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Abstract: Physical activity patterns can reveal information about one’s health status. Built-in sensors
in a smartphone, in comparison to a patient’s self-report, can collect activity recognition data more ob-
jectively, unobtrusively, and continuously. A variety of data analysis approaches have been proposed
in the literature. In this study, we applied the movelet method to classify the activities performed
using smartphone accelerometer and gyroscope data, which measure a phone’s acceleration and
angular velocity, respectively. The movelet method constructs a personalized dictionary for each
participant using training data and classifies activities in new data with the dictionary. Our results
show that this method has the advantages of being interpretable and transparent. A unique aspect of
our movelet application involves extracting unique information, optimally, from multiple sensors.
In comparison to single-sensor applications, our approach jointly incorporates the accelerometer
and gyroscope sensors with the movelet method. Our findings show that combining data from
the two sensors can result in more accurate activity recognition than using each sensor alone. In
particular, the joint-sensor method reduces errors of the gyroscope-only method in differentiating be-
tween standing and sitting. It also reduces errors in the accelerometer-only method when classifying
vigorous activities.

Keywords: accelerometer; activity recognition; digital phenotyping; gyroscope; movelet; sensor;
smartphone

1. Introduction

Physical activity patterns correlate with one’s health status and can be used to ob-
tain information about the individual’s health profile. For example, people recovering
from major surgeries may move less than what is typical for them; the duration of the
changed activity patterns can provide information about the patient’s recovery trajectory
[1]. Similarly, an increase in purposeless movement (e.g., pacing and inability to sit still)
may be a symptom of depression [2]. Thus, it may be beneficial to monitor the relevant
daily activities of people at risk of developing health conditions. This kind of information
has traditionally been gathered by having patients take surveys, complete interviews, or
write diaries [3]. Although these self-reports, as firsthand accounts, are beneficial, they also
have some limitations [4]. For example, self-reported data are often questioned due to their
natural proclivities toward bias: patients may downplay certain tendencies because they
like to be viewed as “normal”. Self-reports may overestimate exercise levels for a “good
social image” [5]. Patients can also provide inaccurate reports unintentionally because
human memory is prone to mistakes [6].

Researchers have sought to find new objective ways of collecting more reliable physical
activity data to complement the self-reported data. The rise in smartphone adoption and
usage offers a unique opportunity to revolutionize patient health status monitoring in
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research settings and clinical practice. Built-in smartphone sensors, such as the GPS,
accelerometer, gyroscope, or magnetometer, can track location and movement continuously
and unobtrusively. These in situ data can be collected to objectively quantify daily activities.
Smartphone data collection does not require outfitting patients with additional instruments
and, thus, can be conducted over long periods of time [7]. Smartphones are also widely
accessible to the population. Based on surveys by the Pew Research Center, as of 2021,
about 85% of U.S. adults own smartphones, which is almost 2.5 times the percentage
from 10 years ago [8]. The field of digital phenotyping has emerged to take advantage
of this new technological breakthrough and the vast amount of smartphone sensor data.
Digital phenotyping is defined as the “moment-by-moment quantification of the individual-
level human phenotype in situ using data from smartphones and other personal digital
devices” [9]. This approach uses smartphones to capture high-throughput data to learn
about cognitive, behavioral, and social phenotypes in free-living settings.

Human activity recognition (HAR) using smartphones has proliferated in recent
years [10]. The first component of HAR is data collection, which requires careful thought
about various questions, such as choosing the appropriate sensors, sampling frequency,
study environment, and smartphone placement. Some studies use a single sensor [11,12],
while other studies simultaneously utilize multiple sensors [13-18]. In our study, we used
data collected from two sensors in the smartphone—the accelerometer and gyroscope.

The second component of HAR is data analysis. With improvements in technology,
cost, and quality of data collection, the main challenge in HAR is shifting to data analysis,
i.e., to extract the activities from the sensor data accurately and robustly [7,10,19]. In general,
a given data analysis procedure can be divided into three steps: preprocessing, feature
extraction, and activity classification [10]. Preprocessing prepares the data for the analysis
at hand. For example, it might include removal of irrelevant high-frequency fluctuations
(noise). The feature extraction step involves selecting and extracting representative features
from the data. In activity classification, the extracted features are first associated with
physical states or physical activities using statistical models. These models are then used to
classify activities for new data.

Previous HAR studies have used a variety of feature extraction and activity classifi-
cation techniques. A rapidly developing field is the application of deep learning, which
automates both feature extraction and activity classification. Using multiple layers in
the network, the deep learning procedure identifies optimal features from the raw data
itself, without human intervention [20]. Some studies show that this approach can yield
highly accurate results in activity classification [21-23]. However, there are limitations
and challenges in the application. First, a vast amount of data is required to train a deep
learning algorithm. Second, the model is usually used as a black box, and the extracted
features from the multi-layered procedure can be difficult to interpret [20], resulting in
difficulties in algorithm improvement.

A more traditional approach of data analysis is to view the data in short segments,
referred to as windows. This approach allows us to examine the data directly and choose
which features to extract through the most appropriate methods. Subsequently, a model
may be constructed from training data to connect the selected features to activities. In this
paper, we adopted the “movelet method” for feature extraction and activity classification,
which was developed by Bai et al. [24] and later augmented by Huang and Onnela [11]. The
movelet method is tailored to each individual patient by constructing a personal dictionary
of windows for different types of activities from her/his training data. The patient’s
activities are then inferred by comparing new data with the data in the dictionary [24].
The unique advantages of the movelet method are that it is intuitive, transparent, and
personalized to each individual patient. The movelet method, in comparison to more
sophisticated machine learning methods, only requires a small amount of training data (a
few seconds per activity).

Some previous studies have used the movelet method to classify activities with a single
sensor [11,24]. Bai et al. [24] analyzed data collected by a body-worn accelerometer. Huang
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and Onnela [11] applied the method to smartphone accelerometer data and separately to
smartphone gyroscope data. The results showed that the smartphone accelerometer and
gyroscope each had strengths in picking up different activities. In this study, we analyzed
smartphone accelerometer data and gyroscope data jointly. Our hypothesis is that combined
information from both acceleration and angular velocity would improve the accuracy of
classification because the individual sensors capture different aspects of movement. The
previous study by He et al. [25] used multiple accelerometers fixed to different parts of the
body. They found improvements in classification accuracy using the integrated information
from the multiple instruments. Although the smartphone is different from body-worn
instruments, we expected its multiple sensors to provide similar benefits in improving
classification accuracy. In comparison to multiple body-worn instruments, the smartphone
has the advantage that it is compact, convenient to carry, and can be used over long time
periods. In this paper, we present an extended version of the original movelet method that
jointly incorporates smartphone accelerometer and gyroscope data. Moreover, we apply
the method to our recent study and discuss the results. Our R code is provided on GitHub.

The paper is organized as follows. Section 2 describes the data set and presents our
method for incorporating accelerometer and gyroscope data jointly in the movelet method.
In Section 3, we present the results of applying this method to the study data set. We also
compare the results to those from applying the movelet method to accelerometer data only
and to gyroscope data only. Section 4 summarizes the results and discusses potential areas
of future research.

2. Materials and Methods
2.1. Study Data Set

The data set used in this paper is from a study we conducted in 2018. The study
included four participants. There were two female and two male participants, ranging in
age from 27 to 54. Characteristics of the participants are provided in Table S1 of Huang
and Onnela [11], including sex, height, weight, and dominant hand. For full disclosure,
participant 1 is an author of this paper. Each participant had a study visit in which she/he
performed a series of activities while wearing a study iPhone in the front right pants pocket
and another study iPhone in the back right pants pocket. Throughout this paper, we focus
on the front pocket phone, and refer to it as “the phone”.

