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Abstract

Background: In recent years, massively parallel complementary DNA sequencing (RNA sequencing [RNA-Seq]) has emerged
as a fast, cost-effective, and robust technology to study entire transcriptomes in various manners. In particular, for
non-model organisms and in the absence of an appropriate reference genome, RNA-Seq is used to reconstruct the
transcriptome de novo. Although the de novo transcriptome assembly of non-model organisms has been on the rise recently
and new tools are frequently developing, there is still a knowledge gap about which assembly software should be used to
build a comprehensive de novo assembly. Results: Here, we present a large-scale comparative study in which 10 de novo
assembly tools are applied to 9 RNA-Seq data sets spanning different kingdoms of life. Overall, we built >200 single
assemblies and evaluated their performance on a combination of 20 biological-based and reference-free metrics. Our study
is accompanied by a comprehensive and extensible Electronic Supplement that summarizes all data sets, assembly
execution instructions, and evaluation results. Trinity, SPAdes, and Trans-ABySS, followed by Bridger and SOAPdenovo-Trans,
generally outperformed the other tools compared. Moreover, we observed species-specific differences in the performance of
each assembler. No tool delivered the best results for all data sets. Conclusions: We recommend a careful choice and
normalization of evaluation metrics to select the best assembling results as a critical step in the reconstruction of a
comprehensive de novo transcriptome assembly.
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Background

In the past decade, the sequencing of entire transcriptomes
(RNA sequencing [RNA-Seq]) has established itself as a power-
ful technique to understand versatile molecular mechanisms
and to address various biological questions [1–6]. In particular
for non-model organisms and in the absence of a suitable ref-
erence genome, RNA-Seq is used to reconstruct and quantify
whole transcriptomes [1,4,5]. Thus, RNA-Seq allows the identifi-
cation of differentially expressed genes, even if there is currently

no reference genome available: the short reads, nowadays most
commonly produced by Illumina systems, can be assembled into
contigs [2,4]. Ideally, each contig corresponds to a certain tran-
script isoform. A key challenge is the management of the result-
ing data set, especially if different tools and parameter settings
are used for the construction of multiple de novo transcriptome
assemblies. Even though a reference genome is available, it is
still recommended to complement a gene expression study by a
de novo transcriptome assembly to identify transcripts that have
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been missed by the genome assembly process or are just not ap-
propriately annotated [2].

At first glance, the transcriptome assembly process seems
similar to genome assembly, but actually, there are fundamen-
tal differences and various challenges. On the one hand, some
transcripts might have a shallow expression level, while others
are highly expressed [2,4,6]. Especially in eukaryotes, potentially
each locus produces several transcripts (isoforms) due to alter-
native splicing events [4]. Short reads derived from 1 exon can
be part of multiple paths in the assembly graph. Therefore, the
graph structure can be ambiguous and the represented isoforms
can be challenging to resolve. Furthermore, some transcript vari-
ants with a low expression level might be considered to be se-
quencing errors by various tools and removed from the assem-
bly process [7]. As with genome assembly, repetitive regions are
also a major problem for the construction of transcripts [8]. The
assembly problem gets even more complicated as the transcrip-
tome varies between different cell types, environmental condi-
tions, and time points. A successful transcriptome assembler
should address all of these issues and be able to recover full-
length transcripts of different levels of expression.

The de novo transcriptome assembly of non-model organisms
has been on the rise recently, and new tools are frequently devel-
oped. Now there is a knowledge gap: which assembly software
and parameter settings should be used to construct a good as-
sembly? In addition, there is no consensus about which metrics
should be used to evaluate the quality of multiple de novo tran-
scriptome assemblies.

In the past decade, several tools have been developed
specifically for de novo transcriptome assembly [9–17]. Some
of them are built on top of already existing genome assem-
bly tools [9,11,18]; others were specially designed for transcrip-
tome assembly [10]. Some tools may fit the needs of eukary-
otic transcripts, where alternative splicing has to be considered
to construct different isoforms, whereas other tools can han-
dle simpler prokaryotic transcripts. More complicating, different
RNA-Seq library preparation protocols result in reads of different
kinds: single-end vs paired-end, strand-specific vs not strand-
specific, different insertion sizes as well as varying read lengths,
and can comprise protein- and/or non-coding transcripts.

Although the evaluation of de novo transcriptome assembly
tools has already been performed in the past [6,19–26], these
studies often rely on limited data sets (e.g., a single species, a
single sequencing protocol) or focus only on a subset of all cur-
rently available assembly tools.

However, all of these studies agree on one point: currently,
there is no optimal assembly tool for all RNA-Seq data sets. Dif-
ferent species, sequencing protocols, and parameter settings ne-
cessitate different approaches and adjustments of the underly-
ing algorithms to obtain the best possible results. Merging the
contigs of different assembly tools and parameter settings to
overcome the different disadvantages of certain assemblers and
to combine their advantages seems to be the best way to obtain
a comprehensive de novo transcriptome assembly [22]. Neverthe-
less, knowing the advantages and disadvantages of each tool is
an essential step in the direction of an automated evaluation
and merging algorithm for multiple de novo transcriptome as-
semblies.

Here, we present a comprehensive evaluation of 10 de novo
assembly tools (long-standing and novel ones) across 9 short-
read RNA-Seq data sets of different species relying on different
Illumina sequencing parameters and protocols. In comparison
with recent studies, we do not only focus on RNA-Seq data of
1 species or kingdom. Instead, we use data sets from bacteria,

fungi, plants, and higher eukaryotes (Fig. 1). We also include data
sets from virus-infected cell lines. Our study shows substan-
tial differences between the assembly results of RNA-Seq data
derived from various species. We tested promising biological-
based and reference-free metrics of several evaluation tools. To
evaluate the performance of each assembler, we summarized
scores that were normalized in the interval between 0 and 1 of
all raw metric values (see Methods). In a next step, such metrics
could be used for an automatized selection of good assemblies
or contigs to build a more comprehensive and improved cluster-
assembly. Our results provide insights into the performance and
usability of the different assemblers and how they perform on
the different data sets. To our knowledge, this is the most com-
plete comparison of short-read de novo transcriptome assembly
tools currently available.

Data Description
Description of RNA-Seq data used for assembly

We included 9 RNA-Seq data sets of 5 different species with
available reference genomes and annotations (Table 1). The data
sets cover different kingdoms of life, comprising representatives
for bacteria (Escherichia coli), fungi (Candida albicans), plant (Ara-
bidopsis thaliana), and higher eukaryotes (Mus musculus, Homo
sapiens). The reference genomes, annotations, and coding se-
quences were obtained from Ensembl (release 87) [27]. For E. coli
strain K-12 substrain MG1655 and A. thaliana reference data was
obtained from the Ensembl bacteria [28] or plant [29] database
(release 34), respectively. Genome and annotation data for C. al-
bicans SC5314 were obtained from the Candida Genome Database
(Ca22) [30].

From a previous study (PRJNA429171) we obtained 3 samples
of an Ebola virus (EBOV)-infected HuH7 cell line with total RNA
extracted 3 h, 7 h, and 23 h after infection [31] (Table 1). For the
evaluation, we concatenated the human genome data with the
EBOV genome of strain Zaire, Mayinga (GenBank: NC 002549).

In addition, we quasi-simulated RNA-Seq data based on a se-
lection of protein- and long non-coding transcripts of human
chromosome 1 (Chr1). We downloaded the human annotation
GTF file and protein-coding sequences (excluding ab initio pre-
dictions) from Ensembl and selected all protein-coding genes
of Chr1 (2,044 genes), comprising 352 genes with 1 isoform,
196 with 2 isoforms, and 1,496 with >2 isoforms. We extended
this set of protein-coding genes by 1,075 non-coding genes from
Chr1. The combined set of protein- and non-coding genes was
used to create a set of transcripts including all known isoforms
with a length >200 nucleotides (nt) and without ambiguous N

bases from which paired-end reads were simulated. Our final
set of transcripts comprised 12,793 protein-coding transcripts
as well as 1,006 long intergenic non-coding RNAs, 839 anti-
sense RNAs, and 7 small nucleolar RNAs of human Chr1. Over-
all 14,645 transcript sequences were used as an input for flux

simulator [32] for RNA-Seq raw read simulation, yielding 60 mil-
lion paired-end 100-nt reads (Table 1). We used flux simulator

as suggested for Illumina data, utilizing the default 76–base pair
error model. With these simulated sequences, we attempted
to mimic a state-of-the-art RNA-Seq data set based on Illu-
mina’s Ribo-Zero protocol for library preparation and ribosomal
RNA depletion, further multiplexed 3 times and sequenced on 1
HiSeq 2500 lane.

Details about all RNA-Seq data sets used can be found in Elec-
tronic Supplement Table S1 [33].

https://www.rna.uni-jena.de/supplements/assembly/index.html#data
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Figure 1: Overview of the RNA-Seq data sets used (orange: eukaryote; light orange: simulated human Chr1; green: plant; pink: fungi; yellow: bacterium) and assembly
tools evaluated. Each data set was quality controlled with FastQC [34] and preprocessed with Prinseq [35] before assembly. Overall, >200 single k-mer assemblies were

calculated. For details about the data sets and assembly tools see Electronic Supplement Tables S1 and S2, respectively. We selected a combination of 20 biological-
based and reference-free metrics from the different evaluation tools to assess the quality of each assembly (Table 4 in Methods). The CPU/RAM consumption and
the usability of each assembler were not included in the calculated metric scores. Details can be found in the Methods. bp: base pairs; EBOV: Ebola virus; MK: the
assembler’s built-in multiple–k-mer approach was applied; pe: paired-end reads; se: single-end reads. SPAdes-rna uses 2 k-mers (2K) per default.

