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1   |   INTRODUCTION

Cancer is the second most prevalent cause of death (fol-
lowing heart diseases) and responsible for ~20% of all 
deaths in the United States in 2018.1 Breakthroughs in 
cancer treatment and patient care led to a 27% reduction 

of cancer death rate in last 10 years (https://www.cdc.gov/
cance​r/dcpc/resea​rch/updat​e-on-cance​r-death​s/index.
htm). While the discovery of new biology and targeted 
therapies were the main drivers of this reduction, an im-
proved understanding of the pathogenesis of tumor could 
be a force to further reduce the death rate. To accelerate 
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Abstract
Tumor innervation has recently been documented and characterized in various 
settings and tumor types. However, the role that nerves innervating tumors play 
in the pathogenesis of cancer has not been clarified. In this study, we searched 
for neural signaling from bulk RNA sequencing from The Cancer Genome Atlas 
(TCGA) dataset and looked for patterns of interactions between different cell 
types within the tumor environment. Using a presynapse signature (PSS) as a 
probe, we showed that multiple stromal cell types crosstalk and/or contribute to 
neural signals. Based on the correlation and linear regression, we hypothesized 
that neural signals contribute to an immune-suppressive tumor microenviron-
ment (TME). To test this hypothesis, we performed in vitro dorsal root ganglion 
(DRG)/macrophage coculture experiments. Compared to the M2  macrophage 
monoculture, the DRG/M2 macrophage coculture prevented anti-inflammatory 
M2 to pro-inflammatory M1 polarization by LPS stimulation. Finally, a survey of 
different TCGA tumor types indicated that higher RNA neural signature is pre-
dictive of poor patient outcomes in multiple tumor types.
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discoveries, various big data cancer consortiums have 
been established, and multiple databases have been made 
publicly available for testing hypotheses and mining 
for novel therapeutic targets. Among them, the Cancer 
Genome Atlas (TCGA) is one of the biggest cancer omics 
programs that compiles over 20 thousand primary cancer 
and matched normal samples from 11 thousand patients 
spanning 33 cancer types.2 This comprehensive atlas con-
tains clinical outcomes, biospecimens, pathology reports, 
single nucleotide polymorphisms (SNP) microarray, whole 
exome sequencing, diagnostic images, DNA methylation, 
bulk RNA sequencing, and reverse-phase protein arrays 
(RPPA) of all samples. Since its availability, many high-
profile bioinformatics papers have been published based 
on TCGA dataset analysis. Hypotheses have been tested, 
pathways surveyed, and targets identified using this da-
tabase. Combinations of TCGA with other databases and 
deconvolution algorithms such as xCell,3 Cibersort,4,5 and 
ESTIMATE6 have further brought new ways to decon-
volute the cell type fractions in the bulk tumor samples 
based on cell type-specific gene signatures, which enables 
certain studies on tumor microenvironment.

Long before different cell types could be estimated 
through the tumor transcriptomics analysis, it had 
been widely accepted that tumor tissues contain not 
only cancer cells, but also nonmalignant cells such as 
cancer-associated fibroblasts (CAFs), tumor vasculature 
endothelial cells, adipocytes, glia cells, and immune cells 
that either reside in or proximal to tumors.7 All these can-
cer and non-cancer cells in the pathological tumor site are 
part of the tumor microenvironment (TME). The compo-
sition of the cell types in the TME not only could impact 
the efficacies of cancer drug responses, but could also be 
utilized to treat cancers such as in the case of anti-VEGF 
and immunotherapies.8,9

In recent years, an emerging field of cancer neurosci-
ence or exoneural biology more broadly has shown that 
nerves are frequently present in tumor sites and are not 
only a passive structure in the TME, but also play active 
roles in promoting or inhibiting cancer progression.10,11 In 
the central nervous system, it was found that glutamater-
gic neurons increase glioma cell proliferation by secreting 
growth factors as well as electrically communicate with 
the glioma cells.12–14 This mechanism is likely to be uti-
lized not only by brain-originated cancer cells, but also the 
other cancer types that have metastasized to the brain.15 
Outside of the blood–brain barrier, the peripheral nervous 
system coordinates angiogenesis and perineural inva-
sion.16,17 Recently, new mechanisms of direct nerve-tumor 
interactions have also been discovered by using various 
neuronal technologies such as neural modulations with 
toxins, surgical denervation, optogenetics, and chemo-
genetics.17–21 Evidence of peripheral nerve system (PNS) 

direct contributions to tumors has been found in pancre-
atic,18 prostate,22,23 breast,24 head and neck,25 lung,26 cer-
vical,27,28 and gastric/colon29 cancers and could involve 
somatosensory, autonomic as well as vagal nerves.