In our study, we collected data from both the accelerometer and gyroscope sensors
in the smartphone, with the phone placed in the front pants pocket. An accelerometer
measures the acceleration of a phone along each of three orthogonal axes of a Cartesian
coordinate system. The x-axis and y-axis are in the plane of the phone’s screen, with x
pointing right and y pointing to the top of the phone. The z-axis points up through the
phone, following the right hand rule. A gyroscope measures the angular velocity of a phone
about three orthogonal axes. In previous HAR studies, a variety of sampling frequencies
(samples per second) have been used (e.g., 1 Hz or even 100 Hz), commonly ranging
between 20 and 30 Hz [10]. In our study, we sampled accelerometer and gyroscope data at
a frequency of 10 Hz (i.e., 10 samples per second). The sampling frequency of 10 Hz was
chosen because it is sufficient for capturing most daily activities.

Participants were observed separately. For each participant, her/his study visit con-
sisted of two phases, training data collection and test data collection. During the training
data collection, accelerometer and gyroscope data were recorded as the participant per-
formed designated activities. These activities included walking, standing, ascending stairs,
descending stairs, sitting, transitioning from sitting to standing (sit-to-stand), and transi-
tioning from standing to sitting (stand-to-sit). In our analysis for each participant, we used
5 s of training data per activity for the activities of walking, standing, sitting, ascending
stairs, and descending stairs. The training data for stand-to-sit used in the analysis came
from one transition from standing to sitting. Analogously, the training data used for sit-
to-stand was from one transition from sitting to standing. The duration of the training
data for sit-to-stand and stand-to-sit were each shorter than 5 s because these activities are
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momentary transitions. The full protocol for the training data collection is provided in
Huang and Onnela [11] (see Table 1 of their paper).

The test data collection included six steps, where the participant followed a prescribed
course of activities on the Harvard Longwood campus. For example, the course in step 1 in-
cluded walking, ascending stairs, standing, and descending stairs. The participant walked
at different speeds in step 3, and ascended and descended a long staircase in step 6. A com-
plete description of steps 1-6 in test data collection is provided in Huang and Onnela [11]
(see Table 1 of their paper). The test data were collected in public spaces outdoors and
indoors, not in a tightly controlled lab environment. We chose these public spaces to collect
unconstrained environment data. In this paper, we use the test data from steps 1, 2, 3, 5,
and 6 in our analysis. The test data from step 4 is not analyzed in this paper. During step 4,
the participant repeated the same course four times with the phone reoriented in a different
position each time. We discuss the issue of how the phone is carried in Section 4.

Each participant was filmed throughout the experiment using a handheld camera. The
video footage was used to manually annotate the sensor data with ground truth activity
labels. The accelerometer and gyroscope measurements from the smartphone, along with
the annotated activity labels from video footage, are publicly available on Zenodo [26].

2.2. The Movelet Method: Single Sensor

The movelet method, proposed by Bai et al. [24], was originally designed for activity
recognition from a body-worn tri-axial accelerometer, but it can be applied to any single
tri-axial sensor. In our previous paper, we applied the movelet method separately to
smartphone accelerometer data and smartphone gyroscope data [11]. The method proposed
by Bai et al. [24] has the following procedure.

The movelet method uses pattern recognition or pattern matching. Consider a
single tri-axial sensor (e.g., a smartphone accelerometer). For a given participant, let
S(t) = (x(t),y(t),z(t)) denote the vector of x, y, and z measurements taken by the sensor
at time ¢ for the participant. We will assume that the sampling frequency of the sensor is 10
Hz. A movelet is defined as a 1-s window of the sensor’s data. Let M (t) denote a movelet
beginning at time {. Then we have

M(t) = {S(t),S(t+0.1),S(t+0.2),...,S(t+09)}, 1)

where the time f is in units of seconds. Thus, the movelet M consists of the time series from
all three axes (x,y,z) of the sensor within a second. The time increments are spaced by 0.1 s
because this is the reciprocal of the sampling frequency 10 Hz. We set the movelet duration
to be 1-s long based on existing literature. Bai et al. [24] found 1 s to be an appropriate
choice because a 1-s window strikes a balance between being long enough to differentiate
activities, yet short enough to avoid encapsulating multiple activities.

Before applying the movelet method, a dictionary is constructed from a participant’s
training data. In the dictionary, the movelets derived from the training smartphone data
are grouped into categories of different activities, based on the ground truth activity labels.
In applying the movelet method, new movelets are constructed from new smartphone
data. Each new movelet is compared to the movelets in the dictionary, and the most
similar dictionary movelet is used to classify its activity. To distinguish between dictionary
movelets and new movelets, define T to be the set of times ¢ during training data collection,
and V to be the set of times t during new data collection. Any given dictionary movelet
M(t) has time t € T, while any given new movelet M(t) has time ¢t € V. The process
of obtaining and comparing dictionary movelets and new movelets is described in the
following paragraphs.

First, the study investigator makes a comprehensive list of daily life activities. Let A
denote the number of activities in the list, which consists of activity 1, activity 2, up through
activity A (e.g., walk, sit, stand). Training data are gathered by having the participant
perform each of the activities while collecting data from the sensor of interest (e.g., a
smartphone accelerometer). These training data are then used to build the dictionary for
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this participant. Each of the A activity entries in the dictionary are composed of multiple
movelets, where any given movelet is a 1-s window of the sensor’s tri-axial (x,y,z) data.
For each of the A activity entries, the collection of dictionary movelets is obtained using
a sliding window process, as described in the following example. Suppose we have a 5-s
segment of training data for a given activity. Then one obtains the 1-s dictionary movelets
for the activity entry by sliding a 1-s window forward one sample (0.1 s, the reciprocal of
sampling frequency) at a time along the tri-axial data, until the right end of the 1-s window
meets the last point of the 5-s time series. The resulting number of movelets is 41 from
the 5-s time series. The number of dictionary movelets of an entry depends on the data
collection frequency and the duration of the training data for the activity. In summary;,
every dictionary movelet M(t) (t € T) is linked to a particular activity entry L(t) in the list
of A activities.

Next, we perform activity classifications on new data (termed test data here) using the
dictionary. For the test data, we also construct movelets by sliding a 1-s window forward,
one sample (0.1 s) at a time along the test data time series. Each test movelet is then matched
with one of the dictionary movelets based on the smallest discrepancy. Precisely, for a given
test movelet M (tg) (to € V), we find

t* = argmin Dg(M(t), M(to)). 2)
teT

The function Dy is a discrepancy metric using Euclidean distance that will be defined
in Section 2.3 [24]. Intuitively, Equation 2 finds the dictionary movelet M (t*) with the
lowest discrepancy from the test movelet M(t(). The activity label L(t*) of the dictionary
movelet M(#*) is then assigned to the test movelet M(t() as its classification. To classify
the activity at a given time point f, one uses the test movelet beginning at the time point
t and the subsequent nine following it. A majority vote is taken among these movelets,
where the activity that receives the most votes is taken as the classification for the time
point t. The rationale behind the majority vote process is that later movelets also contain
activity information for the time point because human activities are continuous.