Table 1: The 9 RNA-Seq data sets used for assembly

No. Species ID Kingdom Study Run Protocol Reads Source

No. Length (nt)

1 E. coli ECO Bacteria PRJNA238884 SRR1173967 SE, SS 7.9 94 [36]

2 C. albicans CAL Fungi PRJNA213618 SRR1654847 PE 11.5 51 [37]

3 A. thaliana ATH Plant PRJNA231064 SRR1049376 SE 16.9 101 [38]

4 M. musculus MMU Animal PRJNA140057 SRR203276 PE, SS 52.6 76 [10]

5 H. sapiens HSA Animal ENCSR000AED PE, SS 97.5 101

H. sapiens + EBOV HSA-EBOV [31]

6 3 h poi −3h Animal + virus PRJNA429171 SRR6453200 PE 17.2 100

7 7 h poi −7h Animal + virus PRJNA429171 SRR6453205 PE 24.7 100

8 23 h poi −23h Animal + virus PRJNA429171 SRR6453206 PE 26.5 100

Simulated

9 H. sapiens Chr 1 HSA-FLUX Animal PE 60.0 100

Study and run accession numbers are given for the National Center for Biotechnology Information short-read archive (SRA). For the HSA data set the ENCODE data center

accession is provided. Read numbers are given in millions. We simulated 1 artificial data set based on protein-coding and non-coding transcripts of human chromosome

1 (Chr 1) using flux simulator [29] (HSA-FLUX). Details can be found in Electronic Supplement Table S1. nt: nucleotides; PE: paired-end reads; SE: single-end reads; SS:

strand-specific. x h poi indicates total RNA extracted x hours post infection.

Quality control of all RNA-Seq data sets

We investigated the quality of each data set with FastQC [34]
and used Prinseq [35] for an initial quality processing of all

raw reads. Low-quality regions (with a mean quality <20) were
trimmed using a 5-base sliding window approach. Only reads
that resulted in a remaining read length of ≥25 nt were consid-
ered for further analysis. All reads including ambiguous N bases

https://www.rna.uni-jena.de/supplements/assembly/index.html#data
https://www.rna.uni-jena.de/supplements/assembly/index.html#assembler
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were removed. PolyA/T tails were trimmed. Details about the
trimmed data that were finally used for assembly can be found
in Electronic Supplement Table S1.

Data availability

The RNA-Seq data sets used in our study are publicly available
and accessions can be found in the Methods and Supplement
Table S1. The processed RNA-Seq data files (FASTQ) as well as
all calculated assemblies (FASTA) were uploaded into the Open
Science Framework and are freely available under accession
doi.org/10.17605/OSF.IO/5ZDX4.

Analyses

We used 9 RNA-Seq data sets, 10 assembly tools, and
various evaluation metrics as summarized in Fig. 1. Details can
be found in the Methods and in the comprehensive online
Electronic Supplement [33], providing deep insights into the per-
formance of each assembler on each data set and individual
metric. With our selection of different data sets, we aimed to
represent not only various kingdoms of life but also different ex-
perimental setups for RNA-Seq data: (i) single-end vs paired-end
data, (ii) strand specificity vs unstranded protocols, (iii) polyA-
enriched vs ribosomal RNA–depleted library preparations, (iv)
different read lengths, and (v) different sequencing depths.

The following sections show how each assembly tool per-
formed for the various data sets and selected evaluation met-
rics (Table 4 in Methods). For each combination of a metric and
a data set, we normalized the achieved raw scores of all assem-
bly tools to range between 0 and 1. This approach is identical to
a z-score transformation with additional normalization in the
interval (0,1) (see Methods for details). In this way, we aimed to
achieve the fairest possible comparison of the various data sets,
assembly tools, and metrics. For each data set and assembly tool,
the normalized scores are summarized to achieve a final score,
the so-called ”metric score” (MS), for comparison. Table 2 shows
the raw and normalized results for all 20 metrics and each as-
sembly tool for the H. sapiens data set. Similar tables for all other
data sets can be found in Electronic Supplement Table S10. The
summarized MS values shown in the last row of Table 2 corre-
spond to the summarized MS values shown for the H. sapiens
data set in Fig. 2. For example, Trinity [10] achieved an MS of
12.38 for the H. sapiens data set across all 20 metrics evaluated
(hereafter denoted as 12.38/20) (Fig. 2, Table 2). We further sum-
marized the MS for a single assembly tool overall data sets to cal-
culate an overall metric score (OMS). In the following, the tools
sorted by their OMS are discussed in more detail. Further defini-
tions for the calculation of the normalized scores as well as the
MS and OMS values are provided in the Methods.

Assembly tool performance is diverse regarding
different data sets and quality metrics

All evaluated assembly tools are summarized in Fig. 1 and
Table 3. Finding the best parameter setting for each tool and
each data set is obviously beyond the scope of this evaluation.
Therefore, we used the default settings of each tool and ad-
justed only a few key parameters such as k-mer values and
strand-specificity options (see Methods for details). Full
execution details and commands can be found in the
Electronic Supplement, Files S3. For the tools with built-in
functions for the automatic integration of different k-mer
values (Oases, Trans-ABySS, IDBA-Tran, SPAdes; see Table 3),

we applied a set of selected k-mers (for details see Files S3).
If strand-specific data were used for the assembly, we applied
the corresponding option of each tool. In application, one
should try several different parameter settings and compare the
resulting assemblies to optimize the whole assembly process.
In particular, different k-mers should be tested and evaluated
against each other [21]. Here, we carefully chose k-mer values
to obtain a somewhat fair comparison between the assemblers,
although some parameters may not be optimal.

Whenever a tool was complicated to install (e.g., due to miss-
ing dependencies) or could not be run on a specific data set, we
attempted to debug the source code and in some cases also con-
tacted the authors to solve the problem. Therefore, we also de-
cided to share our experiences regarding the installation proce-
dure and execution of each tool (Table 3).

Trinity
The re-mapping rate of Trinity [10] was generally high (>90.0%,
97.32% for C. albicans) except for the E. coli data set (77.01%); see
Fig. S4. Trinity performed in the midfield or better regarding the
TransRate [44] metrics and very well regarding DETONATEs [41]
RSEM-EVAL scores on almost all data sets (Table S6 and S9).
Trinity achieved the best RSEM-EVAL scores for 3 of the 9 data
sets. The assembler detected many complete BUSCOs [43,44]
(Fig. 3) and achieved high 95%-assembled isoform rates [43] for
almost all data sets. For the eukaryotic data sets, approximately
the half amount of complete BUSCOs is included multiple times
in the assembly. This might be a result of the sub-graphs that
Trinity relies on to detect different isoforms of 1 transcript [10].
Trinity achieved the best OMS of 95.9 (see Methods for defini-
tion) of all assembly tools tested (Fig. 2) and performed generally
well in constructing full-length transcripts and the entire Ebola
RNA genome out of the virus-infected data sets.

SPAdes-sc and -rna
Although initially designed for single-cell and smaller bacterial-
sized genome assemblies, we also included SPAdes [18] in our
evaluation. It has previously been reported that, when used in
single-cell mode, the assembler achieves good results with RNA-
Seq data [17,39]. This may be due to the uneven coverage opti-
mization implemented for single-cell data, which also fits very
well with the behavior of low- and high-level expressed tran-
scripts. Based on these observations, SPAdes also has a special
RNA-Seq mode [17]. Therefore, we evaluated the performance
of SPAdes in single-cell (--sc; SPAdes-sc) and transcriptome
(--rna; SPAdes-rna) mode (Files S3) and present here the results
of both parameter options together.

The re-mapping rates for both SPAdes parameter options
were on a comparable level and among the top mapping rates
for all data sets (88.04–97.51%; Fig. S4). Based on the TransRate

metrics, SPAdes built the most accurate assemblies (Table S6),
especially in the single-cell mode. For almost all data sets,
the SPAdes-sc and -rna assemblies achieved the highest op-
timal score, the lowest percentage of uncovered bases, and a
low to moderate amount of ambiguous bases together with
Trinity, SOAPdenovo-Trans [13], and IDBA-Tran [12]. The RSEM-
EVAL scores of the SPAdes assemblies were always good but var-
ied among the different RNA-Seq data sets. For some samples,
SPAdes-sc achieved a better score than SPAdes-rna, and vice
versa (Table S9). SPAdes assemblies were among the top scorers
in complete BUSCO detections, with the --sc mode performing
in most cases better than the --rnamode (Fig. 3). Most likely as a
result of using only 2 k-mers in --rna mode, SPAdes-rna assem-
bled fewer BUSCOs for some data sets (Fig. S8). SPAdes-sc and

https://www.rna.uni-jena.de/supplements/assembly/index.html#data
https://www.rna.uni-jena.de/supplements/assembly/index.html#data
https://doi.org/10.17605/OSF.IO/5ZDX4
https://doi.org/10.17605/OSF.IO/5ZDX4
https://www.rna.uni-jena.de/supplements/assembly/index.html
https://www.rna.uni-jena.de/supplements/assembly/index.html#metrics
https://www.rna.uni-jena.de/supplements/assembly/index.html
https://www.rna.uni-jena.de/supplements/assembly/index.html#execution
https://www.rna.uni-jena.de/supplements/assembly/index.html#execution
https://www.rna.uni-jena.de/supplements/assembly/index.html#hisat
https://www.rna.uni-jena.de/supplements/assembly/index.html#transrate
https://www.rna.uni-jena.de/supplements/assembly/index.html#detonate
https://www.rna.uni-jena.de/supplements/assembly/index.html#execution
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https://www.rna.uni-jena.de/supplements/assembly/index.html#detonate
https://www.rna.uni-jena.de/supplements/assembly/index.html#busco
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-rna were the best performing tools for the detection of com-
plete BUSCOs in the C. albicans transcriptome (Fig. 3). The SPAdes
assemblies generally showed a low duplication ratio (Table S10).