Neurons use synapses (pre- and post-) to transmit sig-
nals with other cells. In this study, we used the presynapse 
signature (PSS) as a representative signature (PSS is highly 
correlated with neuronal communication in TCGA, data 
not shown) to study the neural signal in TME. We started 
by checking correlations between PSS and postsynaptic 
signature across various tumors and validated the signa-
ture relevance. We then looked at the genes and pathways 
correlated to the PSS in TCGA data. Given that the per-
centage of neurons in tumors is relatively rare in most 
tumor types, we also looked at other stromal cells which 
can utilize or “mimic” neural signals.30 Aside from tumor 
cells and stromal cells, immune cells are a major compo-
nent in the TME. We looked for possible effects of neural 
signals on different types of immune cells and confirmed 
our findings in in vitro dorsal root ganglion (DRG, a pe-
ripheral sensory neuron)/macrophage coculture experi-
ments. Finally, we surveyed all tumor types included in 
TCGA to identify the types in which neural signals may 
affect patient outcomes.

2   |   MATERIALS AND METHODS

2.1  |  Data used for analysis

2.1.1  |  TCGA data

TCGA RNA-seq data and clinical (phenotype) data were 
downloaded from the University of California Santa Cruz 
website (https://xenab​rowser.net/datap​ages/). RNA-
seq data were scaled by 75% percentile expression level. 
Samples with scale factor <4 (low quality) or sample type 
code >= 10 (non-tumor tissues) were excluded from the 
analysis. Scaled RNA-seq data were log2 transformed (l
og2(RNAseq  +  0.001)  +  log2(75), where the constant 
log2(75) is to make the TCGA data at the similar values 
of other RNAseq log2(TPM) values). This resulted in 
9,805 tumor samples total. For the PAAD (pancreatic ad-
enocarcinoma), we separated another subtype with high 
neuroendocrine signature, and designated them as PNET 
(14 samples).

2.2  |  Generation of brain enriched 
presynaptic gene set

Presynaptic gene set was obtained from Syngo portal 
(https://syngo​portal.org/ontol​ogy.html). SynGo ontology 

https://xenabrowser.net/datapages/
https://syngoportal.org/ontology.html
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is an evidence-based, expert-curated knowledge base for 
the synapse.31 There were originally 482 unique presynap-
tic genes downloaded from the portal. The mean Reads Per 
Kilobase of transcript per Million mapped reads (RPKM) 
of each gene in the brain tissue as well as the other tissues 
was found in GTEx v7 brain tissue database, also included 
in the supplementary data from the SynGo publication. 
The fold-change enrichment in brain compared to other 
tissue was calculated, and an arbitrary enrichment of 1.2-
folds (20% more than the rest of the tissues) was used as a 
filter to select brain enriched presynaptic gene set, which 
led to a list of 256  genes. The expression levels of the 
256 genes in the neuropil–a dense network of interwoven 
nerve fibers and their branches and synapses, together 
with glial filaments–were sorted based on the neuropil 
mRNA RNA-seq result,32 the top 161 genes were kept for 
future analysis.

2.3  |  Deconvolution of TCGA data

Two algorithms were run on TCGA data to deconvolute 
cell types from the bulk RNA-seq data. xCell (https://xcell.
ucsf.edu/) was used to deconvolute 64 cell types, and we 
mainly used the xCell results for stroma cells. Cibersort 
(https://ciber​sort.stanf​ord.edu/) was used to deconvo-
lute immune cells. Immune cells and their components 
were used for the neural/immune interaction analyses. 
ESTIMATE (https://bioin​forma​tics.mdand​erson.org/
estim​ate/rpack​age.html) was used to estimate total im-
mune, stromal, and tumor content.

2.4  |  Correlation calculation

R function “cor” and “cor.test” from “stats” package were 
used to compute correlations in the analyses.