An advantage of the movelet method is its small training data requirement. As
demonstrated by Bai et al. [24], only a few seconds of training data are required per activity.
More sophisticated machine learning methods can be applied to link the windows of data
to activities [12,18], but this requires more training data [24].

2.3. Discrepancy Metric

In the single-sensor method, a discrepancy metric called Dg is used to compare each
test movelet to each dictionary movelet [24]. The discrepancy Dg is defined as follows.
Consider a dictionary movelet M (t) and test movelet M(t'). For simplicity, we remove the
t and ' and refer to these movelets as M and M’, respectively. For the dictionary movelet
M, here we let X be the vector of length n containing the time series data for the x-axis of
the single sensor during the 1-s window. Define the vectors Y and Z analogously. To be
precise, we have X = (x1,x2,...,%4), Y = (Yy1,¥2,-..,Yn), and Z = (z1,23,...,2,), where
n = 10. The subscripts 1 through n represent the different times in the 1-s window. For the
new movelet M’, we analogously define X' = (x,x),...,x,), Y = (¥}, ¥4 ..., y;), and
Z' = (z},2},...,2},). Using A and A’ to represent a pair of vectors of a given dimension
from the dictionary movelet M and test movelet M, respectively, the Euclidean distance
for the dimension is defined as

sz (A, A/) = Z(ﬂi — al’.)2.
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In the discrepancy metric, the Euclidean distance is computed for each of the x, y, and
z axes, and these three distances are averaged together. Thus, the discrepancy Dg between
the two movelets M and M’ is:

1
Ds(M, M/) = 3 [dL2 (X, X,) + sz (Y, Yl) + sz(Z/ Z/)] :

2.4. The Movelet Method: Joint Sensors

In this paper, we propose an extension to the movelet method in which we use gy-
roscope and accelerometer data simultaneously. The motivation behind this is that we
hypothesized that acceleration and angular velocity provide different physical information,
and combining both could improve the accuracy of the activity classifications. Related work
includes He et al. [25], who applied the movelet method with data from multiple accelerom-
eters fixed to different parts of the body. The joint-sensor method using accelerometer and
gyroscope data follows the same procedure as in Sections 2.2 and 2.3, except for the key
differences that are described below in this section.

In the joint-sensor method, the 1-s movelets include all six dimensions of data (x,
Y, z from the accelerometer and gyroscope sensors) rather than only three dimensions
(from a single sensor). Thus, these movelets are multistream movelets because they come
from the accelerometer and gyroscope data streams. The multistream movelets still follow
Equation (1), except the data S() at any given time f is now a vector of six values, with

S(#) = (xa(t), Ya(t), 2a(t), X5 (), yg (£), 24 (8)),

where x;, yq, and z, correspond to the accelerometer and xg, y¢, and zg correspond to
the gyroscope. In our data collection, the sampling frequencies for the accelerometer and
gyroscope were both 10 Hz. However, the measurements from the two sensors were not
synchronized. Thus, we required data preprocessing to synchronize the accelerometer and
gyroscope data before implementing the joint-sensor method. In our data preprocessing,
we linearly interpolated the gyroscope data to the timestamps in the accelerometer data.
This was done for both training data and test data. Thus, all dictionary and test movelets
in the joint-sensor analysis had six measurements at every accelerometer timestamp. We
chose linear interpolation because it is simple and has been recommended for this type of
data [27].

Compared to the single-sensor method, we also used a different discrepancy metric
called Dy in the joint-sensor method to compare our multistream movelets. The discrepancy
metric Dy is defined as follows. As in Section 2.3, we use M and M to represent a dictionary
movelet and test movelet, respectively. Note that now the dictionary movelet M has
corresponding data vectors X,, ¥,, and Z, for the accelerometer and vectors Xg, Y, and
Z, for the gyroscope. Analogously, the test movelet M’ has corresponding data vectors X7,
Y;, and Z; for the accelerometer and vectors Xg, Y, and Zj for the gyroscope. Moreover,
as described above, the vectors for the gyroscope (i.e., X¢, Y¢, and Z, for movelet M and
X (’g, Yé, and Z’g for movelet M') are obtained by interpolating the original gyroscope data
to the accelerometer timestamps, so that the two data sources are synchronized.

The distance metric D; for comparing M and M is defined as:

1
D](M' M/) = g[sz(Xﬂerlz) + sz (Yﬂryla) + sz (le'ZZz)
+ sz (Xg/ X({g) + dLZ (Ygl Y:g) + sz(Zg/ Z:g)]

Thus, for the joint-sensor movelet method, we compute the distances for the x, y, and
z axes of both the accelerometer and gyroscope and average these six distances together.

2.5. Analysis Procedure

We applied the extended version of the movelet method using accelerometer and
gyroscope data jointly, and we also compared its classification accuracy to the original
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(i.e., single-sensor) movelet method using the accelerometer data only and the gyroscope
data only. Table 1 summarizes the key points of the analysis procedure. In the gyroscope-
only analyses, we used the original gyroscope data rather than interpolated gyroscope
data. This was done to mimic how an analysis using only gyroscope data would be
performed in practice. Applying the movelet method to the original gyroscope data
resulted in an activity classification for each gyroscope timestamp. Since the accelerometer-
only and joint-sensor analyses yielded classifications at the accelerometer timestamps, we
then computed activity classifications for each accelerometer timestamp by taking the
classification for the closest gyroscope timestamp. The R code for this paper is provided on
GitHub at https://github.com/KebinYan/Code-for-Paper; accessed on 24 February 2022.
The analyses were performed using a MacBook Pro laptop with a dual-core Intel Core i5
processor running at 2.7 GHz and 8 GB of 1967 MHz DDR3 onboard memory.

Table 1. Analysis procedure. This table summarizes the analysis procedure of this paper. The rows
of the table show the methods, including the joint-sensor method, the accelerometer-only method,
and the gyroscope-only method. For each method, the “Training Data” column indicates the amount
of training data used per activity, and whether linear interpolation was applied to the data. For
each participant’s training data, we used 5 s per activity, with the exceptions of the sit-to-stand and
stand-to-sit transitions. The “Test Data” column indicates whether linear interpolation was applied
to the test data.

Sensor Training Data Test Data
Joint-sensor Accelerometer: 5 s of the Accelerometer:
original training data for each activity original test data
Gyroscope: 5 s of the training Gyroscope:
data for each activity, interpolated test data interpolated to

to the accelerometer timestamps  the accelerometer timestamps

Accelerometer only 5s of the original training Original test data
data for each activity

Gyroscope only 5 s of the original training Original test data
data for each activity

3. Results
3.1. Training Data Example

We built a separate dictionary for each participant using her/his training data, with
up to 5 s per activity. As an example, Figures 1 and 2 show the training data of participant 1
from the accelerometer and gyroscope, respectively. For both sensors, the signals for
standing and sitting are flat lines, while those for walking, ascending stairs, and descending
stairs are variable and quasi-periodic. The signals for the sit-to-stand and stand-to-sit
activities are smooth curves that occur over a brief period of time.