SPAdes-sc achieved one of the top OMSs (OMS = 95.8; Fig. 2),
only slightly outperformed by Trinity (OMS = 95.9), and reached
the highest MS for the C. albicans (MS = 15.0) and the HSA-EBOV–
3h (MS = 15.08) assemblies. Comparable to SPAdes in single-
cell mode, SPAdes-rna generally performed well on all data sets
(OMS = 93.3). Regarding the number of 95%-assembled isoforms,
the -rna mode of SPAdes outperformed the single-cell mode for
most data sets (Fig. S5). Especially, for larger RNA-Seq data sets,
SPAdes-rna was able to reconstruct more full-length transcripts
(Table S10). Based on these observations, we suggest that the
RNA mode of SPAdes should be preferred for the reconstruction
of larger eukaryotic RNA-Seq data sets.

Our comparisons with an older version of SPAdes running in
RNA mode (at that time only 1 k-mer was allowed) revealed that
the performance of the algorithm was greatly improved by using
2 k-mers as it is now implemented in the current version [17].

Trans-ABySS
Compared with the other tools, Trans-ABySS [9] achieved the
highest re-mapping rates (98.45% for C. albicans, 99.56% for the
simulated data; Fig. S4) but scored only within the midfield
or worse regarding the optimal score calculated by TransRate.
On the other hand, the assemblies produced by Trans-ABySS

achieved for 6 of the 9 data sets the best RSEM-EVAL scores.
Only Trinity slightly outperformed Trans-ABySS on this metric
for 3 data sets (Table S9). Therefore, the transcripts constructed
by Trans-ABySS are well supported by the reads used to build
the assembly. Trans-ABySS performed well in all BUSCO analyses
and showed a high amount of complete (C) ortholog detections
(Fig. 3, Fig. S8). Many hits occurred multiple times (complete and
duplicated), e.g., in the C. albicans assembly (Fig. S8). This might
be a result of the multiple k-mer approach (MK), when too many
potential isoforms are assembled and not merged accurately
at the end of the assembly process. Thus, the assemblies of
Trans-ABySS generally showed a high duplication rate (Fig. S5).
We observed similar results for the MK runs of Oases [11]. Re-
garding the amount of fragmented (F) and missing (M) BUS-

Table 2: Results for all 20 selected evaluation metrics

No. k-mer size

Trinity Oases Trans-ABySS SOAP-Trans Bridger BinPacker IDBA-Tran Shannon SPAdes-sc SPAdes-rna

default 25,35,45,55,65 25,35,45,55,65 default default default 25,35,45,55,65 default default default

Evaluation metrics 1–20

HISAT2

1 Overall mapping rate 0.8191.9 0.6988.04 1.0098.34 0.7589.93 0.6686.83 0.2472.6 0.0064.61 0.5884.27 0.8192.04 0.9395.95

rnaQUAST

2 Transcripts ≥1 ,000 nt 0.2264061 1.00207474 0.2059779 0.0327529 0.1143201 0.0022611 0.0023516 0.0531328 0.0531039 0.1549860

3 Misassemblies 0.993378 0.00216127 0.992743 1.00279 0.977329 0.985603 1.00302 0.992837 0.992022 0.985126

4 Mismatches per transcript 0.741.38 0.771.25 0.930.57 1.000.27 0.731.44 0.004.63 0.910.67 0.771.26 0.880.8 0.781.25

5 Average alignment length 0.27795.23 0.06343.48 0.01246.85 0.00218 0.21654.41 1.002335.73 0.13487.11 0.23711.83 0.09410.22 0.09412.24

6 95%-assembled isoforms 0.996788 0.10868 1.006824 0.312264 0.282105 0.392824 0.07709 0.00242 0.231755 0.463253

7 Duplication ratio 0.002.396 0.032.355 0.471.743 0.871.187 0.501.708 0.012.389 1.001.012 0.631.53 1.001.015 0.871.192

8 Ex90N50 0.00326 0.17666 0.06441 0.19711 0.511370 1.002381 0.19708 0.491324 0.421186 0.22782

9 No. of full-length transcripts 0.978930 0.838024 1.009110 0.646806 0.898440 0.264456 0.002783 0.636758 0.465676 0.697155

TransRate

10 Reference coverage 0.870.23 0.330.09 1.000.26 0.340.09 0.310.09 0.270.07 0.310.08 0.000 0.300.08 0.420.11

11 Mean ORF percentage 0.64 50.82 0.0042.09 0.7251.92 0.4448.02 0.2245.1 0.0442.57 0.7652.46 1.0055.7 0.3046.13 0.3146.25

12 Optimal scorea 0.300.13 0.000.02 0.230.11 0.660.27 0.320.14 0.140.07 0.610.25 0.130.07 1.000.4 0.570.23

13 Percentage bases uncovereda 0.380.59 0.000.94 0.330.63 0.670.33 0.570.42 0.110.84 1.000.02 0.480.5 0.990.03 0.790.21

14 No. of ambiguous bases 0.72286 0.00843 0.53437 0.78241 0.83206 1.0072 0.91138 0.94117 0.86177 0.71294

DETONATE

15 Nucleotide F1 0.590.43 0.080.18 0.770.51 0.890.57 0.710.48 0.000.15 0.860.55 0.420.35 0.970.61 1.000.62

16 Contig F1 0.080.02 0.090.02 0.990.2 1.000.21 0.050.01 0.000 0.080.02 0.110.02 0.070.01 0.060.01

17 KC score 0.870.51 0.000.24 1.000.55 0.420.37 0.510.4 0.400.37 0.140.29 0.580.42 0.470.39 0.600.43

18 RSEM EVAL 0.98−6.51 0.45−11.82 1.00−6.26 0.72−9.03 0.85−7.72 0.62−10.03 0.00−16.3 0.73−8.96 0.42−12.12 0.91−7.16

BUSCO

19 Complete BUSCOs 0.964004 0.793588 1.004106 0.392625 0.923909 0.132009 0.001682 0.703385 0.392625 0.583089

20 Missing BUSCOs 0.991804 0.931922 1.001770 0.832164 0.981812 0.004078 0.632615 0.842133 0.782268 0.921949

Summarized metric (0,1)-score 12.38 6.31 14.24 11.92 11.13 6.59 8.61 10.3 11.47 12.03

Here, we show results for all 20 selected metrics (rows) based on the output of rnaQUAST [39], HISAT2 [40], DETONATE [41], TransRate [42], BUSCO [43,44], and the Trinity [10] toolkit utilities

for the transcripts assembled by all 10 assembly tools (columns). Results are shown for the non-infected H. sapiens RNA-Seq strand-specific paired-end library with read length 101 nt

(accession No. ENCSR000AED). For each metric normalized scores in the range between 0 and 1 are displayed. The raw values are given in subscript next to the normalized values.

In the last row, the summarized MS of (0,1)-normalized scores is given (see Methods for details). The RSEM-EVAL score is divided by 109. The number of ambiguous bases is given

in millions. Ex90N50 values are computed as usual N50 but limited to the top most highly expressed transcripts that represent 90% of the total normalized expression data. An F1

score of 1 states that all nucleotides/contigs in the estimated true assembly were recovered with ≥90% identity. KC score: k-mer compression score reflecting the similarity of each

assembly to DETONATE’s estimated “true” assembly. Complete BUSCOs: sum of single-copy and duplicated benchmarked universal single-copy orthologs (BUSCOs). Details and more

statistics complementing this evaluation can be found in the Electronic Supplement, Fig. S4 –Table S9. Summaries for all other data sets can be found in Table S10. ORF: open reading

frame.
aNot available for the E. coli and A. thaliana data sets because this metric is only calculated by TransRate in the case of paired-end data.
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Figure 2: Heat map showing for each data set (column) and each assembler (row) the calculated metric score (MS) (detailed definition in the Methods). The assembly
tools are clustered based on their achieved MS over all data sets. The MS for 1 assembly tool and a single data set is based on 20 pre-selected metrics (see Table 4

and Methods for details) and is shown in 1 cell in the heat map (e.g., the MS for E. coli and Trinity [10] is 13.61). For each data set, an assembler’s MS is the sum of
(0,1)-normalized scores of every single metric. The hierarchical clustering of the metric scores divides the assembly tools into 2 groups of generally high-ranked (upper
half) and low-ranked (bottom half) tools. Except for Trans-ABySS [9], the MS reached for the largest human RNA-Seq data set is generally lower. Numbers in brackets
next to the assembler names present the summarized metric scores (overall metric score, OMS) for all 9 data sets (see Methods). For the 3 similar human data sets

infected with EBOV (Fig. 1), we added the mean MS value to the OMS. Details about the metric results for the human data set (no infection) can be found in Table 2
and for all other data sets Electronic Supplement Table S10.

COs, Trans-ABySS was among the best performing tools (Fig. 3).
Trans-ABySS achieved one of the highest OMSs of 94.8 of all as-
sembly tools (Fig. 2) and performed best for the large (human,
mouse) data sets and the simulated data of human Chr1. By far,
Trans-ABySS achieved the best MS (14.24) for the non-infected
human data set. The lowest metric score was achieved for the
bacterium data set (Fig. 2). Apart from the running time (Table 3),
these results make Trans-ABySS one of the best-performing as-
sembly tools in our comparison (besides Trinity and SPAdes).