2.5  |  General linear model for neural 
signals and neural immune interactions

The glm function from R stats package was used to fit pr-
esynapse score (PSS) with stromal or immune cells: 

 

A constant 0.01 was added to estimated cell fractions in 
log2 transformation to avoid log2(0) problem.

The R function summary (fit) was used to extract the 
t- and p-values from the fitting. R function fitted.values(fit) 

was used to compute correlations with PSS, and estimate 
the percentage of variances explained by the model.

2.6  |  DRG neuron and macrophage 
coculture assay

All animal studies were conducted in accordance with 
the American Veterinary Medical Association (AVMA) 
Guidelines for the Euthanasia of Animals, Guide for 
the Care and Use of Laboratory Animals, and the City 
of Cambridge. The Institutional Animal Care and Use 
Committee at Cygnal Therapeutics reviewed and ap-
proved all guidelines and procedures for rodent euthana-
sia and dissection of dorsal root ganglia. Policies are listed 
under standard operating procedure SOP513 and tissue 
collection protocol CYG2019-003. Mice were sacrificed by 
carbon dioxide euthanasia.

C57/BL6 mouse DRG neurons were dissected and iso-
lated following published protocols by Sleigh et al.33 In 
brief: mouse DRGs were extracted from adult mice follow-
ing IACUC procedure. DRGs were dissociated by a mixture 
of collagenase and dispase for 30 min. Dissociated neurons 
were washed and plated on 50 µg/ml PDL (Sigma-Aldrich, 
P7405-5MG) and Matrigel (Corning Matrigel Basement 
Membrane Matrix, LDEV-free, 10  ml. Product Number 
354234, 1:30 diluted in PBS) coated wells in Neurobasal 
Medium-A (Thermo Fisher Scientific, 10888022) con-
taining B-27 supplement (ThermoFisher, A3482801), and 
25 ng/ml mouse NGF (Sigma, n6009). Final concentration 
of 5  µM anti-mitotic reagent Ara-C (Cytarabine, Sigma, 
C1768-100  mg) was added to the culture medium to in-
hibit the proliferation of non-neuronal cells such as fibro-
blasts. DRGs were cultured for 8 days before coculture was 
setup. DRG culture media was changed every 3 days with 
Neurobasal-based media supplemented with B-27, same 
concentrations of NGF and anti-mitotic reagent Ara-C.

Seven days before coculture, bone marrow cells were 
isolated from mouse leg bones. Cells were plated and cul-
tured in DMEM supplemented with 10% FBS, 50  μM 
β-mercaptoethanol (ThermoFisher, 21985023), and 20 ng/
ml recombinant murine M-CSF (Peprotech, 315-02). 
Twenty-four hours before coculture, M2 polarization was 
initiated by adding fresh medium containing 10  ng/ml 

mouse M-CSF, 20 ng/ml mouse IL4 (Peprotech, 214-14), 
and 10 ng/ml IL-13 (Peprotech, 210-13). On the day of co-
culture, DRG media was aspirated. M2 macrophages were 
lifted and added to DRG with or without 50  ng/ml LPS 

fit = glm (PSS ∼ log2 (0.01 + cell_type_i) + tumoe_type) for single cell typemodel, and

fit = glm (PSS ∼ log2 (0.01 + cell_type_i) + log2 (0.01 + cell_type_j) +…+ tumoe_type) formulti - cell type regressions.

https://xcell.ucsf.edu/
https://xcell.ucsf.edu/
https://cibersort.stanford.edu/
https://bioinformatics.mdanderson.org/estimate/rpackage.html
https://bioinformatics.mdanderson.org/estimate/rpackage.html
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(Invivogen, tlrl-eblps) in DMEM supplemented with 10% 
FBS and 50  μM β-mercaptoethanol. Twenty-four hours 
after coculture, cells were lifted from the plate by Accutase 
(Innovative Cell Technologies, AT104) and stained with 
corresponding biomarkers and analyzed by flow cytome-
try. For RNAseq, cells were lifted from the plate, total RNA 
was extracted for transcripts analysis.