In the accelerometer training data (Figure 1), we observe that each activity has its own
characteristic signature. For example, standing and sitting can be distinguished since the
x,y, and z data are at different levels. In standing, v is approximately +0.98 g and x and
z are close to —0.15 g and 0.02 g, respectively, likely corresponding to the phone being
positioned vertically. In sitting, x is approximately —0.73 g, z is approximately 0.64 g, and
y is approximately 0.26 g. This may correspond to the phone being in the right pocket. The
curves for stand-to-sit are a smooth transition from the coordinates for standing to sitting,
and vice versa for sit-to-stand. The patterns for walking, ascending stairs, and descending
stairs differ from each other (e.g., the shapes in the z-axis data are different). Moreover,
within an activity, the three axes also show different signatures (e.g., different fluctuations
and peaks). For example, in walking, the x and y have an out-of-phase tendency in their
extremes but the z shows more degrees of freedom.
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Figure 1. Accelerometer training data for participant 1. This figure shows the accelerometer training
data for participant 1. The accelerometer measures the acceleration of the smartphone along the x, y,
and z axes. The acceleration data are measured in units of g (i.e., 9.81 m/ sz). The x-axis is shown in
black, the y-axis in blue, and the z-axis in orange.
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Figure 2. Gyroscope training data for participant 1. This figure shows the gyroscope training data for
participant 1. The gyroscope measures the angular velocity of the smartphone projected onto the x, v,
and z axes. The angular velocity data are measured in units of radians per second (rad/s). The x-axis
is shown in black, the y-axis in blue, and the z-axis in orange.
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In the gyroscope training data (Figure 2), we also observe characteristic signatures for
different activities. These signatures are different from what we saw in the accelerometer
data. In both standing and sitting, the x, y, and z are all approximately 0 radians/s because
the phone is not rotating. Thus, given a short segment of the gyroscope signal, we may
not be able to distinguish sitting from standing. However, the transitions sit-to-stand
and stand-to-sit can be distinguished by the gyroscope. The sit-to-stand transition shows
smooth arcs that start and end at 0. In contrast, the stand-to-sit transition is more variable
in the beginning and then approaches 0 smoothly. For the activities of walking, ascending
stairs, and descending stairs, the patterns appear to be more periodic for the gyroscope
than for the accelerometer. The three axes are also more synchronized. Therefore, the
accelerometer and gyroscope data are complementary to each other.

3.2. Results for Participant 3

We applied the movelet method to steps 1, 2, 3, 5, and 6 of each participant’s test
data. Table 2 shows the amount of test data per participant. In this section, we present
the joint-sensor results of participant 3 as an example. We also compare them to the
accelerometer-only and gyroscope-only results. In Section 3.3, we then summarize the
joint-sensor results of all participants.

Table 2. Amount of test data per participant. This table shows the total number of samples per
participant across steps 1, 2, 3, 5, and 6 of the test data collection. The sampling frequency was
approximately 10 Hz (i.e., 10 samples per second). For each participant, we present the number
of samples of each activity type. The activity types observed in the test data collection included
walking (“walk”), standing (“stand”), ascending stairs (“stair up”), descending stairs (“stair down”),
sitting (“sit”), the sit-to-stand transition (“sit-to-stand”), the stand-to-sit transition (“stand-to-sit”),
and going through a revolving door (“revolving door”). The “walk” activity includes slow-, normal-,
and fast-paced walking.

Participant 1 Participant 2 Participant 3 Participant 4

walk 3288 3135 3287 3246
stand 201 150 240 203
stair up 321 302 361 342
stair down 404 274 324 302
sit 291 232 242 251
sit-to-stand 21 20 20 20
stand-to-sit 20 20 20 20
revolving door 50 31 20 30

Figure 3A shows the results for participant 3 in step 1. In step 1, the participant
performed the activities of standing (blue), descending stairs (green), walking (black), and
ascending stairs (orange). The top image in Figure 3A shows the true activity labels based
on video footage, the second image shows the classifications for accelerometer-only, the
third shows the classifications for gyroscope-only, and the fourth shows the classifications
for the joint-sensor method.

Both the accelerometer-only and gyroscope-only methods recognized descending
stairs and ascending stairs accurately. The accelerometer-only method also correctly recog-
nized standing. However, the gyroscope-only method misclassified 47.5% of the standing
period as sitting (pink). This is consistent with the visual examination of the training data
that sitting and standing periods are not distinguishable from gyroscope data. For the
walking (black) period, the accelerometer-only method matched the truth accurately. While
the gyroscope-only classifications were also mostly accurate, there were two segments that
were characterized as ascending stairs. Further examination is needed as to whether this is
an artifact or reflects small changes on the ground.
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Combining the accelerometer and gyroscope data, the accurate ascending stair and
descending stair classifications were preserved. Moreover, standing was classified correctly,
improved from the gyroscope-only classifications. The walking classifications were also
accurate. In particular, the joint-sensor method corrected the two segments misclassified as
ascending stairs from the gyroscope alone. The joint-sensor method also captured the brief
periods of walking that fell between ascending or descending stairs, which were sometimes
smoothed over by the accelerometer alone.

(A) (B)

Truth

Time Elapsed (sec) Time Elapsed (sec)
W walk @ stairUp O standToSit M sitToStand
@ stand W stairDown @ sit

Figure 3. Steps 1 and 2 for participant 3. Panels (A,B) show the results for participant 3 in steps 1 and
2, respectively. For each panel, four figures are shown. The top figure gives the true activity labels
based on video footage. The second figure shows the activity classifications from the accelerometer-
only method, the third figure shows the classifications from the gyroscope-only method, and the
fourth shows the classifications from the joint-sensor method. In each row, the horizontal axis gives
the time elapsed, measured in seconds.

Figure 3B shows the results for step 2. During this step, the participant performed
the activities of standing (blue), walking (black), stand-to-sit (yellow), sitting (pink), and
sit-to-stand (red). The joint-sensor method and accelerometer-only method classified the
sitting periods (pink) accurately. The gyroscope-only method characterized these periods
correctly most of the time, but misclassified the start and end of each sitting period as
standing. The walking periods were classified well by all three methods, with the joint-
sensor and accelerometer-only performing the best. In step 2, the joint-sensor method
had improved accuracy for walking compared to the gyroscope-only method, correcting
the two false positives of ascending stairs that occurred during the second and third
walking periods. Compared to gyroscope alone, the joint-sensor method also reduced the
length of the ascending stair error at the beginning of the first walking period. All three
methods picked up the two stand-to-sit transitions (yellow). However, the gyroscope-only
method overestimated the length of the first stand-to-sit transition. The joint-sensor method
reduced the length closer to the truth. The sit-to-stand transitions (red) were almost entirely
missed by the accelerometer-only method, but they were captured by the joint-sensor and
gyroscope-only methods.

In step 3, the participant walked at three different speeds: normal (Figure 4A), fast
(Figure 4B), and slow (Figure 5). All three methods correctly classified the normal walk
(Figure 4A) for most (or all) of the time. The gyroscope-only method had two false positives
of ascending stairs, which were corrected by the joint-sensor method. For fast walking
(Figure 4B), all three methods were accurate for most of the time, with the joint-sensor
method performing the best. The gyroscope-only method incorrectly predicted a 1-s
episode of ascending stairs at the beginning of the fast walk. The joint-sensor method
shortened this error by about one half. The accelerometer-only method also predicted an
episode of ascending stairs at the beginning, as well as two episodes of descending stairs.
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The joint-sensor method was able to eliminate the two erroneous episodes of descending
stairs, though the ascending stair error remained. All three methods showed large errors
in classifying slow walking (Figure 5). The accelerometer-only method misclassified the
entire slow walking period, using ascending stairs for most of the time. The gyroscope-
only method also chose ascending stairs for most of the slow walking period, though it
captured some episodes of walking. The joint-sensor method performed better than the
accelerometer only by classifying some brief periods as walking, but it performed worse
than the gyroscope alone. One might expect that the classification becomes harder when the
pace of walking is slower because the slower pace can match the pace of movement of other
activities, such as ascending stairs. The three methods also had difficulty in classifying
slow walking for the other participants of the study. We discuss this further in Section 4.
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Figure 4. Step 3 for participant 3: normal and fast walking. This figure presents the results of
participant 3 during step 3 for normal-paced walking Panel (A) and fast-paced walking Panel (B).
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during step 3 for slow walking.