Bridger
In general, Bridger [14] assemblies resulted in high re-mapping
rates between 87.35% (E. coli) and 96.72% (C. albicans; Fig. S4). For
almost all TransRate metrics, the Bridger assemblies placed in
the midfield of scores (Table S6). According to the RSEM-EVAL
scores, Bridger generally performed well among the top tools
(Table S9). Furthermore, Bridger performed well in the detec-

tion of complete BUSCOs with a moderate amount of duplicated
hits. The amount of missing BUSCOs was comparably low (Fig. 3,
Fig. S8). Based on a low duplication ratio and a low number of
contigs, Bridger seems to produce very compact but also com-
plete assemblies, especially for smaller data sets. The rate of
mismatches per transcript was generally low (Table S10). Alto-
gether, Bridger assemblies were of good quality and achieved
among the top scores (OMS = 89.3).

SOAPdenovo-Trans
The re-mapping rate of SOAPdenovo-Trans [13] was gen-
erally high (>85%), except for the E. coli data set (Fig. S4).
SOAPdenovo-Trans performed quite well regarding most
TransRate statistics and the calculated optimal score (Table S6).
In most cases, only the Trinity and SPAdes assemblies could
outperform SOAPdenovo-Trans on the TransRate metrics. The
RSEM-EVAL scores varied depending on the assembled RNA-Seq
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Table 3: Overview of the different de novo assembly tools evaluated in this study

Assembler Version MK Setup Usage Runtime Memory (GB) Source Year

Min Max Median Min Max Median

Trans-ABySS 2.0.1 Yes 16 m 2 d 6 h 23 m 11 h 11 m 0.6 49.2 19.7 [9] 2010

Trinity 2.8.4 No 28 m 1 d 20 h 10 m 6 h 40 m 7.2 243.9 27.7 [10] 2011

Oasesa 0.2.08 Yes 25 m 8 d 15 h 45 m 6 h 47 m 3.1 110.2 31.3 [11] 2012

SPAdes-scb 3.13.0 Yes 16 m 7 h 52 m 2 h 26 m 5.0 37.4 25.3 [18] 2012

SPAdes-rnab 3.13.0 Yesc 11 m 7 h 24 m 2 h 17 m 5.0 44.2 19.5 [17] 2018

IDBA-Tran 1.1.1 Yes 7 m 8 h 49 m 2 h 44 m 0.6 29.1 9.6 [12] 2013

SOAPdenovo-Trans 1.03 No 1 m 1 h 48 m 24 m 2.1 45.6 26.4 [13] 2014

Bridgerd 14-12-01 No 11 m 21 h 11 m 5 h 9 m 1.6 109.3 30.4 [14] 2015

BinPackerd 1.0 No 5 m 15 h 57 m 3 h 3 m 1.5 96.2 27.9 [15] 2016

Shannon 0.0.2 No 9 m 10 h 45 m 3 h 18 m 3.8 121.4 83.6 [16] 2016

We rated our experiences regarding the installation and usability of each tool ( : excellent; : good; : unsatisfactory). These experiences might be subjective;
nevertheless, we want to share them to give non-experienced users an idea of how difficult it is to get each tool installed (Setup) and executed (Usage) (see Methods
for details). For Trinity, we observed high memory peaks at the beginning of the calculations for large (human, mouse) data sets, which immediately returned to

moderate memory levels after a few minutes. More details about runtime and memory consumption can be found in Electronic Supplement Fig. S11. MK: presence of
a built-in multiple k-mer approach and the ability to automatically integrate the output of different k-mer runs.
aOases was used on top of the de novo genome assembler Velvet (v1.2.10) [45].
bSPAdes, originally designed as a de novo genome assembler for single-cell data, was used in single-cell modus (--sc) and RNA-Seq modus (--rna).
cWhen running SPAdes in RNA-Seq modus, 2 k-mer values are used by default.
dBridger and BinPacker are based on a splicing graph construction instead of de Bruijn graphs.

data set (Table S9). For the HSA-EBOV–23h and M. musculus
samples, SOAPdenovo-Trans achieved good RSEM-EVAL scores,
whereas for the bacterial, fungal, plant, and the simulated
RNA-Seq data the tool placed among the last 3 assemblers.
The amount of complete and duplicated BUSCOs was very
low (Fig. 3), which correlates with the generally low amount
of detected isoforms (e.g., compare number of 95%-assembled
isoforms calculated with rnaQUAST; Fig. S5). This could be a
result of the single k-mer approach. SOAPdenovo-Trans achieved
a good OMS of 87.3 (Fig. 2), and the assembler performed well
on each evaluated data set (MS between 10.28 and 15.05).
SOAPdenovo-Trans was the only assembly tool capable of
reconstructing the entire Ebola genome in a single contig from
all 3 virus-infected data sets.

Shannon
The most variable re-mapping rates were observed for
Shannon [16], ranging between 30.77% for the human sim-
ulated data set and 96.51% for A. thaliana (Fig. S4). The Shannon

assemblies did not result in good TransRate optimal scores;
however, the percentage of uncovered bases placed in the
midfield of all scores and Shannon did not introduce that many
ambiguous bases in the assembled transcriptome (Table S6).
The RSEM-EVAL scores of Shannon varied among the assem-
bled data sets (Table S9). Regarding the amount of assembled
complete BUSCOs, Shannon placed in the midfield and showed
a relatively high amount of duplicated hits (Fig. 3). Shannon

achieved a moderate OMS of 74.8 (Fig. 2).

IDBA-Tran
In general, IDBA-Tran [12] achieved low re-mapping rates be-
tween 34.31% (E. coli) and 89.04% (A. thaliana) (Fig. S4). However,
the TransRate metrics of the IDBA-Tran assemblies were gen-
erally good (Table S6). Comparable to SOAPdenovo-Trans, some
of the IDBA-Tran results were within the top 3 assemblies re-

garding the optimal score calculated by TransRate. DETONATE’s
RSEM-EVAL scores revealed a different picture, as IDBA-Tran in
many cases placed last in this metric and never reached the top
5 (Table S9). Furthermore, IDBA-Tran was one of the tools with
the fewest complete BUSCOs and a high amount of fragmented
and missing BUSCOs (Fig. 3 and Fig. S8). The number of 95%-
assembled isoforms was generally low (Table S10). IDBA-Tran
placed in the lower half of OMS (OMS = 73.3; Fig. 2) and showed
the best performance for smaller RNA-Seq data sets.

Oases
The re-mapping rates of Oases [11] were generally good (>85%).
However, they decreased for the simulated human data (73.26%),
the HSA-EBOV–23h data (70.05%), and the E. coli data (49.16%) be-
low acceptable thresholds (Fig. S4). Oases introduced the great-
est number of ambiguous bases in the assemblies and scored
among the last places regarding the TransRate statistics (Ta-
ble S6). Oases assemblies placed in the bottom third on the
RSEM-EVAL scores calculated by DETONATE. However, a good
amount of complete BUSCOs could be detected, but many dupli-
cate hits were included, which could be again a result of the MK
approach (Fig. 3). In addition, the Oases assemblies comprise an
enormous number of contigs (as well as high duplication rates)
and introduced many misassemblies (Fig. S5). Oases performed
best for the plant, bacteria, and simulated data and achieved an
OMS of only 62.6 (Fig. 2).

BinPacker
The re-mapping rates of BinPacker [15] were generally low and
varied considerably between data sets (36.6–96.7%; Fig. S4). The
TransRate metrics of the BinPacker assemblies were compara-
ble to the Bridger results, placing BinPacker among the lower
performing tools regarding this statistic (Table S6). On the other
hand, BinPacker introduced only a low amount of ambigu-
ous bases in the assemblies. The RSEM-EVAL score was com-
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Figure 3: Selected BUSCO (benchmarked universal single-copy orthologs) [43,42] assessment results for E. coli (A), C. albicans (B), A. thaliana (C), H. sapiens (D), HuH7 cells
infected with EBOV 7 h post-infection (E), and flux- simulated reads [29] of human Chr1 (F). The numbers indicate the absolute amount of complete (C) and single-copy
(S), complete and duplicated (D), fragmented (F), and missing (M) BUSCOs (see Methods for details). For our evaluation, we have used the number of missing BUSCOs
and the combined number of complete/single-copy and complete/duplicated BUSCOs to consider alternative transcripts better. BUSCO results for all other data sets can

be found in the Electronic Supplement, Fig. S8.

paratively low, except for the simulated human data, where
BinPacker achieved scores similar to Bridger and reached third
place behind Trinity and Trans-ABySS (Table S9 ). Regarding the
detection of orthologs, BinPacker had the lowest performance
of all tools and was only able to assemble a reasonable amount

of complete BUSCOs for C. albicans, HSA-EBOV–7h, and the hu-
man simulated data set (Fig. 3 and Fig. S8). BinPacker built the
smallest assemblies in terms of the number of contigs (Fig. S5).
Interestingly, BinPacker achieved for most data sets (and espe-
cially for the large human data sets) the best Ex90N50 values (Ta-

https://www.rna.uni-jena.de/supplements/assembly/index.html#busco
https://www.rna.uni-jena.de/supplements/assembly/index.html#detonate
https://www.rna.uni-jena.de/supplements/assembly/index.html#busco
https://www.rna.uni-jena.de/supplements/assembly/index.html#quast


Hölzer and Marz 9

ble S7). Therefore, it seems that BinPacker can construct highly
expressed transcripts into long contigs very well. However, the
general statistics, and for example, the BUSCO results, show that
BinPacker misses many transcripts that might be of low expres-
sion in the data sets. Overall, the performance of BinPacker was
quite low (OMS = 54.1; Fig. 2) and surprisingly far away from the
performance of Bridger (OMS = 89.3), although the assembler is
built on the same principles and as an extension of Bridger [15].
In summary, BinPacker showed quite different behavior con-
cerning the MS values, which were generally low, between 5.1
( M. musculus) and 12.24 (C. albicans) (Fig. 2).