3   |   RESULTS

3.1  |  PSS in tumors

To generate a PSS list representing the neural signaling in 
the tumor, we first obtained a raw list of presynaptic genes 
in an evidence-based, expert-curated database: SynGo31 
(https://www.syngo​portal.org/). We excluded genes that 
are primarily expressed in the cell soma because the vast 
majority of peripheral tumors do not contain the cell bod-
ies of neurons. Neurons have complicated morphologies 
which allow the nerve processes, such as dendrites and 
axons, to extend far away from the nuclei. To accommo-
date these specialized structures, mechanisms have been 
developed to allow local protein translations at these 
nerve fibers, also called neuropils. Various labs have car-
ried out neuropil transcriptomics to understand such 
mechanisms. Here, we resorted to neuropil (neural pro-
cess) transcriptomics to filter the presynaptic genes that 
have transcripts in the distal nerve terminals.32,34 That led 
to 161 PSS genes (see Section 2, Table S1). We computed 
a PSS score for each TCGA sample by averaging the log2 
(expression level) of each signature gene. Figure 1A shows 
the boxplot of PSS scores across all 33 tumor types from 
TCGA (in fact, it is 34 tumor types since we split PAAD 
(pancreatic adenocarcinoma) into PNET (pancreatic neu-
roendocrine tumor) and PAAD, see Section 2). The scores 
are highest in tumors of the nervous system (GBM, glio-
blastoma multiforme, LGG, brain lower grade glioma, 
and PCPG, pheochromocytoma, and paraganglioma, see 
https://gdc.cancer.gov/resou​rces-tcga-users/​tcga-code-
table​s/tcga-study​-abbre​viations for tumor type abbrevia-
tions), but low in most of the solid tumors, demonstrating 
that the PSS signature contains genes that are specific to 
nervous system.

We then looked at the relationship between presynapse 
and postsynapse (also from SynGo database) signatures in 
various tumors in TCGA. Overlapping genes that could be 
either presynaptic or postsynaptic were removed from the 
postsynaptic signature for this analysis. These two signa-
tures are highly correlated (correlation = 0.94, p = 0) in all 
non-neuronal TCGA tumors (Figure 1B). We also checked 
the relationship in each of neuronal tumors individually 
(GBM: Figure 1C, LGG: 1D, and PCPG: Figure 1E), and 

they all show very tight correlations, in agreement with 
closely related biological processes. As a result, we believe 
the PSS and postsynaptic signature help corroborate each 
other.

3.2  |  Pathway enrichment analysis of 
PSS-correlated genes in TCGA

To get an overview of the possible roles of neurons or 
neuronal signaling in the TME, we first looked at the 
PSS-correlated genes and pathways in TCGA data. To 
avoid the dominant and confounding influence of neu-
ronal tumors (GBM, LGG, and PCPG), these three tumor 
types were excluded from the analysis. We generated a 
PSS score for each tumor sample by averaging the log2 
transformed expression levels and correlated them with 
each gene expression level across tumor samples (in 8934 
non-neuronal tumor samples). We found 2826 genes cor-
related with PSS with a correlation >0.3, and most highly 
enriched pathways were “neuron system,” “axon guid-
ance,” “neuroactive ligand-receptor interaction,” “col-
lagen biosynthesis and modifying enzymes,” “potassium 
channels,” etc. (Figure 2A), and most of the ion channel 
genes (calcium, potassium, and sodium) are correlated 
with PSS (Figure 2B).

A few tumor types had relatively higher average PSS 
scores than the other tumor types. For example, in STAD 
(414 tumors), 2110  genes had a correlation >0.5, and 
459  genes had a correlation <−0.4. Pathway analysis 
showed that the neuron-related pathways were highly 
enriched for the positively correlated genes (Figure 2C), 
whereas the proliferation and cell cycle-related path-
ways were highly enriched in negatively correlated genes 
(Figure 2D). Similar pathway enrichment (Figure 2E,F) 
was observed in PAAD (165 tumor samples excluding 
PNET samples). These results further validate PSS as a re-
liable surrogate for neural signal in tumors despite lacking 
of direct representatives.