Figure 5. Step 3 for participant 3: slow walking. This figure presents the results of participant 3
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In step 5 (Figure 6), the participant performed the activities of standing (blue), de-
scending stairs (green), walking (black), ascending stairs (orange), and going through a
revolving door (dark blue). All three methods accurately classified the two periods of
descending stairs. They also performed well at classifying the two extended walking peri-
ods, with the joint-sensor method performing the best. During these walking periods, the
accelerometer-only method and gyroscope-only method each sometimes confused walking
for bursts of ascending stairs. These errors were corrected by the joint-sensor method.
All three methods struggled at the end of step 5 when the participant went through the
revolving door (dark blue). This is because going through a revolving door was not in
the dictionary, so all methods used other activities to substitute it, including standing and
ascending stairs. There was a walking (black) period directly before the participant went
through the revolving door. The three methods misclassified most of this walking period
using standing and ascending stairs. This may be due to the participant’s reduction in
walking speed before entering the revolving door.

Truth
20 40 60 80 100 120

Accelerometer—only Prediction
- " ™ ' __7n0»0
20 40 60 80 100

Gyroscope—-only Prediction

- _ _ __r - " " °©: ;> ¥ D¥"v6 v
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120

T
120
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Time Elapsed (sec)

W walk @ stairUp O standToSit @ sitToStand
@ stand [l stairDown @ sit B revolving door

Figure 6. Step 5 for participant 3. This figure presents the results for participant 3 during step 5. In step 5,
the participant performed the activities of standing, descending stairs, walking, ascending stairs, and
going through a revolving door. The revolving door activity is not included in the participant’s dictionary.

In step 6 (Figure 7), the participant ascended (Figure 7A) and descended (Figure 7B)
a staircase. All three methods correctly classified ascending stairs, as shown in Figure 7A.
The methods also correctly classified descending stairs (Figure 7B) for most of the time,
with the accelerometer-only performing the best. The descending stair period in step
6 was correctly classified for about 84% of the time using the accelerometer alone, 70%
using the gyroscope alone, and 75% using the sensors jointly. The accelerometer-only
method confused the beginning of the period with standing, and the middle portion with
ascending stairs. The gyroscope-only method had more errors, including episodes of
standing, ascending stairs, and sitting. Combining the sensors improved the results from
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the gyroscope alone, eliminating the ascending stair error, as well as shortening the length
of the sitting error and changing it to standing, which is closer to the ground truth activity
of descending stairs. Combining the sensors reduced the length of the standing error from
the accelerometer-only method. However, it also added a new standing error at about 1.3 s
elapsed, originating from the gyroscope data.

(A) (8)

Truth Truth
0 2 4 6 8 10 12 o 2 4 6 8 10
Accel —only Predicti A —only Pr
0 2 4 6 8 10 12 0 2 4 6 8 10
Gyroscope—only Prediction Gyroscope-only Prediction
) 2 4 6 8 10 12 [ 2 4 6 8 10

Joint-sensor Prediction Joint-sensor Prediction
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Figure 7. Step 6 for participant 3. This figure presents the results for participant 3 during step 6. In
step 6, the participant ascended and descended a staircase. Panel (A) corresponds to ascending stairs
and Panel (B) to descending stairs.

The results of participant 3 from steps 1, 2, 3, 5, and 6 are quantified in row C of
Figure 8. The figure includes confusion matrices for the accelerometer-only (column 1),
gyroscope-only (column 2), and joint-sensor (column 3) methods. Each row corresponds to
a different participant, with participant 3 in row C. In each confusion matrix in Figure 8,
any given column corresponds to a unique ground truth activity label, and the values in
the column show the distribution of the predicted activity labels for the given ground truth
activity label. We measure accuracy by the diagonal elements of the confusion matrices.

The results for participant 3 in Figure 8 are consistent with our observations from
Figures 3-7. For example, the gyroscope-only method (row C, column 2) tended to confuse
standing and sitting, classifying 25% of the “sit” labels as “stand” and 16% of the “stand”
labels as “sit”. In contrast, the joint-sensor method (row C, column 3) classified standing
correctly 97% of the time and sitting correctly 96% of the time. The accelerometer-only
method (row C, column 1) had high accuracies for most of the activities (i.e., dark shading in
the diagonal entries), but classified the “sit-to-stand” labels with only 5% accuracy. All three
methods classified the ascending stair (“stairUp”) labels correctly. The accelerometer-only
method had higher accuracy than the gyroscope-only method for standing, sitting, and
descending stairs. The gyroscope-only method had higher accuracy than the accelerometer-
only method for walking, sit-to-stand, and stand-to-sit. For all activities, the accuracy
value of the joint-sensor method was either between that of the accelerometer-only and
gyroscope-only methods, or was higher than both of them.
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Figure 8. Confusion matrices for accelerometer-only, gyroscope-only, and joint-sensor methods. This
figure presents the confusion matrices for each participant. Row (A) corresponds to participant 1,
row (B) to participant 2, row (C) to participant 3, and row (D) to participant 4. For each participant,
there are three confusion matrices corresponding to accelerometer-only (column 1), gyroscope-only

(column 2), and joint-sensor (column 3). These confusion matrices incorporate steps 1, 2, 3, 5, and 6

in test data collection. In each confusion matrix, the ground truth activity labels are on the bottom
margin, and the predicted activity labels are on the left margin. Each column shows the distribution
of the predicted labels for the corresponding ground truth activity label. Thus, every column sums

to 100%.
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3.3. Quantifying Classification Accuracy

In this section, we discuss the results for the other participants. The confusion matrices
for participants 1, 2, and 4 are shown in rows A, B, and D, respectively, of Figure 8.
Moreover, the counterparts to Figures 3—7 for these other participants are shown in the
Supplement (Figures S1-58). There are similarities across the participants. For instance,
as with participant 3, the gyroscope-only method tended to mix up standing and sitting
for all participants. The joint-sensor method was able to correct most of these errors. We
also observed that the joint-sensor method could correct systematic errors from one sensor
in misidentifying walking as another activity. In participant 3, the classifications of the
gyroscope-only method sometimes misrepresented walking as short bursts of ascending
stairs, as discussed in Section 3.2. The joint-sensor method was able to correct many of
these errors. This same pattern of correction also occurred for participants 1 and 4. We
should note that the systematic errors were not exclusive to one particular sensor. An
interesting difference between the participants was that, while the short errors mostly
occurred from gyroscope-only for participant 3, they tended to be from the accelerometer-
only for participants 1 and 4. As an example, we show the step 1 result for participant 1 in
Figure 9. For walking (black), the accelerometer-only method characterized many short
segments as ascending stairs or descending stairs. The joint-sensor method reduced the
number of these false positives that occurred in the classifications from the accelerometer
alone. We believe the reason that the joint-sensor method could generate improvement
was that it was rare for both sensors to misidentify walking at the same time with the same
activity. The error might occur in accelerometer only or gyroscope only, but not both.