When designing this study, we also aimed to include an as-
sembly tool that is not based on k-mers. Mira [46] (version 4.0rc5)
uses an overlap consensus graph for assembly and can be ex-
ecuted in EST mode for RNA-Seq data. However, for 1 human
sample 62 h runtime was needed, >300 GB temporary files were
produced, and ∼130 GB RAM consumed. Furthermore, we were
not able to detect any BUSCO hits in the Mira assemblies. As a re-
sult of this low performance and high running time and memory
consumption, we decided to remove the tool from our compari-
son.

Usability

We rated our experiences regarding the installation and usabil-
ity of each tool (Table 3). These experiences may be subjective,
but we share them to give inexperienced users an idea of how
difficult it is to install and run each tool. Some of the tools
rely on many dependencies and/or are more difficult to compile
(Shannon, SOAPdenovo-Trans, Trans-ABySS), at least on our test
system without administrative permissions, while others could
be installed easily (SPAdes). Furthermore, some assemblers need
additional parameter files for execution (SOAPdenovo-Trans), are
circuitous to run (Oases, SOAPdenovo-Trans), need additional
preprocessing steps to be performed on the reads (IDBA-Tran as-
sumes paired-end reads to be in order forward–reverse), or are
just not terminating for all data sets (Bridger), while with others
we had no problems and could execute them straightforwardly
(Trinity, SPAdes, BinPacker).

Bridger failed in the path search step for some of the gen-
erated temporary files. Therefore, we performed the last step of
Bridger by manually combining the transcript output. Further-
more, we had to start Bridger 2 times for each data set because
the tool crashed each time after the first start but continued with
the assembly when started a second time on the same output
folder (see execution commands in Files S3).

In the past, Oases and Trans-ABySS were always circuitous to
run because the corresponding genome assemblers Velvet [45]
and ABySS [47] needed to be executed first with an MK approach.
These difficulties have been somehow overcome by new wrap-
per scripts provided by the developers to automatically execute
the underlying genome assemblers.

Computational efficiency

Because de novo transcriptome assembly can involve the analy-
sis of large sequencing data, computational efficiency is an im-
portant benchmark, especially for deep sequencing projects and
large sample sizes. Furthermore, it is highly recommended to
run multiple assemblies with different tools and parameter set-
tings (e.g., different k-mers), so computation time is an impor-
tant parameter to measure for each tool. Table 3 summarizes the
computational time and the memory consumption of all data

sets and assemblers. Details can be found in Electronic Supple-
ment Fig. S11.

Runtime
By far, SOAPdenovo-Trans proved to be the fastest algorithm,
with a median runtime of only 24 m, followed by SPAdes-rna (2 h
17 m), SPAdes-sc (2 h 26 m), IDBA-Tran (2 h 44 m), BinPacker (3 h
3 m), and Shannon (3 h 18 m) (Table 3, Fig. S11). Older tools such
as Oases (6 h 47 m) and Trans-ABySS (11 h 11 m), which are ad-
ditionally based on an MK strategy, are comparatively slower.
For example, Oases needed >8 days for the large human RNA-
Seq data set. However, if these tools were to be executed only
on 1 k-mer, the runtime would be comparable to that of the
other assemblers or even faster. SOAPdenovo-Trans can also run
on different k-mers, but no automatic merge function for the
different assemblies is implemented. The Trinity median run-
time (6 h 40 m) lies between the faster tools and the slower MK
approaches, although the tool relies on 1 k-mer only. Although
based on an MK strategy, IDBA-Tran and SPAdes are much faster
than the older MK algorithms and can compete against the other
single-k-mer tools based on speed.

Memory consumption
IDBA-Tran seemed to be the tool with the least memory con-
sumption estimated overall data sets (median, 9.6 GB and max-
imum, 29.1 GB; Table 3, Fig. S11). Shannon showed high mem-
ory peaks (median, 83.6 GB), especially for the larger data sets
(>100 GB for the EBOV-infected human samples; see Fig. S11 ),
followed by Oases (31.3 GB), Bridger (30.4 GB), and BinPacker

(27.9 GB).
When running Trinity (median memory consumption,

27.7 GB), we observed in the first phase of assembly (meaning
in the first seconds up to a few minutes, depending on the size
of the input data set) very high memory peaks, especially for
the larger data sets. For example, in the first 5 minutes of ex-
ecution of all human data sets we noticed memory peaks of
∼240 GB with Trinity. Immediately after this initial peak, the
memory consumption decreased to comparatively normal levels
(Fig. S11). In Electronic Supplement Figure S11, we removed the
high initial memory peaks observed for Trinity from the com-
parison to achieve a better overview of the memory usage of all
assemblers. The high memory consumption in the first phase
might be a result of the many individual de Bruijn graphs built by
Trinity based on partitions of the sequence data [10].

Users should pay particular attention to planning enough
processing power and time when using many tools for different
parameter settings, especially when working on projects with
high sequencing depth and large sample size.

Contamination of viruses decreases performance of
most assembly tools

Although not the main focus of this study, we were interested
in how the assemblers work with RNA-Seq data as virus con-
tamination increases, and whether they are still able to con-
struct complete viral genomes. Therefore, we used Blastn [48]
to search for contigs in the virus-infected assemblies (Fig. 1) that
match the full EBOV genome. The EBOV genome comprises a
single-stranded RNA genome with negative orientation and a
size of ∼19 kb [49]. We assembled 3 human samples infected
with EBOV at 3 different time points. Therefore, we were able
to investigate how the different assemblers perform on increas-
ing amounts of viral reads in the data (3 h: ∼0.1% viral reads; 7 h:
∼2%; 23 h: ∼20%; compare [31]).
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Surprisingly, the performance of most assembly tools in con-
structing the viral RNA genome decreased with a higher amount
of viral reads. In general, Trans-ABySS, SOAPdenovo-Trans,
Trinity, Shannon, Bridger, BinPacker, and SPAdes (--sc and
--rna mode) performed well and constructed the full EBOV
genome out of the 3 h data set. On the 7 h data set (∼2%
viral reads), Trinity and SOAPdenovoTrans performed best.
Trans-ABySS assembled 2 contigs (9.2 and 9.7 kb) that to-
gether would represent the entire EBOV genome. Bridger and
BinPacker were only able to construct the same 10-kb partial
EBOV genome. SPAdes-rna assembled a partial viral contig of
a length of 16 kb. After 23 h post-infection and a viral read
contamination of almost 20%, only SOAPdenovo-Trans was able
to construct the full EBOV genome with high accuracy (18,901
nt [99.53%]). Bridger, BinPacker, and Trans-ABySS constructed
partial virus genomes of a length of 14.8, 12.0, and 10.6 kb, re-
spectively. Trinity built 2 contigs of similar length that together
would cover the entire viral genome.

Discussion

Although the evaluation of de novo transcriptome assemblies
was frequently performed in the past [6,19–24,26], there is still
a lack of knowledge regarding which assembler should be used
for which kind of RNA-Seq data. Furthermore, these studies rely
on limited data sets (e.g., a single species, a single sequencing
protocol) or focus only on a subset of all currently available as-
sembly tools. Here, we present a comprehensive evaluation of
10 de novo assembly tools across various RNA-Seq data sets of
different kingdoms of life.

Using a combination of biological-based and
reference-free metrics to evaluate an assembly

We evaluated biological/reference-based metrics and
statistical/reference-free metrics only based on the input
read data and the final assembly itself. Evaluation metrics are
important to assess the quality of a genome or transcriptome
assembly. However, there is a lack of consensus regarding
which evaluation metrics work best for de novo transcriptome
assembly.

For example, Rana et al. [50] compared different assemblers
and k-mer strategies using killifish RNA-Seq data and based
their comparisons on 11 selected metrics, such as contig num-
ber, N50 value, contigs >1 kb, re-mapping rate, number of full-
length transcripts, number of open reading frames, DETONATEs
RSEM-EVAL score, and the percentage of alignments to closely
related fish. Another study performed comparisons on peanut
RNA-Seq data and evaluated the assemblies on metrics such as
N50, average contig length, number of contigs, and the number
of full-length transcripts [51]. Moreton et al. [52] also used the
N50 length, the number of transcripts, the number of transcripts
≥1 kb, and reads mapped back to transcripts and CEGMA (Core
Eukaryotic Genes Mapping Approach) percentages when evalu-
ating different assemblies of duck. Surely, more information on
which metrics best predict the quality of a de novo transcriptome
assembly would help to establish “best practice” protocols that
could be further utilized to develop automatic evaluations to im-
prove assemblies.

There is still a general lack of consensus regarding which
metrics should be used for an appropriate evaluation of de novo
transcriptome assemblies. More complicating, we observed that
some metrics provide results that contradict each other, such
as the optimal assembly score calculated by TransRate [42]

and the RSEM-EVAL score of DETONATE [40]. For example, as-
semblies of the H. sapiens simulated data set achieved the
best RSEM-EVAL scores for Trans-ABySS and Trinity, whereas
Shannon and IDBA-Tran performed worst (Table S9 and S10 ).
However, IDBA-Tran achieved the second-best optimal score
of TransRate, only outperformed by SPAdes-sc, and Shannon

scored in next-to-last place on this metric (Tables S6 and S10). On
the other hand, certain metrics can be highly correlated (Fig. S12)
and therefore lead to further distortions in assembly evaluation.

We conclude that a careful selection of biological-based and
reference-free evaluation metrics is necessary to select the best
performing results out of multiple assembly runs. In addition,
the normalization and the way the results of different met-
rics are summarized can influence the evaluation. On the ba-
sis of our observations, we suggest initially using reference-free
metrics as provided by the TransRate [42] software. In general,
TransRate’s optimal assembly score seems to be a good measure
of the quality of an assembly. Assemblies that needed fewer con-
tigs for a comprehensive description of the whole transcriptome
also achieved in most cases good TransRate scores (Table S6).
However, this score can be calculated only for paired-end RNA-
Seq data at the moment.

