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Abstract

Background: Polygenic risk score (PRS) analyses have become an integral part of biomedical research, exploited to gain
insights into shared aetiology among traits, to control for genomic profile in experimental studies, and to strengthen causal
inference, among a range of applications. Substantial efforts are now devoted to biobank projects to collect large genetic
and phenotypic data, providing unprecedented opportunity for genetic discovery and applications. To process the
large-scale data provided by such biobank resources, highly efficient and scalable methods and software are required.
Results: Here we introduce PRSice-2, an efficient and scalable software program for automating and simplifying PRS
analyses on large-scale data. PRSice-2 handles both genotyped and imputed data, provides empirical association P-values
free from inflation due to overfitting, supports different inheritance models, and can evaluate multiple continuous and
binary target traits simultaneously. We demonstrate that PRSice-2 is dramatically faster and more memory-efficient than
PRSice-1 and alternative PRS software, LDpred and lassosum, while having comparable predictive power. Conclusion:
PRSice-2’s combination of efficiency and power will be increasingly important as data sizes grow and as the applications of
PRS become more sophisticated, e.g., when incorporated into high-dimensional or gene set–based analyses. PRSice-2 is
written in C++, with an R script for plotting, and is freely available for download from http://PRSice.info.
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Polygenic risk score (PRS) analyses are beginning to play a
critical role in biomedical research, being already sufficiently
powered to provide scientific insights and with the potential
to contribute to stratified medicine in the future [1–9]. The in-
creasing availability of genetic data from regional and national
biobank projects [10–12] has allowed more powerful PRSs to be
calculated. However, the calculation of PRS, which involves pa-
rameter optimization [13–16], can be a computationally inten-
sive process, especially for large datasets and when multiple
analyses are conducted.

To fully utilize the power of large datasets and to facilitate
future method and application developments, at scale, we have
performed a major overhaul of our original PRSice software [13]
to produce PRSice-2. All code has been rewritten in C++, and
code from PLINK-1.9 [17] has been incorporated to optimize
computation. As a result of the consistent language and switch
to objected-oriented code, different analytical components of
the code can communicate directly, without, e.g., the generation
of intermediate files, such as those containing PRS correspond-
ing to each P-value threshold, or post-processed genotype files.
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This has generated a substantial speed-up, a lower processing
burden, and a reduction in disk space requirement in PRSice-
2. In addition, a separate plotting script is implemented in R.
Separate tasks are organized into functions and are, thus, more
amenable to tailored extensions by users. Finally, a range of user
options are incorporated into PRSice-2 to increase flexibility and
improve usability.

Features of PRSice-2

PRSice-2 uses the same standard approach to PRS calculation
as PRSice, involving clumping single-nucleotide polymorphisms
(SNPs) (thinning SNPs according to linkage disequilibrium and
P-value) and then performing P-value thresholding, known as
the “C+T” method [14], and retains the majority of the fea-
tures of its predecessor [13], including automatic strand flipping,
clumping [18], and calculation and evaluation of PRS under few
(“fastscore”) or many (“high-resolution scoring”) P-value thresh-
olds.

When compared to PRSice, PRSice-2 streamlines the entire
PRS analysis pipeline without generating intermediate files, and
performs all the main computations in C++, leading to a dras-
tic speed-up in run time and reduction in memory burden (see
Supplementary Fig. 1). Extraction and exclusion of samples and
SNPs are also implemented, allowing PRS analysis to be per-
formed directly on a subset of the input data without performing
pre-filtering.

Briefly, the main features of PRSice-2 are:

1. Handles large-scale PRS analyses of both genotyped and im-
puted data

2. Computes empirical association P-values to account for over-
fitting

3. Can perform PRS analyses on a large number of target phe-
notypes simultaneously

4. Provides several options for imputing missing genotypes
5. Allows calculation of PRS based on different inheritance

models, including additive, dominant, recessive, and het-
erozygous models

6. Automatically generates dummy variables for categorical co-
variates

7. Can perform regression to estimate relative effect/risk corre-
sponding to samples in user-defined stratum of the popula-
tion. Can output quantile and strata plots

8. Amenable to user extensions, such as relating to input data
format, regression modelling, and output

Handling of Imputed Data

Genotypes are typically represented as the discrete counts of the
minor or effect allele (0, 1, or 2), for SNPs, in each individual.
Genotypes not included in the genotyping chip can, potentially,
be imputed and are usually either recorded as a set of 3 proba-
bilities corresponding to the probability of each of the possible
genotypes [19] or, based on these, as the expected genotype (a
real number between 0 and 2 known as the “dosage”) [19] or as
the “best-guess” (most probable) genotype. While any of these
data formats can be exploited in PRS analyses, the most com-
mon approach is to use the best-guess genotype for each indi-
vidual. However, this approach does not account for the uncer-
tainty in the imputed genotype.