The joint-sensor method did not always achieve superior results over a single-sensor
method. This was particularly the case for participant 1. For instance, in Figure 9 (partic-
ipant 1, step 1), the joint-sensor method slightly degraded the walking classifications by
the gyroscope only. This is because some false positives of ascending stairs originating
from the accelerometer data remained in the joint-sensor classifications. We also found
that some short periods of walking between ascending stairs that were picked up by the
gyroscope were smoothed out by the joint-sensor method. On the other hand, the joint-
sensor method still has advantages over using a single sensor. This is because “which”
single-sensor method (accelerometer or gyroscope) performed better was not consistent
across participants. In such situations, the joint-sensor method generally provided a closer
result to the better performing single-sensor method for the given participant.

Table 3 summarizes the results from Figure 8 by looking at the activities in groups.
Four activity groups were considered, including (A) all activities, (B) vigorous activities,
(C) stationary activities, and (D) transition activities. The table presents the average accu-
racy value of each method for each participant in each activity group. We first focus on
Section A of Table 3, which corresponds to the all activities group. This group consists of
walking, standing, ascending stairs, descending stairs, sitting, the sit-to-stand transition,
and the stand-to-sit transition. Thus, the average accuracy in Section A was computed
by averaging all of the diagonal elements of the corresponding confusion matrix, except
for “revolving door”. The revolving door activity was excluded since it was not part
of the participants’ dictionaries. For the all activities group, the accelerometer-only and
gyroscope-only columns are similar to each other. This means that, for each participant,
the average accuracy value for the accelerometer-only method was close to that of the
gyroscope-only method. The average accuracy tended to improve after combining the
accelerometer and gyroscope data. The degree of improvement varied by participant. The
percent increase in average accuracy from the joint-sensor method (relative to the higher
average accuracy value between accelerometer-only and gyroscope-only) was 10.4% for
participant 1, 16.7% for participant 2, 4.7% for participant 3, and 7.7% for participant 4.
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Figure 9. Step 1 for participant 1. The figure shows the results for participant 1 during step 1.

To assess which activities yielded the largest improvements, we divided the activities
into smaller groups, including vigorous activities, stationary activities, and transition
activities. The vigorous activities included walking, ascending stairs, and descending stairs.
The stationary activities included standing and sitting. Lastly, the transition activities
included stand-to-sit and sit-to-stand. We present the average accuracy values for each of
these activity groups in Table 3, with vigorous activities in Section B, stationary activities in
Section C, and transition activities in Section D.

Table 3. Average accuracy of each method for different activity groups. The vigorous activities
included walking, ascending stairs, and descending stairs. The stationary activities included sitting
and standing. The transition activities included stand-to-sit and sit-to-stand.

Participant Accelerometer Gyroscope Joint-Sensor

(A) All Activities 1 78.9 80.5 88.9

2 68.7 62.4 80.2

3 71.3 74.6 78.1

4 68.4 67.8 73.7

(B) Vigorous Activities 1 814 92.1 89.4
2 67.1 82.6 82.8

3 89.8 87.4 87.9

4 79.2 87.7 89.2

(C) Stationary Activities 1 98.1 53.2 96.5
2 97.2 47.0 96.4

3 94.8 74.9 96.5

4 90.6 63.4 89.0

(D) Transition Activities 1 56.0 90.2 80.5
2 42.5 47.5 60.0

3 20.0 55.0 45.0

4 30.0 425 35.0
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For the vigorous activities (Table 3, Section B), the joint-sensor method had higher
average accuracy than the accelerometer-only method for all participants, except for partic-
ipant 3. The percent improvement in average accuracy was 9.8% for participant 1, 23.4%
for participant 2, and 12.6% for participant 4. For participant 3, there was a decrease in
average accuracy of 2.1%. For all participants, the average accuracy of the joint-sensor
method was close to that of the gyroscope-only method. Relative to the gyroscope-only
method, there was a 2.9% decrease in average accuracy for participant 1, a 0.24% increase
for participant 2, a 0.57% increase for participant 3, and a 1.7% increase for participant 4.
Thus, for the vigorous activities, the improvement of the joint-sensor method was mostly
from correcting the errors of the accelerometer-only method.

For the stationary activities (Table 3, Section C), the average accuracy for the joint-
sensor method was considerably higher than for the gyroscope-only method. This was
because the mix-up between standing and sitting was corrected by including accelerometer
data. For example, the average accuracy of participant 2 was 97.2% for accelerometer-only,
47.0% for gyroscope-only, and 96.4% for the joint-sensor method. Hence, for the stationary
activities, the improvement of the joint-sensor method was mainly from correcting the
errors of the gyroscope-only method.

For the transition activities (Table 3, Section D), the average accuracy values of the
joint-sensor method tended to be low for most participants. When used on their own, the
sensors each had difficulty recognizing the transition activities as well. The low accuracy
rates may partly be due to the movelet method. For example, although the method might
detect the transition activities, the classifications may be shifted slightly too soon in time.
This is because the classification at any given time point involves taking a majority vote
among the movelet beginning at the time point and the subsequent nine following it. Since
the transition activities are momentary, some movelets could be picking up the activity
occurring after the transition.

Opverall, we find that the different sensors play different roles in correcting classification
errors. The joint sensor method can correct the shortcomings of the gyroscope-only method
in standing and sitting. It can also correct the shortcomings from the accelerometer-only
method in the vigorous activities. These findings are consistent with the physical nature of
the sensors.

4. Discussion

This study found that combining accelerometer and gyroscope data can result in more
accurate activity recognition. For example, the gyroscope-only method had difficulty in dif-
ferentiating between the activities of standing and sitting, but combining the accelerometer
with gyroscope data largely corrected this error. For the activity of walking, combining the
accelerometer and gyroscope data improved the accuracy compared to the accelerometer
alone in some cases (e.g., participant 1) and to the gyroscope alone in other cases (e.g., par-
ticipant 3). Although the single-sensor methods using the accelerometer or gyroscope
classified ascending and descending stairs to a certain degree, the combined method using
both sensors made further improvements in some cases. Our results also showed that
for certain types of movement, a properly chosen single-sensor method may be adequate,
e.g., accelerometer for stationary activities. These findings highlight the close connections
among the specification of scientific questions (e.g., what activities are of interest?), the
choice of data types (whether to collect accelerometer data, gyroscope data, or both), and
the choice of the data analysis method.

This work expands the range of usage of the movelet method. Previous work on
the movelet method mostly concentrated on using a single body-worn accelerometer, or
multiple accelerometers fixed to different parts of the body. We extended the movelet
method to incorporate different types of sensors from one smartphone. This takes full
advantage of the smartphone as a compact and convenient to carry all-in-one instrument,
which can sense different types of movement simultaneously over long time periods.
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The movelet method is a useful classification tool that is simple to implement in
research and clinical settings. Our analyses showed that the movelet method is fairly
accurate. Compared with other statistical methods, this relatively simple approach has
the advantage of being transparent, intuitive, and interpretable. Therefore, the movelet
method can be used together with more complex methods, such as deep learning, so that
we can gain more insight into the classification procedure. Moreover, given that the movelet
method makes activity classifications for each person based on her/his own dictionary,
the classifications are personalized to the individual’s unique data patterns and, therefore,
account for factors, such as the person’s height, weight, age, and health conditions. Models
built using training data from one cohort (e.g., young, healthy people) may perform poorly
when applied to another group (e.g., older adults or patients with illnesses) [28,29].