3.3  |  Stromal cells contributed to 
neuronal signal

To find out the origin of the PSS signals in TCGA, an xCell 
algorithm was used to deconvolute cell types from TCGA 
RNA-seq data, and indeed the neuron was one of the cell 
types identified. The fraction of neurons estimated by 
xCell was very low in bulk tumors (Figure 3A), as neural 
cell bodies are typically not part of a tumor biopsy. Given 
the strong PSS signal, we thus asked the question if other 
cell types could contribute to neural signals, or “mimic” 
neurons.

https://www.syngoportal.org/
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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To address this question, we deployed a two-
component general linear model for each cell type in 
the xCell, with one component being the estimated cell 
fraction (in log2 scale), and another component being the 
tumor type (see Materials and Methods). The t-value from 
the general linear fit was used to rank the cell types. The 
top six cell types that could contribute to neural signals in-
cluded neurons (t = 51), chondrocytes (t = 43), astrocytes 
(t  =  43), fibroblasts (t  =  40), HSC (hematopoietic stem 
cells) (t = 37), and mesangial cells (t = 30) (Figure 3B). 
The fact that PSS has the most significant association with 
deconvoluted neurons again confirms the relevance of 
this signature. Figure 3C shows the hierarchical clustering 
of correlation between PSS and all cell types in 34 tumor 
types, which shows that the PSS is highly correlated with 
the top six cell types in the vast majority of tumor types 
(top seven cell types are: neurons, fibroblasts, chondro-
cytes, astrocytes, HSC, total stroma score, and mesangial 

cells). A multi-component general linear model was also 
used to assess the fraction of variations in the PSS score 
that could be explained by simple linear combinations of 
these stromal cells (Methods and Materials). The top six 
cell types (including neuron) can account for 69% of PSS 
variations across all non-neuronal tumors (correlation 
0.83, Figure 3D, and for individual tumor types, Figure S1). 
Excluding the neuron component, the remaining five cell 
types still accounted for 58% of PSS variation (correlation 
0.76, Figure 3E). These results suggested that apart from 
neurons, stroma cells could be the other source of neu-
ral signals. Interestingly, tumor cells were negatively cor-
related with PSS (Figure S2A), which might simply be due 
to the fact that the fraction of tumor cells and the fraction 
of stroma cells are negatively correlated (Figure S2B), and 
that the tumor is unlikely a major source of neuronal sig-
nals. Correlations of several other fractions of cell types 
can be found in Figure S2C,D.

F I G U R E  1   Presynapse signature (PSS) is highly expressed in neuron tumors and highly correlated with postsynaptic signature  
in TCGA. (A) Boxplot of PSS score in various TCGA tumor types. (B) Correlation of presynapse and postsynapse signature across all  
non-neuronal TCGA tumor samples. (C–E) Correlation of presynapse and postsynapse signatures in TCGA neuronal tumors. GBM, 
Glioblastoma multiforme; LGG, Brain Lower Grade Glioma; PCPG, Pheochromocytoma and Paraganglioma
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3.4  |  Neuronal signals and immune cells

In the bulk RNA sequencing, immune cells are a major 
component across almost all tumor types, and have a great 
impact on tumor cells. Next, we looked at the possible ef-
fect of neural signals on immune cells. To this end, we uti-
lized the online Cibersort portal to deconvolute the various 

immune cells from TCGA RNA-seq data, as the deconvo-
lution algorithm focused on immune cells and provided 
detailed immune subtypes and polarization status. Using 
a similar general linear model as above, we calculated the 
t-values of PSS score versus deconvoluted immune sub-
types in each of the non-neuronal tumor samples. The t-
value distributions of paired immune subtypes, including 

F I G U R E  2   Genes and pathways correlated with presynapse signature (PSS) in TCGA. (A) pathways enriched in genes correlated 
with presynapse signature in all TCGA non-neuronal tumors (all tumors except GBM, LGG, and PCPG). (B) Boxplot of correlation 
between individual genes and PSS in all TCGA non-neuronal tumors. Most of ion channel genes (calcium, potassium, and sodium) are 
correlated with PSS. (C) Pathways enriched in correlated genes with PSS in STAD (stomach adenocarcinoma). (D) Pathways enriched in 
negatively correlated genes with PSS in STAD. (E) Pathways enriched in correlated genes with PSS in PAAD (pancreatic adenocarcinoma). 
(F) Pathways enriched in negatively correlated genes with PSS in PAAD. All results generated using Enrichr tool (https://maaya​nlab.cloud/​
Enric​hr/)