Currently, most PRS software only supports input of the
genotyped format. Therefore, users need to generate a large in-
termediate file containing the best-guess genotypes and discard

any information related to imputation uncertainty. To reduce
the storage space requirement and to incorporate imputation
uncertainty into PRS analyses, PRSice-2 implements support for
the BGEN imputation format. PRSice-2 can directly process the
BGEN imputed format and convert to either best-guess geno-
types or dosages when calculating the PRS, without generating
a large intermediate file. While PRSs based on best-guess geno-
types are calculated as for genotyped input, dosage-based PRSs
are calculated as

PRS =
∑m

i
βi

(∑2

j=0
ωi j × j

)
, (1)

where ωi j is the probability of observing genotype j, where j
∈ {0,1,2}, for the i th SNP; m is the number of SNPs; and βi is
the effect size of the i th SNP estimated from the relevant base
genome-wide association study (GWAS) data.

The ability to perform PRS analyses directly on imputed data
can be particularly useful when the base GWAS and target sam-
ples are genotyped on a different platform because then there
can be a small fraction of overlapping SNPs. For example, of the
725,459 post–quality control SNPs (see Supplementary Note 1)
in the UK Biobank genotype data [10], only 31% (222,956) were
found in the GIANT Height and Body Mass Index (BMI) GWAS [20,
21]. The use of imputed SNPs increases the number of overlap-
ping SNPs to 2,121,036 SNPs. To assess the gain in power when
using imputed vs un-imputed data, we performed PRS analy-
ses on height and BMI using UK Biobank genotyped and im-
puted data, with GWAS summary statistics provided by the GI-
ANT consortium [20, 21]. Age, sex, UK Biobank genotyping batch,
UK Biobank assessment centre, and 40 principal components
were first regressed out from the phenotype and the standard-
ized residuals were used instead.

We performed a linear regression using PRSice-2, with the
UK Biobank data as target sample using the default parameters.
When PRS is calculated from the best-guess genotype, the best-
guess genotype is defined as the genotype having an imputation
probability of ≥0.9. If there is no such genotype, then the SNP is
considered to be missing for the individual. In addition, for the
imputed data, we filtered out SNPs with imputation quality score
<0.8. With height as the outcome and PRS for height as predictor,
we observed an increase in phenotypic variance explained (R2) of
the PRS from 0.145 when using genotyped data to 0.152 when us-
ing best-guess imputed genotypes, and 0.153 when using dosage
data; likewise, the R2 for BMI increased from 0.0475 when us-
ing genotype data to 0.0529 when using best-guess genotypes,
and to 0.0535 when using dosage data. These results exem-
plify the potential gain in predictive power when using dosage
data compared to using genotyped or best-guess genotype data.
However, given the modest increases in predictive power, users
may wish to perform first-pass analyses on genotyped-only data
before application to the more computationally intensive im-
puted data. A further challenge in exploiting imputed data is
that there are numerous imputed formats in use in the field.
While it is difficult to support all imputed formats, PRSice-2
adopts a modular approach, which allows simple incorpora-
tion of supports for additional data formats (e.g., VCF) in the
future.

Calculation of Empirical P-value

All approaches to PRS calculation involve parameter optimiza-
tion in generating the final prediction model and are thus vul-
nerable to overfitting [14]. The best strategy to avoid overfitting
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is to evaluate performance in an independent validation sam-
ple, but such a sample is not always available. Alternatively, if
the primary aim is to assess evidence for an association to test
a hypothesis, then we can calculate an empirical P-value corre-
sponding to the association of the optimized PRS, with the Type
1 error rate controlled [13].