If biological/reference-based metrics should be included, the
95%-assembled isoforms statistics calculated by rnaQUAST [39],
as well as the scores calculated by BUSCO [43,42] and the number
of fully reconstructed protein-coding transcripts, are good met-
rics for the evaluation of the best assembly results.

Different species and RNA-Seq setups require
specialized assembly tools

Although no tool’s performance was dominant for all data sets,
we found that Trinity [10], SPAdes [17,18], and Trans-ABySS [9]
produced consistently good assemblies among all data sets, fol-
lowed by Bridger [14] and SOAPdenovo-Trans [13] (Fig. 2).

SPAdes, although originally developed as a de novo assem-
bly tool for small genomes, also produced highly accurate tran-
scriptome assemblies in both modes, for single-cell (SPAdes-sc)
and RNA-Seq data (SPAdes-rna). Interestingly, the single-cell
mode outperformed the RNA mode for some of the data sets on
our metrics (Fig. 2). This might be a result of the 2 k-mer ap-
proach and the different handling of single-end data in the RNA
mode. According to the authors [17], SPAdes-rnawas initially de-
signed based on the principles of SPAdes-sc so that an MK op-
tion could be easily activated as well. However, it was noticed
that smaller k-mers result in a higher number of false junctions
and lead to more misassemblies for transcriptomic data. There-
fore, the authors decided only to use 2 k-mers as the default in
RNA mode [17]. Furthermore, to join sequences with small over-
laps, SPAdes-rna uses a gap-closing procedure based on read
pairs [17]. Indeed, this might be one reason why SPAdes-rna

achieved for some metrics lower scores for single-end data. Tak-
ing a closer look at the BUSCO results, SPAdes produced in both
modes the fewest complete and duplicated transcripts (Fig. 3).
This could further indicate that SPAdes merges highly similar
transcripts into single contigs, therefore losing similar isoforms.
This behavior can also be observed when looking at the num-
ber of 95%-assembled isoforms calculated with rnaQUAST (Fig. S5
and Table S10). Here, the single-cell mode of SPAdes scored for
most data sets in the midfield whereas in RNA mode more com-
plete isoform assemblies are constructed.

On closer examination of the BUSCO (Fig. 3) and fully recon-
structed transcript results, Oases [11] performed well overall.
However, the tool produced the highest quantities of complete
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https://www.rna.uni-jena.de/supplements/assembly/index.html#metrics
https://www.rna.uni-jena.de/supplements/assembly/index.html#normscore
https://www.rna.uni-jena.de/supplements/assembly/index.html#transrate
https://www.rna.uni-jena.de/supplements/assembly/index.html#quast
https://www.rna.uni-jena.de/supplements/assembly/index.html#metrics
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and duplicated hits, which might indicate that highly similar
isoforms derived from the MK approach are not resolved effi-
ciently. Oases, as well as Trans-ABySS and SOAPdenovo-Trans,
constructed large assemblies with a high number of (sometimes
very small) contigs. By far, Oases constructed the highest num-
ber of contigs but did not achieve the best reference coverage in
all test cases. For example, the Oases assembly of the H. sapiens
data set comprises ∼207,000 transcripts with a length >1,000 nt,
covering only 8% of the reference transcripts (Table 2). In com-
parison, the Trans-ABySS assembly needed only ∼59,000 contigs
with a length >1,000 nt to achieve a reference coverage of 26%
(Table S10). Therefore, Oases has the potential to create good as-
sembly results but also produces big assemblies with many con-
tigs that might complicate and confuse downstream analyses.

With a median runtime of only 24 minutes over all data
sets (maximum runtime, 1 h 48 min), SOAPdenovo-Trans [13] out-
performed all other assemblers (Table 3, Fig. S11). Combined
with the moderate memory consumption (median, 26.4 GB;
maximum, 45.6 GB), this makes SOAPdenovo-Trans the most
resource-efficient tool evaluated in this study. However, it might
be interesting to run MK assemblies with SOAPdenovo-Trans

and use another assembly merge strategy (e.g., conducted from
Oases or TransABySS) to merge the final transcripts result-
ing from each run. In general, MK approaches (Trans-ABySS,
SPAdes, IDBA-Tran, Oases) performed better than single k-mer
approaches regarding full-length isoform reconstruction and as-
sembly completeness.

As long as the amount of viral contamination in RNA-Seq
data was low (∼0.1%), all assembly tools except Oases and
IDBA-Tran generated accurate viral contigs with high simi-
larity to the EBOV genome and a length >18 kb. In general,
SOAPdenovoTrans performed best on all 3 virus-infected data
sets by constructing accurate full-length contigs with high sim-
ilarity to the EBOV genome. Therefore, it will be interesting to
evaluate the performance of SOAPdenovo-Trans for the construc-
tion of RNA viral genomes out of meta-transcriptomic RNA-Seq
data in the future.

Potential implications

Here, we present a large-scale comparative study by applying 10
de novo assembly tools to 9 RNA-Seq data sets comprising differ-
ent kingdoms of life (Fig. 1). Overall, we calculated >200 single
assemblies and evaluated their performance on different met-
rics (Table 4). All results are summarized in a comprehensive
Electronic Supplement, which is easily extendable by more RNA-
Seq data sets, new assembler versions, parameter settings, and
tools. We summarize some key findings from our comparative
study:

(I) No tool’s performance was dominant for all data sets. How-
ever, Trinity, SPAdes, and Trans-ABySS, followed by Bridger

and SOAPdenovo-Trans, were among the best assembly tools
(Fig. 2).

(II) SOAPdenovo-Trans followed by Trinity performed best for
the construction of the EBOV single-stranded RNA genome
at all 3 time points tested.

(III) SOAPdenovo-Trans had the lowest runtime, followed by
SPAdes, IDBA-Tran, Shannon, and BinPacker.

(IV) For assembly evaluation, we recommend a hybrid approach
by combining biological-based (e.g., BUSCO [43,42], the num-
ber of full-length transcripts) and reference-free metrics (e.g.,
TransRate [42], DETONATE [41]).

In general, assembly tools such as Trinity, SPAdes, and
Trans-ABySS, which are still well maintained, outperformed
other tools and should be preferred.

Some of our metrics might not provide independent assess-
ment metrics, such as the number of complete BUSCOs and the
number of full-length transcripts (see Fig. S12). To account for
such bias between highly correlated metrics, each of our (0,1)-
normalized scoring vectors (see Methods) could be multiplied
with a weight value (e.g., 0.5). Because it is a somewhat arbitrary
decision how to set the weight value for each metric and be-
cause we have also observed differences between the data sets,
we have decided not to adjust weights in this comparison. How-
ever, we only chose 1 of several metrics if our results suggested
a strong correlation. In addition, our overall results do not ap-
pear to be strongly influenced by such metric correlations on the
basis of our internal comparisons. Future assembly evaluation
tools may allow the user to define weights for specific metrics or
could calculate different weights automatically based on other
statistics. Another possibility could be to bundle potentially cor-
related metrics on the basis of very similar normalized evalua-
tion vectors.

Furthermore, our current comparison does not accurately
test how well the individual assemblers reconstruct alterna-
tively spliced transcripts. Therefore, another metric could be in-
cluded to consider the assembler’s ability to reconstruct differ-
ent isoforms as an important aspect of a comprehensive evalu-
ation of transcriptome assemblies.

Limitations and future work

We still recommend applying different tools and parameter set-
tings for de novo transcriptome assembly, followed by the evalua-
tion of the output transcripts and selecting the best-performing
results. This general idea needs to be investigated in more de-
tail in future studies. The selection of the best assemblies based
on appropriate metrics and the subsequent clustering process
(without loss of isoforms and the additional introduction of
greater redundancy) remain challenging and open tasks.

Dynamic extension of this comparison
A common problem of many comparative studies is that they
can only make limited proposals based on the tools and
data sets available at the time they were conducted. The
Electronic Supplement provided here remains consistent with
the presented results but can be extended with other metrics,
data sets, and assembly tools in future updates.

Cluster assembly
Furthermore, the complementary performance of the top-
performing tools motivated the development of an ensem-
ble method by combining the best performing methods to
achieve an overall better assembly. Based on our findings, a
pipeline should be developed that automatically selects the
top-performing assemblies (or only the best transcripts from
each assembly) using a hybrid approach of biological-based and
reference-free metrics and clusters them on the basis of se-
quence similarity and read coverage to achieve a more com-
prehensive assembly. For the large bioinformatics community
working in the area of RNA-Seq, the development of a high-
performing (accurate and fast) de novo transcriptome cluster
workflow to automatically select and combine the output of top-
performing assembly tools remains a challenging however cru-
cial task.

https://www.rna.uni-jena.de/supplements/assembly/index.html#metrics
https://www.rna.uni-jena.de/supplements/assembly/index.html#runtime
https://www.rna.uni-jena.de/supplements/assembly/index.html
https://www.rna.uni-jena.de/supplements/assembly/index.html#normscore
https://www.rna.uni-jena.de/supplements/assembly/index.html
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Table 4: Selected evaluation metrics applied for each assembly and data set

No. Tool Selected metric Source

1 HISAT2 Overall mapping rate [40]
2 rnaQUAST Transcripts ≥1,000 nt [39]
3∗ Misassemblies
4∗ Mismatches per transcript
5∗ Average alignment length
6∗ 95%-assembled isoforms
7∗ Duplication ratio
8 Trinity/Salmon Ex90N50a [10,53]
9∗ Trinity/Blastx Full-length transcriptsb [10,48]
10∗ TransRate Reference coverage [42]
11 Mean ORF percentage
12 Optimal scorec

13 Percentage bases uncoveredc

14 Number of ambiguous bases
15 DETONATE Nucleotide F1 [41]
16 Contig F1
17 KC score
18 RSEM-EVAL
19∗ BUSCO Complete BUSCOsd [43,42]
20∗ Missing BUSCOs

Metrics marked with an asterisk are biological/reference-based. All other metrics only rely on the reads used to build the
assembly and/or the resulting contigs. Details can be found in the Methods. ORF: open reading frame.
aN50 statistic limited to the most highly expressed transcripts, which account for 90% of the total normalized expression
data, calculated with the Trinity toolkit utilities.
bNumber of proteins covered by >90% by assembled transcripts.
cNot available for the E. coli and A. thaliana data sets because only calculated by TransRate if paired-end data are available.
dSum of complete single-copy and complete duplicated BUSCOs.

