology for WalkIm imple-

mentation, we can improve training speed by more than 400 times, compared to its electrical

implementation. It is worth noting that for complex neural networks and large data sets,
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running WalkIm on a desktop achieves up to 26 times higher speed than alternative methods,

like DLM-CNN. Finally, we compared WalkIm with some of the existing fast and accurate

methods, such as CASTOR for classification of viruses, where WalkIm reached similar accu-

racy for various data sets, while CASTOR completed training of 250,000 samples after a few

days. Despite all these advantages, WalkIm also faces some challenges. Indeed, although we

have evaluated the image’s size and scale for all examined datasets, these parameters must be

investigated for other datasets as well. To be able to employ any type of data with the specified

parameters, it is required to address the relationship between the image dimensions for

WalkIm encoding and the length and type of the sequences in the future works.
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