In PRSice-2, to obtain the empirical P-value, the target trait
values are permuted across the sample of individuals k times
(default = 10,000) and the PRS analysis is repeated on each set
of permuted phenotypes. Thus, on each permutation, the “best-
fit PRS” is obtained as that most associated with the target trait
across the range of P-value thresholds considered, and the em-
pirical P-value is calculated as:

empirical P =
∑N

n = 1 I (Pn < Po) + 1
N + 1

, (2)

where N is the number of permutations performed; I (.)is an in-
dicator function, which takes a value of 1 if the P-value of the
best-fit PRS of permutation n is smaller than the observed P-
value, Po, and 0 otherwise; and where pseudo-counts of 1 are
added to the numerator and denominator to avoid empirical P-
values of 0 and reflecting (conservatively) counting the observed
trait configuration as 1 potential null permutation [22]. While the
empirical P-values for association will be controlled for the Type
1 error rate, because the same process of parameter optimiza-
tion is performed explicitly under the null hypothesis, the ob-
served phenotypic variance explained, R2, remains unadjusted
and is affected by overfitting. Therefore, it is imperative to per-
form out-of-sample prediction, or cross-validation, to evaluate
the predictive accuracy of PRS when using PRSice-2, and ideally
the former given the problems of generalizability observed with
PRS [14].

Analysis of PRS Strata

While PRSs on most complex traits presently have limited power
to accurately predict risk at the individual level, which will re-
main the case for low-to-moderate–heritability traits irrespec-
tive of GWAS sample sizes, recent studies have demonstrated
that individuals at the tails of PRS distribution can have substan-
tially higher disease risk than those of the general population.
Thus, these individuals may provide useful subjects for experi-
mental follow-up, while in clinical settings it could be more ef-
ficacious to use different risk management strategies, in terms
of screening or interventions, for example, for individuals with
extreme PRS [1–3].

We have implemented a strata analysis feature in PRSice-2 to
aid the calculation of relative phenotypic risk of individuals be-
tween strata. Briefly, the N individuals of the target sample are
first aggregated into M different strata based on their PRS. An
N x (M − 1) design matrix is then generated using dummy cod-
ing, such that an individual is coded 1 in the column that corre-
sponds to their PRS stratum and whereby a user-defined stratum
is the reference group (or the median stratum by default). A lin-
ear regression (for quantitative traits) or logistic regression (for
binary traits) will then be performed to estimate the phenotypic
difference or relative risk, respectively, of each stratum vs the
reference. The set of corresponding β-coefficients (linear) or the
odds ratio (logistic) can then be visualized with the strata plot
(Fig. 1). This allow users to assess whether individuals in the ex-
treme stratum have a substantially higher phenotypic risk when
compared to the reference stratum.

Figure 1. Strata plot generated by PRSice-2. The X-axis shows the range of dif-

ferent quantiles (e.g., (80,90] corresponds to those individuals with PRS between
the 80th and 90th percentile of the population), and the Y-axis shows the odds
ratio when comparing PRS from different quantiles with the reference quantile

(here, (40,60]), with the bars corresponding to 95% confidence intervals of the
odds ratio.

Benchmarking

Here we perform a simulation study to compare the perfor-
mance of PRSice-2 to alternative polygenic score software lasso-
sum [15] and LDpred [16], in terms of run time, memory usage,
and predictive power.

Quantitative traits with heritability (h2) of 0.2 and 0.6 were
simulated with the UK Biobank genotype data (post–quality con-
trol) as input. Briefly, each quantitative trait was simulated on
the basis of the following linear model:

Y = Xβ + ε, (3)

where X is the unstandardized genotype matrix correspond-
ing to 385,794 individuals (rows) and 560,173 SNP genotypes
(columns). The β vector corresponds to the effect size associ-
ated with each SNP, with 100, 1,000, 10,000, 100,000, and 560,173
(all SNPs) randomly selected to be causal SNPs with effect size
β ∼ N(0, 1), β = 0 otherwise, and ε represents the random er-

ror, which follows ε ∼ N
(
0,

√
var(Xβ)(1 − h2)/h2

)
. To control for

batch effects and population structure in the genotype data, a
regression of batch and 40 Principal Components (PCs) against
the simulated trait were performed as follows:

Y = Batch + 40 PCs + ε. (4)

The standardized residuals were then used as the final sim-
ulated trait. Samples of size 50,000 and 200,000 individuals were
randomly selected as the base sample and used to generate the
GWAS summary statistics. Then 100, 1,000, 10,000, and 100,000
samples independent from the base were randomly selected as
the target sample. PRS analyses were then performed on these
base and target data using the latest version of lassosum (v0.4.4),
LDpred (v1.0.6), and PRSice 2 (v2.2.1), on servers equipped with
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286 Intel 8168 24 core processors at 2.7 GHz and 192 GB of RAM.
Default parameters of each program were used. The run time
and memory usage of each program were measured using the
Linux ”time” command and the predictive power of the meth-
ods was assessed according to phenotypic variance explained
(R2). The entire process was repeated 10 times to obtain an es-
timated distribution of run time, memory usage, and predictive
power.