As our analysis results show, one remaining problem is that the joint-sensor method
and the two single-sensor methods all had difficulty with accurately classifying slow
walking. To address this issue in future work, we plan to develop an extension to the
joint-sensor method that allows for movelet transforms, which stretch or compress the
1-s dictionary movelets [30]. The purpose of movelet transforms is to improve activity
recognition in cases where the participant performs a given activity at a different pace
during testing, compared to during training. These transforms may be helpful in improving
the accuracy of slow walking recognition. They can also be adaptable in cases where a
patient’s condition evolves over time (e.g., a patient’s walking pace may increase over
time as she/he recovers from surgery). In future work, we also plan to use smartphone
sensor data to examine a patient’s gait patterns, in addition to performing her/his activity
recognition. For example, there is existing work about analyzing the human gait using
sensor data, including estimating gait parameters (e.g., average stride duration) as well
as detecting abnormalities in gait [31,32]. In future studies, we can investigate methods to
analyze the human gait using smartphone accelerometer and gyroscope data jointly.

One limitation of this work is that we studied the specific case where the phone is
worn in the pocket. In reality, the phone can be carried in different locations (e.g., pocket,
hand, backpack, purse) that can change with time. The specific context may also differ (e.g.,
phone in a tighter pocket or oriented in a different direction). An area of future work is
to extend the joint-sensor method to accommodate these changes robustly. One approach
is to identify the location of the smartphone placement based on the accelerometer and
gyroscope data, and then apply the appropriate dictionary accordingly. We may also
consider standardizing the training and testing data based on the phone’s placement to
reduce the context influence on the amplitude.

This work was a pilot study using a small sample size collected by the investigators.
The small sample size is a limitation of this study. Our goal in this pilot study was to
understand each sensor’s role and how the combination of the sensors could provide
further information. To achieve this goal, we performed a detailed analysis at the highest
possible frequency, verifying the activity classification at each time point and for each
activity. We believe these results can apply in more general situations, but this should be
confirmed in a study with a larger sample size. We are planning such a data collection.

In our future work, we will further develop the movelet method and apply it in
free-living environments. On the one hand, we will thoroughly evaluate the performance
measures of the joint-sensor method, including sensitivity, specificity, and precision for
each activity type. This is aligned with our current planning for a major effort to collect
multi-sensor data with a large sample size of diverse participants. On the other hand, we
will improve the movelet methodology and combine it with other advanced statistical
tools. First, we will build more sophisticated dictionaries with more categories of activities.
Future data collection and analyses can incorporate new activities that are not in the current
dictionaries, such as the activity of running. Second, we will automate the customized dic-
tionary generation process for each individual person using machine learning techniques.
In addition to these major developments, we will fine-tune and expand the joint-sensor
method that we are using now. For example, our current analysis applied linear interpola-
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tion to interpolate the gyroscope data to the accelerometer timestamps. An area of future
work is to test other interpolation methods, such as cubic splines or B-splines. Moreover,
based on our analyses, gyroscope and accelerometer data seemed to play different roles in
identifying different types of movement. To take advantage of these differences, we will
evaluate whether assigning different weights to the two sensors and their axes (x, y, and z)
can improve the accuracy of the joint-sensor method.
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/ /www.mdpi.com/article/10.3390/s22072618/s1, Figure S1: Step 1 for All Participants; Figure S2:
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(Descending Stairs) for All Participants.

Author Contributions: Conceptualization, E.J.H.; methodology, E.J.H., K.Y. and J.-P.O.; software,
E.J.H. and K.Y,; formal analysis, E.J.H. and K.Y.; investigation, E.J.H., K.Y. and ]J.-P.O.; writing—
original draft preparation, E.J.H. and K.Y.; writing—review and editing, E.J.H., K.Y. and J.-P.O;
supervision, E.J.H. All authors have read and agreed to the published version of the manuscript.

Funding: EJ.H. and ].-P.O. were supported by grant U01HL145386, awarded by the National Heart,
Lung, and Blood Institute (NHLBI). K.Y. was supported by the URECA Center at Wake Forest
University. This paper’s contents are solely the responsibility of the authors and do not represent the
views of these organizations.

Institutional Review Board Statement: The study was approved by the Institutional Review Board
of the Harvard T.H. Chan School of Public Health in February 2018 (protocol IRB17-2044).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are openly available on Zenodo at
10.5281/zenodo.3925679 [26].

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Panda, N.; Solsky, I; Huang, E.J.; Lipsitz, S.; Pradarelli, ].C.; Delisle, M.; Cusack, J.C.; Gadd, M.A,; Lubitz, C.C.; Mullen, ].T.; et al.
Using smartphones to capture novel recovery metrics after cancer surgery. JAMA Surg. 2020, 155, 123-129. [CrossRef] [PubMed]

2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Pub:
Arlington, Virginia 2013.

3.  Sylvia, L.G.; Bernstein, E.E.; Hubbard, J.L.; Keating, L.; Anderson, E.]J. Practical guide to measuring physical activity. |. Acad.
Nutr. Diet. 2014, 114, 199-208. [CrossRef] [PubMed]

4.  Sallis, ].F,; Saelens, B.E. Assessment of physical activity by self-report: Status, limitations, and future directions. Res. Q. Exerc.
Sport 2000, 71, 1-14. [CrossRef] [PubMed]

5. Adams, S.A.; Matthews, C.E.; Ebbeling, C.B.; Moore, C.G.; Cunningham, J.E.; Fulton, J.; Hebert, ].R. The effect of social desirability
and social approval on self-reports of physical activity. Am. ]. Epidemiol. 2005, 161, 389-398. [CrossRef] [PubMed]

6. Shephard, R.J. Limits to the measurement of habitual physical activity by questionnaires. Br. J. Sport. Med. 2003, 37, 197-206.
[CrossRef] [PubMed]

7. Onnela, ].P. Opportunities and challenges in the collection and analysis of digital phenotyping data. Neuropsychopharmacology
2021, 46, 45-54. [CrossRef] [PubMed]

8.  Pew Research Center. Demographics of Mobile Device Ownership and Adoption in the United States. 2021. Available online:
https:/ /www.pewresearch.org/internet/fact-sheet/mobile/ (accessed on 1 August 2021).

9. Torous, J.; Kiang, M.V.; Lorme, J.; Onnela, J.P. New tools for new research in psychiatry: A scalable and customizable platform to
empower data driven smartphone research. JMIR Ment. Health 2016, 3, e16. [CrossRef]

10. Straczkiewicz, M.; James, P.; Onnela, J.P. A systematic review of smartphone-based human activity recognition methods for
health research. NPJ Digit. Med. 2021, 4, 148. [CrossRef]

11. Huang, EJ.; Onnela, ].P. Augmented Movelet Method for Activity Classification Using Smartphone Gyroscope and Accelerometer
Data. Sensors 2020, 20, 3706. [CrossRef]

12.  Javed, A.R; Sarwar, M.U.; Khan, S.; Iwendi, C.; Mittal, M.; Kumar, N. Analyzing the Effectiveness and Contribution of Each Axis
of Tri-axial Accelerometer Sensor for Accurate Activity Recognition. Sensors 2020, 20, 2216. [CrossRef] [PubMed]

13.  Shoaib, M.; Bosch, S.; Incel, O.D.; Scholten, H.; Havinga, P.J. Fusion of smartphone motion sensors for physical activity recognition.