Methods
Description of assembly tools and executed commands

We collected 10 de novo assembly tools for the transcriptome re-
construction of the 9 RNA-Seq data sets (Table 1), summarized
in Table 3 and Electronic Supplement Table S2.

Six of these transcriptome assemblers are specially designed
for working with RNA-Seq data and are based on de Bruijn
graphs: Trans-ABySS (RRID:SCR 013322) [9], Trinity (RRID:SC
R 013048) [10], Oases (RRID:SCR 011896) [11], IDBA-Tran (RRID:
SCR 011891) [12], SOAPdenovo-Trans (RRID:SCR 013268) [13], and
Shannon [16].

Trans-ABySS and Oases are built on top of the de novo
genome assemblers ABySS v2.1.1 (RRID:SCR 010709) [47] and
Velvet v1.2.10 (RRID:SCR 010755) [45], respectively. Both support
MK values by running the underlying genome assembler mul-
tiple times and merging the assembled contigs. We executed
Trans-ABySS (v2.0.1) and Oases (v0.2.08) with MK and in strand-
specific mode, if suitable (Files S3).

Trinity and SOAPdenovo-Trans (the latter one built on the
principles of SOAPdenovo2 [RRID:SCR 014986] [54]) are stand-
alone de novo transcriptome assembly tools, also based on
de Bruijn graphs but lacking an automated MK support. Whereas
for SOAPdenovo-Trans different single k-mer values can be ap-
plied, Trinity relies on a fixed k-mer value of 25. Trinity (v2.8.4)
was run with default parameters and, if suitable, in strand-
specific mode (Files S3). For SOAPdenovo-Trans (v1.03), currently
no strand-specific assembly is supported [13].

IDBA-Tran (v1.1.1), a novel assembly tool that claims to be
more robust regarding uneven expression levels in RNA-Seq
data [12], was run with MK and has no option for strand-specific
assembly (Files S3). As IDBA-Tran assumes paired-end reads to

be in forward-reverse order we manually converted the orienta-
tion of reads if necessary.

Shannon (v0.0.2), a so-called information-optimal de novo
RNA-Seq assembler [16], was used with a single default k-mer
value and if suitable in strand-specific mode (--ss; Files S3).

We used Bridger [14] (v2014-12-01) and BinPacker [15] (v1.0),
2 assembly tools that rely on splicing graphs [14] instead of
de Bruijn graphs. Bridger provides a new framework for de novo
transcriptome assembly that “bridges” between techniques em-
ployed in the Cufflinks [55] pipeline and the Trinity tool, in or-
der to overcome the limitations of Trinity. BinPacker was de-
veloped on the basis of Bridger’s principles and utilizes sim-
ilar to Shannon coverage information to dissolve correspond-
ing isoforms efficiently. Bridger can only run with single k-mer
values between 19 and 32 with a default of 25. We executed
Bridger with the default k-mer and, if possible, with the strand-
specific option (--SS lib type). However, for 2 strand-specific
RNA-Seq data sets (M. musculus, H. sapiens) the tool failed and
was executed in the default unstranded mode (Files S3). We ob-
served problems with strand-specific paired-end data in this ver-
sion of Bridger. The strand-specific assembly of the single-end
E. coli data (--SS lib type F) ran without problems. BinPacker
was executed on a single k-mer value and if suitable in strand-
specific (-m F|RF) mode (Files S3).

We further included SPAdes v3.13.0 (RRID:SCR 000131) [18],
a widely used de novo genome assembler based on de Bruijn
graphs and MK values. We were interested in determining how
well the tool’s optimization for single-cell assembly could be
applied to RNA-Seq data and how the tool performed in con-
trast to the aforementioned specialized transcriptome assem-
blers. Since version 3.9.0 an RNA-Seq mode is also implemented,
which uses 2 k-mers for assembly if possible [17]. We evalu-
ated the performance of SPAdes in single-cell (--sc; SPAdes-sc)

https://www.rna.uni-jena.de/supplements/assembly/index.html#assembler
https://scicrunch.org/resolver/RRID:SCR_013322
https://scicrunch.org/resolver/RRID:SCR_013048
https://scicrunch.org/resolver/RRID:SCR_011896
https://scicrunch.org/resolver/RRID:SCR_011891
https://scicrunch.org/resolver/RRID:SCR_013268
https://scicrunch.org/resolver/RRID:SCR_010709
https://scicrunch.org/resolver/RRID:SCR_010755
https://www.rna.uni-jena.de/supplements/assembly/index.html#execution
https://scicrunch.org/resolver/RRID:SCR_014986
https://www.rna.uni-jena.de/supplements/assembly/index.html#execution
https://www.rna.uni-jena.de/supplements/assembly/index.html#execution
https://www.rna.uni-jena.de/supplements/assembly/index.html#execution
https://www.rna.uni-jena.de/supplements/assembly/index.html#execution
https://www.rna.uni-jena.de/supplements/assembly/index.html#execution
https://scicrunch.org/resolver/RRID:SCR_000131
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and RNA-Seq (--rna; SPAdes-rna) mode. Henceforth, we refer to
SPAdes-sc and SPAdes-rna as 2 different assemblers, although
both are based on the same tool.

In total, we calculated >200 single k-mer assemblies (Files S3;
doi.org/10.17605/OSF.IO/5ZDX4). Each assembler was run on
each data set (Fig. 1). If possible, MKs were used (Table 3).
Trans-ABySS, Oases, and IDBA-Tran include a built-in function-
ality for MKs. SPAdes-sc/-rna can automatically choose multi-
ple/2 k-mers for the assembly process and were therefore ex-
ecuted with these default options. For the E. coli, A. thaliana,
H. sapiens, and the artificial data sets k-mers 25, 35, 45, 55, and
65 were used with Trans-ABySS, Oases, and IDBA-Tran. M. mus-
culus data were assembled with the k-mers 25, 35, 45, and 55 be-
cause the read length is shorter in comparison to the bacterial
and plant data sets. The short-read C. albicans data were run with
k-mers 21, 27, 33, and 39. The EBOV-infected HuH7 samples were
run with k-mers 25, 29, 33, 37, and 41. All k-mer values were se-
lected on the basis of previous results for these data sets and in
relation to the different read lengths and sequencing setups. All
assemblers were run with default parameters if not otherwise
stated. Details about the execution of each tool on each data set
can be found in the Electronic Supplement, Files S3.

Evaluation metrics

We benchmarked all assembly results using various evaluation
tools (Fig. 1) from which 20 metrics were selected (summarized
in Table 4). Nine metrics are based on reference sequences and
annotations, whereas the others are only based on the final as-
sembly itself (the contigs) or the reads that were used to con-
struct the assembly. We also evaluated the computational effi-
ciency (runtime, memory) to assess the applicability of the tools
for deeply sequenced data sets and/or large sample size.

Mapping rate
We used HISAT2 v2.0.4 (RRID:SCR 015530) [41] to map the quality-
controlled reads back to each assembly. The re-mapping rate can
give preliminary insights into the quality of a transcriptome as-
sembly (Fig. S4); however, further metrics are needed to assess a
more complete picture of each assembler’s performance.

Ex90N50
We have used the Trinity [10] toolkit utilities to calculate a
modification of the widely used Nx statistic that also takes tran-
script expression data into account. This so-called expression-
informed ExN50 statistic compensates for short and weakly ex-
pressed transcripts that can dominate a transcriptome assem-
bly and can drive the N50 value towards small values for high-
quality assemblies. Here we refer to the Ex90N50 value, which
calculates the N50 statistics as usual but is limited to the most
highly expressed transcripts, which account for 90% of the to-
tal normalized expression data. We used Salmon [53] (v0.11.3)
for fast alignment-free abundance estimation to calculate the
Ex90N50 values (Table S7).

Reconstruction of full-length protein-coding transcripts
To assess the number of (nearly) full-length reconstructed
protein-coding transcripts, we used Blastx (RRID:SCR 00165
3) [48] against the UniProtKB/Swiss-Prot database (RRID:SCR 0
04426) [56] followed by scripts provided by the Trinity [10]
toolkit utilities. To improve the overall sequence coverage,
we first grouped Blast hits of a single transcript align-
ing to a single protein sequence with several discontinu-
ous alignments for each assembly (Trinity toolkit script:

blast outfmt6 group segments.pl). Based on the grouped out-
put, we have calculated the distribution of the percent-
age length coverage for the top matching database entries
(blast outfmt6 group segments.tophit coverage.pl). Finally,
for each assembly the number of proteins that are covered by
>90% of their protein’s length by assembled transcripts were re-
ported.