Figure 2 shows the run time and memory usage of PRSice-
2, lassosum, and LDpred. Based on these simulation results,
PRSice-2 is the most efficient software in all settings (Fig. 2a),
significantly faster than lassosum (P = 1e−58, 1-sided t-test) and
LDpred (P = 2e−90, 1-sided t-test). Specifically, PRSice-2 can com-
plete the full PRS analysis on 100,000 samples within 4 min-
utes (Supplementary Table 1), which is 179 times faster than
the 10 hours required by lassosum and 241 times faster than
the 13 hours 27 minutes required by LDpred. Likewise, PRSice-
2 requires significantly less memory (Fig. 2b) than lassosum (P
= 1e−202, 1-sided t-test) and LDpred (P = 9e−112, 1-sided t-
test), requiring <500 MB of memory for 100,000 samples, as op-
posed to 11.2 GB required by lassosum and 45.2 GB required
by LDpred (Supplementary Table 2). Likewise, PRSice-2 outper-
forms PRSice-v1.25, requiring 400 times less time and 8 times
less memory for a target sample size of 10,000 (similar memory
for small target samples; see Supplementary Fig. 1 and Supple-
mentary Tables 1 and 2 for details). As data size grows, or when
more sophisticated PRS analyses are performed at scale [5, 23],
these gains in computational efficiency could become even more
important.

Figure 3 shows the predictive power of PRSice-2 when com-
pared to lassosum and LDpred for quantitative traits with heri-
tability of 0.2, base sample size of 50,000, and target sample size
of 10,000 (see Supplementary Fig. 2 for comparisons across all
settings). Consistent with previous findings [15, 24, 25], PRSice-2
has comparable predictive power to lassosum and LDpred, typi-
cally generating PRSs with predictive power higher than those of
LDpred but not as high as lassosum. However, these results are
inherently dependent on our modelling assumptions. For exam-
ple, in our simulation, effect sizes and residual effects are as-
sumed to have a Gaussian distribution and all “causal” SNPs are
included in the dataset. Thus, we provide these results only as
an approximate guide to performance in settings that match our
assumptions. We provide our simulation code [26] for others to
inspect and repeat our analyses.

While PRSs generated by PRSice-2 do not seem to fully op-
timize predictive accuracy, the simple approach and typically
fewer SNPs exploited allow for easier interpretation of the re-
sults compared with methods that use all SNPs [27]. Moreover,
the efficiency and predictive power of PRSice-2 make it an ideal
tool to perform PRS analyses at scale.

Discussion

We have introduced PRSice-2, a software program for the au-
tomation of PRS analyses applied to large-scale genotype-
phenotype data. Our results demonstrate that PRSice-2 is the
most efficient among leading PRS software, outperforming las-
sosum [15] and LDpred [16]. As data sizes increase and more so-
phisticated PRS analyses, such as multi-trait or gene set–based
PRS analyses, become common, the efficiency advantages of
PRSice-2 will become increasingly important.

Overfitting is a concern for all approaches to PRS analy-
ses [14]. To control for the Type 1 error rate caused by overfit-

ting when exploiting PRS for hypothesis testing, PRSice-2 imple-
ments the calculation of empirical P-values.

PRSice-2 implements a standard approach for performing
PRS analyses. For PRS analyses performed in family data or
across diverse populations, for instance, results should be in-
terpreted carefully [14] and extensions of the standard PRS ap-
proach or alternatives may be required [14,28–30] to generate
more informative results.

Availability of supporting source code and
requirements

Project Name: PRSice-2
Project home page: http://prsice.info
Operating systems (pre-compiled versions): Linux (64-bit), OS X
(64-bit Intel), Windows (64-bit)
Programming language: C++, R (version 3.2.3+)
Other requirements (when recompiling): GCC version 4.8+, zlib
License: GNU General Public License version 3.0 (GPLv3)
Any restrictions to use by non-academics: None
RRID: SCR 01 7057

Availability of supporting data and materials

Data further supporting this work and snapshots of the code are
available in the GigaScience repository, GigaDB [31].