Sensors 2014, 14, 10146-10176. [CrossRef]


https://www.mdpi.com/article/10.3390/s22072618/s1
https://www.mdpi.com/article/10.3390/s22072618/s1
http://doi.org/10.1001/jamasurg.2019.4702
http://www.ncbi.nlm.nih.gov/pubmed/31657854
http://dx.doi.org/10.1016/j.jand.2013.09.018
http://www.ncbi.nlm.nih.gov/pubmed/24290836
http://dx.doi.org/10.1080/02701367.2000.11082780
http://www.ncbi.nlm.nih.gov/pubmed/25680007
http://dx.doi.org/10.1093/aje/kwi054
http://www.ncbi.nlm.nih.gov/pubmed/15692083
http://dx.doi.org/10.1136/bjsm.37.3.197
http://www.ncbi.nlm.nih.gov/pubmed/12782543
http://dx.doi.org/10.1038/s41386-020-0771-3
http://www.ncbi.nlm.nih.gov/pubmed/32679583
https://www.pewresearch.org/internet/fact-sheet/mobile/
http://dx.doi.org/10.2196/mental.5165
http://dx.doi.org/10.1038/s41746-021-00514-4
http://dx.doi.org/10.3390/s20133706
http://dx.doi.org/10.3390/s20082216
http://www.ncbi.nlm.nih.gov/pubmed/32295298
http://dx.doi.org/10.3390/s140610146

Sensors 2022, 22,2618 20 of 20

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

Gu, F; Kealy, A.; Khoshelham, K.; Shang, ]. User-independent motion state recognition using smartphone sensors. Sensors 2015,
15, 30636-30652. [CrossRef]

Capela, N.; Lemaire, E.; Baddour, N.; Rudolf, M.; Goljar, N.; Burger, H. Evaluation of a smartphone human activity recognition
application with able-bodied and stroke participants. J. Neuroeng. Rehabil. 2016, 13, 5. [CrossRef] [PubMed]

Hnoohom, N.; Mekruksavanich, S; Jitpattanakul, A. Human activity recognition using triaxial acceleration data from smartphone
and ensemble learning. In Proceedings of the 2017 13th International Conference on Signal-Image Technology & Internet-Based
Systems (SITIS), Jaipur, India, 4-7 December 2017; pp. 408—412.

Filntisis, P.P,; Zlatintsi, A.; Efthymiou, N.; Kalisperakis, E.; Karantinos, T.; Lazaridi, M.; Smyrnis, N.; Maragos, P. Identifying
differences in physical activity and autonomic function patterns between psychotic patients and controls over a long period of
continuous monitoring using wearable sensors. arXiv 2020, arXiv:2011.02285.

Usman Sarwar, M.; Rehman Javed, A.; Kulsoom, F.; Khan, S.; Tariq, U.; Kashif Bashir, A. Parciv: Recognizing Physical Activities
Having Complex Interclass Variations Using Semantic Data of Smartphone. Softw. Pract. Exp. 2021, 51, 532-549. [CrossRef]
Trifan, A.; Oliveira, M.; Oliveira, ].L. Passive sensing of health outcomes through smartphones: Systematic review of current
solutions and possible limitations. JMIR mHealth uHealth 2019, 7, €12649. [CrossRef]

Demrozi, F.; Pravadelli, G.; Bihorac, A.; Rashidi, P. Human activity recognition using inertial, physiological and environmental
sensors: A comprehensive survey. IEEE Access 2020, 8, 210816-210836. [CrossRef]

Ha, S.; Choi, S. Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope
sensors. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24-29
July 2016; pp. 381-388.

Dhanraj, S.; De, S.; Dash, D. Efficient smartphone-based human activity recognition using convolutional neural network. In
Proceedings of the 2019 International Conference on Information Technology (ICIT), Bhubaneswar, India, 19-21 December 2019;
pp. 307-312.

Bijalwan, V.; Semwal, V.B.; Singh, G.; Mandal, T.K. HDL-PSR: Modelling Spatio-Temporal Features Using Hybrid Deep Learning
Approach for Post-Stroke Rehabilitation. Neural Process. Lett. 2022, 54. [CrossRef]

Bai, J.; Goldsmith, J.; Caffo, B.; Glass, T.A.; Crainiceanu, C.M. Movelets: A dictionary of movement. Electron. ]. Stat. 2012, 6, 559.
[CrossRef]

He, B.; Bai, J.; Zipunnikov, V.V,; Koster, A.; Caserotti, P.; Lange-Maia, B.; Glynn, N.W.; Harris, T.B.; Crainiceanu, C.M. Predicting
human movement with multiple accelerometers using movelets. Med. Sci. Sport. Exerc. 2014, 46, 1859. [CrossRef]

Huang, E.; Onnela, ].P. Smartphone Gyroscope and Accelerometer Dataset for Human Activity Recognition; Zenodo: Geneve, Switzerland,
2020. [CrossRef]

Derawi, M.; Bours, P. Gait and activity recognition using commercial phones. Comput. Secur. 2013, 39, 137-144. [CrossRef]
Albert, M.V,; Toledo, S.; Shapiro, M.; Koerding, K. Using mobile phones for activity recognition in Parkinson’s patients. Front.
Neurol. 2012, 3, 158. [CrossRef]

Del Rosario, M.B.; Wang, K.; Wang, |.; Liu, Y.; Brodie, M.; Delbaere, K.; Lovell, N.H.; Lord, S.R.; Redmond, S.J. A comparison of
activity classification in younger and older cohorts using a smartphone. Physiol. Meas. 2014, 35, 2269. [CrossRef] [PubMed]
Karas, M.; Straczkiewicz, M.; Fadel, W.; Harezlak, ].; Crainiceanu, C.M.; Urbanek, ] K. Adaptive empirical pattern transformation
(ADEPT) with application to walking stride segmentation. Biostatistics 2021, 22, 331-347. [CrossRef] [PubMed]

Patil, P; Kumar, K.S.; Gaud, N.; Semwal, V.B. Clinical Human Gait Classification: Extreme Learning Machine Approach. In
Proceedings of the 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT),
Dhaka, Bangladesh, 3-5 May 2019; pp. 1-6.

Jain, R.; Semwal, V.B.; Kaushik, P. Stride Segmentation of Inertial Sensor Data Using Statistical Methods for Different Walking
Activities. Robotica 2021, 1-14. [CrossRef]


http://dx.doi.org/10.3390/s151229821
http://dx.doi.org/10.1186/s12984-016-0114-0
http://www.ncbi.nlm.nih.gov/pubmed/26792670
http://dx.doi.org/10.1002/spe.2846
http://dx.doi.org/10.2196/12649
http://dx.doi.org/10.1109/ACCESS.2020.3037715
http://dx.doi.org/10.1007/s11063-022-10744-6
http://dx.doi.org/10.1214/12-EJS684
http://dx.doi.org/10.1249/MSS.0000000000000285
http://dx.doi.org/10.5281/ zenodo.3925679
http://dx.doi.org/10.1016/j.cose.2013.07.004
http://dx.doi.org/10.3389/fneur.2012.00158
http://dx.doi.org/10.1088/0967-3334/35/11/2269
http://www.ncbi.nlm.nih.gov/pubmed/25340659
http://dx.doi.org/10.1093/biostatistics/kxz033
http://www.ncbi.nlm.nih.gov/pubmed/31545345
http://dx.doi.org/10.1017/S026357472100179X

	Introduction
	Materials and Methods
	Study Data Set
	The Movelet Method: Single Sensor
	Discrepancy Metric
	The Movelet Method: Joint Sensors
	Analysis Procedure

	Results
	Training Data Example
	Results for Participant 3
	Quantifying Classification Accuracy

	Discussion
	References