Note that we performed the Blastx search with the param-
eters -evalue 1e-20 and -max target seqs 1. By setting the
maximum target sequences to 1, we drastically reduced the run-
time but only reported the first hit passing the e-value thresh-
old. Therefore, we did not necessarily report the best match for
each transcript. This problem of misinterpretation of the pa-
rameter was recently discussed in the bioinformatics commu-
nity [57]. However, for our comparison the overall results would
only change slightly by increasing the maximum number of tar-
get sequences.

rnaQUAST
We used rnaQUAST [39] (v1.5.1) to calculate various statistics for
each assembly and to demonstrate the completeness and cor-
rectness levels of the assembled transcripts. The tool was run
with reference transcriptomes to calculate the sensitivity and
specificity of an assembly. To check for redundancy in the as-
semblies, we have included the duplication ratio from the sen-
sitivity report as 1 metric. Furthermore, rnaQUAST calculates var-
ious bar plots and histograms to visualize basic statistics such
as transcript lengths, mismatch rates, and the number of tran-
script alignments per isoform. All plots and detailed statistics
can be found in the Electronic Supplement, Fig. S5.

TransRate
TransRate [42] (v1.0.3) examines an assembly and compares it
to experimental evidence such as the reads the assembly was
built on. One of our metrics relies on the optimal reference-
free TransRate score that utilizes only the reads that were used
to generate the assembly as evidence (Table 4). Such a metric
should be generally better at optimizing the assembly process
because the comparison to a reference will always penalize gen-
uine biological novelty contained in the assembly. The score is
produced for the whole assembly and every single contig. Cur-
rently, the score can be calculated only for paired-end data. The
score of an assembly is calculated as the geometric mean of all
contig scores multiplied by the proportion of input reads that
provide positive support for the assembly [44]. Thus, the score
captures how confident one can be in what was assembled, as
well as how complete the assembly is. The minimum possible
score is 0.0, while 1.0 is the maximum score (Table S6).

DETONATE
We further used the DETONATE workflow: a pipeline for the “DE
novo TranscriptOme rNa-seq Assembly with or without the
Truth Evaluation” [41] (v1.11). We mainly focused on DETONATE’s
RSEM-EVAL score. This statistically based evaluation score uti-
lizes multiple factors, such as the compactness of the assembly
and its support from the RNA-Seq reads. Therefore, the RSEM-
EVAL score can be used to evaluate assemblies even when the
ground truth is unknown. Assemblies with higher RSEM-EVAL
scores are considered better. DETONATEwas run for all assemblies
as recommended in the online vignette [58]. The main metrics
calculated by DETONATE can be found in Electronic Supplement
Table S9.

https://www.rna.uni-jena.de/supplements/assembly/index.html#execution
https://doi.org/10.17605/OSF.IO/5ZDX4
https://www.rna.uni-jena.de/supplements/assembly/index.html#execution
https://scicrunch.org/resolver/RRID:SCR_015530
https://www.rna.uni-jena.de/supplements/assembly/index.html#hisat
https://www.rna.uni-jena.de/supplements/assembly/index.html#exn50
https://scicrunch.org/resolver/RRID:SCR_001653
https://scicrunch.org/resolver/RRID:SCR_004426
https://www.rna.uni-jena.de/supplements/assembly/index.html#quast
https://www.rna.uni-jena.de/supplements/assembly/index.html#transrate
https://www.rna.uni-jena.de/supplements/assembly/index.html#detonate
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BUSCO
We benchmarked universal single-copy orthologs with BUSCO

v2.0 (RRID:SCR 015008) [39]. The tool detects orthologous can-
didate genes in the assemblies and assesses the presence and
abundance of single-copy orthologs as an evaluation criterion.
The so-called BUSCOs are selected from OrthoDB orthologous
groups at major species radiations requiring orthologs to be
present as single-copy genes in the vast majority (>90%) of avail-
able species. BUSCO provides a quantitative assessment of the
completeness of an assembly in terms of expected gene content.
The results are further simplified into categories of (i) complete
and single-copy, (ii) complete and duplicated, (iii) fragmented,
or (iv) missing BUSCOs. For our evaluation, we summed up
the amount of complete/single-copy and complete/duplicated
BUSCOs to also take into account the different isoforms recon-
structed from the assembly tools.

For the evaluation of the simulated human data set, the Euar-
chontoglires reference data set was reduced to BUSCO orthologs
originating only from human Chr1 (671 BUSCOs). The full BUSCO
output for each data set can be found in the Electronic Supple-
ment, Fig. S8.

Calculation of normalized evaluation scores

We investigated the performance of 10 de novo assembly tools ak

∈ {a1, . . . , a10} on 9 RNA-Seq data sets di ∈ {d1, . . . , d9} using 20
pre-selected metrics mj ∈ {m1, . . . , m20}. For each combination of
a data set di and a metric mj we define a vector vi, j of raw scores
ri, j

k for each assembly tool ak as

vi, j = (ri, j
1 , . . . , ri, j

10 ).

Then, we normalized the values of the vector vi, j to the in-
terval (0,1) using

normalize(vi, j
k ) = vi, j

k − min(vi, j )
max(vi, j ) − min(vi, j )

= ni, j
k

and denoted the resulting vector of (0,1)-normalized scores
as

ni, j = (ni, j
1 , . . . , ni, j

10 ).

For example, the following vector of raw scores results for the
E. coli data set deco, the metric overall mapping rate momr, and the
corresponding raw scores of all 10 assembly tools:

veco,omr = (77.0, 49.1, 95.7, 56.6, 87.4, 71.1, 34.3, 76.7, 88.0, 89.0).

In this case, the assembly tool a3 achieved an overall mapping
rate of 95.7. After (0,1)-normalization the vector results in the
following:

neco,omr = (0.7, 0.24, 1.0, 0.36, 0.86, 0.6, 0.0, 0.69, 0.88, 0.89).

This normalization of the raw metric values to the interval
(0,1) yields the same results as a z-score transformation with ad-
ditional (0,1)-normalization.

We define the metric score MS for an assembly tool ak and a
data set di as the sum of all (0,1)-normalized scores ni, j

k over all

20 pre-selected metrics mj as

MS(di , ak) =
20∑

j=1

ni, j
k .

An MS(di, ak) of 14.62 would mean that the assembler ak for
data set di achieved a normalized and summarized score of 14.62
from a maximum possible score of 20 (the number of metrics;
denoted as 14.62/20).

To get a more general overview of the performance of each
assembler, we summed up the metric scores MS an assembler
achieved for each data set di to calculate an overall metric score
(OMS) for each assembler:

OMS(ak) =
9∑

i=1

MS(di , ak).

The 3 human RNA-Seq data sets from specimens exposed to
the EBOV and sampled 3, 7, and 23 h post-infection [31] are based
on the same sequencing parameters and comprise roughly the
same amount of reads (Fig. 1 and Table S1 ). Owing to this sim-
ilarity, we decided to reduce the impact of systematic assembly
errors when calculating the OMS for 1 assembly tool and used
the mean of all 3 MS scores for these 3 data sets (Fig. 2). For ex-
ample, Trans-ABySS [9] performed very well in constructing the
human transcripts out of all 3 Ebola-infected data sets regarding
the MS (14.35/20, 14.11/20, and 13.87/20), whereas BinPacker [15]
did not (4.81/20, 9.17/20, and 7.55/20); see Fig. 2.

The maximum achievable metric score for the E. coli and
A. thaliana data sets is 18 and not 20, because the optimal score
and the percentage of uncovered bases are only calculated by
TransRate [42] in the case of paired-end data. The calculated
MSs and OMSs are summarized in Fig. 2.

Computational resources

All calculations were run on 2 symmetric multiprocessing
servers with 14 TB storage (raid-5) and 48 CPU cores each, com-
prising 4 AMD Opteron 6238 CPUs and 512 GB RAM. Each assem-
bly was executed on 48 threads.

Usability

We further aimed to install and run all tools without root rights
on our test system (Debian GNU/Linux 8 [jessie] 64-bit). Of
course, how easily a tool can be installed and executed depends
heavily on the machine used, the server setup, and how famil-
iar the user is with the programing language the tool is based
on. Nevertheless, it should be the goal of each publicly available
piece of software to be as user-friendly as possible. Therefore, we
collected our experiences during the installation and execution
of each assembler to share our observations (Table 3).

Availability of supporting data and materials

A comprehensive Electronic Supplement publicly available at
www.rna.uni-jena.de/supplements/assembly [33] accompanies
this study. The electronic supplement will stay consistent with
the results presented in this article. Updates, including new as-
sembly tools, versions, and data sets, will be marked and ad-
ditionally linked on subpages online. In addition, we have up-
loaded all processed read data, assemblies, blast alignments,

https://scicrunch.org/resolver/RRID:SCR_015008
https://www.rna.uni-jena.de/supplements/assembly/index.html#busco
https://www.rna.uni-jena.de/supplements/assembly/index.html#data
https://www.rna.uni-jena.de/supplements/assembly/index.html
https://www.rna.uni-jena.de/supplements/assembly/index.html
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mapping files, and the complete electronic supplement as an ad-
ditional archive into the Open Science Framework under acces-
sion doi.org/10.17605/OSF.IO/5ZDX4 [59]. Additional intermedi-
ate and final result files for evaluation tools such as BUSCO and
TransRate as well as other results are also archived in the Giga-
Science GigaDB respository [60].

Additional files

Supplementary Table S1: Data sets and preprocessing.
Supplementary Table S2: Assembly tools.
Supplementary Files S3: Executed assembly commands.
Supplementary Figures S4: HISAT2 re-mapping rate.
Supplementary Figures S5: rnaQUAST statistics.
Supplementary Tables S6: TransRate.
Supplementary Figures S7: ExN50.
Supplementary Figures S8: BUSCO.
Supplementary Tables S9: DETONATE.
Supplementary Tables S10: Selected main metrics.
Supplementary Figures S11: Runtime and memory consump-
tion.
Supplementary Figures S12: (0,1)-normalized scores per data set
and metric.
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