Additional files

Supplementary Figure 1. Performance of PRSice-2 compared to
PRSice-1.25. (a) Mean run time (in minutes) required to complete
the entire analysis, across 10 repeats, when applied to different
sizes of target sample. (b) Mean memory (in GB) required to pro-
cess the different sizes of target sample.
Supplementary Figure 2. Predictive accuracy of the 3 PRS soft-
ware programs across all simulated scenarios using the default
parameters. The y-axis represents the trait variance explained
(R2) by the PRS generated from each software program, while the
x-axis corresponds to the number of causal SNPs for the simu-
lated trait. The right side of the graph shows the number of base
samples included in the simulation and heritability of the simu-
lated trait while the top of the graph shows the number of target
samples included in the simulation.
Supplementary Table 1. Mean run time (in minutes) for each
program over the 10 iterations, across different heritability and
number of causal SNPs. Standard error of run time is in brack-
ets. Due to the large number of intermediate files generated by
PRSice-1.25 and the excessive run time required, we did not test
the run time of PRSice-1.25 with 100,000 target samples.
Supplementary Table 2. Mean memory usage (in GB) for each
program over the 10 iterations, across different heritability and
number of causal SNPs. Standard error of memory usage is in
brackets. Due to the large number of intermediate files gener-
ated by PRSice-1.25 and the excessive run time required, we did
not test the memory use of PRSice-1.25 with 100,000 target sam-
ples.
Supplementary Note 1: Quality Control of UK Biobank
data.

Abbreviations

BMI: body mass index; GWAS: genome-wide association study;
PRS: polygenic risk score; RAM: random access memory; SNP:
single-nucleotide polymorphism; VCF: Variant Call Format.

http://prsice.info
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Figure 2. Performance of the 3 PRS software programs on simulated data. (a) Mean run time (in minutes) required to complete the entire analysis, across 10 repeats,
when applied to different sizes of target sample. (b) Mean memory (in GB) required for the different software programs to process the different sizes of target sample.

Figure 3. Predictiveaccuracy of the 3 PRS software programs for a simulated trait
with heritability h2 = 0.2, target sample size of 10,000, and base sample size of
50,000. The 3 programs were run using their default parameter settings. The Y-
axis represents the trait variance explained (R2) by the PRS generated from each

software program, while the X-axis corresponds to the number of causal SNPs
for the simulated trait. The horizontal line within boxes corresponds to the me-
dian values, while the lower and upper hinges correspond to the lower and upper
quartiles, respectively, and the lines extend to the minimum and maximum val-

ues if those lie within 1.5 times the inter-quartile range (IQR); if not, then they
extend to 1.5 times the IQR. Full results of the comparison study are shown in
Supplementary Fig. 2.

Competing interests

The authors declare that they have no competing interests.

Funding

Medical Research Council FundRef identification ID: http://dx
.doi.org/10.13039/501100000265 MR/N015746/1 to P.F.O. S.W.C. is
funded from the UK Medical Research Council (MR/N015746/1).
This report represents independent research (part)-funded by
the National Institute for Health Research (NIHR) Biomedical Re-
search Centre at South London and Maudsley NHS Foundation
Trust and King’s College London. The views expressed are those
of the authors and not necessarily those of the NHS, the NIHR,
or the Department of Health.

Authors’ contributions

Conceptualization, S.W.C. and P.F.O.; Methodology, S.W.C. and
P.F.O.; Investigation, S.W.C.; Software, S.W.C.; Supervision, P.F.O.;
Funding Acquisition, P.F.O.; Writing—Original Draft, S.W.C.;
Writing—Review and Editing, S.W.C. and P.F.O.

Acknowledgements

We thank the participants in the UK Biobank and the scientists
involved in the construction of this resource. This research has
been conducted using the UK Biobank Resource under applica-
tion 18177 (Dr O’Reilly). We thank Hei Man Wu for providing crit-
ical feedback regarding this manuscript and for test-running the
software. We thank Jonathan Coleman and Kylie Glanville for the
management of the UK Biobank resource at King’s College Lon-
don, and we thank Jack Euesden for his work on PRSice, which
forms the basis of the current software. We thank Christopher
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