https://maayanlab.cloud/Enrichr/
https://maayanlab.cloud/Enrichr/
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F I G U R E  3   Presynapse signature versus stroma cells. (A) Boxplot of deconvoluted fraction of neurons in each tumor type (by xCell). (B) 
Scatter plot of presynapse signature versus xCell deconvoluted stromal cells for six top ranked cell types: B1: neurons; B2: chondrocytes; B3: 
astrocytes; B4: fibroblasts; B5: HSC (hematopoietic stem cells); B6: mesangial cells. t- and p-values are estimated by glm fit. (C) Heatmap of 
correlations between PSS and cell types in each of the TCGA tumors. Cell types are ranked by average correlation with PSS across all tumor 
types. (D) Modeling of presyanpse signature score by top six stroma cells plus tumor type in all TCGA non-neuronal tumors. The model can 
explain 69% of the PSS variation. (E) Modeling of presyanpse signature score by top five stroma cells (excluding neuron) plus tumor type in 
all TCGA non-neuronal tumors. The model can explain 58% of the PSS variation
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B cells, T cells, macrophages, and mast cells, are shown 
in scatter plots with colored tumor types in Figure 4. For 
all these pairs, the PSS was more associated with suppres-
sive/less active subtypes than pro-inflammatory/active 
subtypes (for example, more correlated to macrophages 
M2 than M1). This association was observed in a majority 
of tumor types (Figure 4E).

We subsequently assessed whether the neural signals 
are correlated with overall immune cell fractions in solid 

tumors in general. By investigating the correlation of neu-
ral cell fraction (by xCell) with total immune cell fraction 
(by ESTIMATE) in each tumor sample, we found a nega-
tive correlation between these two components, suggest-
ing that tumors with more neural fractions tend to have 
less immune cell fractions, resembling the so called “cold 
tumors”35 (Figure 4F).

A correlation only suggests a possible relationship; 
to investigate whether neuronal signals indeed drive a 

F I G U R E  4   Presynapse signature versus immune cells (deconvoluted by Cibersort). (A) Scatter plot of presynapse signature versus B 
cells (left: naïve, right: memory), t- and p-values are estimated by glm fit in all TCGA non-neuronal tumors. (B) Scatter plot of presynapse 
signature versus CD4 memory T cells (left: resting, right: activated). (C) Scatter plot of presynapse signature versus macrophages (left: M2, 
right: M1). (D) Scatter plot of presynapse signature versus mast cells (left: resting, right: activated). (E) Heatmap of correlation between 
presynapse signature and pair of immune cells in each TCGA tumor types. (F) Scatter plot of xCell estimated neuron fraction versus total 
infiltrating immune cell fraction. Colors in scatter plots indicate different tumor types
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suppressive immune phenotype, we conducted in vitro 
validation experiments.

3.5  |  DRG neurons lock macrophages in 
an immunosuppressive phenotype

Macrophages represented one of the major immune 
populations in most solid tumors. The diversity and plas-
ticity of macrophages can be shaped by the different tis-
sue local microenvironments and in response to various 
physiological and pathological stimuli.36,37 In response 
to varying types of activation, macrophages can be clas-
sified into classically activated macrophages (“M1”) and 
alternatively activated macrophages (“M2”).38 “M1” mac-
rophages are immunostimulatory and are characterized 
by the production of high levels of pro-inflammatory 
cytokines, while “M2” macrophages are immunosup-
pressive in nature and accompanied by the secretion of 
anti-inflammatory cytokines.39 Macrophages usually dis-
play an anti-inflammatory M2-like status in tumors.40,41

To decipher the crosstalk between neurons and anti-
inflammatory tumor-associated macrophages, we de-
veloped an in vitro coculture system utilizing primary 
murine DRGs (peripheral sensory neurons) and primary 
“M2”-like macrophages differentiated from mouse bone 
marrow.

To investigate the role of sensory neurons during “M2” 
into “M1” repolarization, “M2” macrophages were re-
polarized into “M1”-like phenotype by lipopolysaccharide 
(LPS) stimulation during the coculture experiment. “M2” 
into “M1” repolarization of macrophages was evaluated 
by measuring the expression of classical “M2” marker 
Arginase1 and “M1” marker iNOS via flow cytometry 
(Figure 5A). In monoculture of M2  macrophages, repo-
larization with LPS for 24 h led to a drastic increase of the 
M1 macrophage marker iNOS protein as well as mRNA, 
while it led to only a small increase of M2  macrophage 
marker ARG1 protein or mRNA (Figure 5B,C).

Compared to monoculture macrophages, the iNOS 
protein level was reduced by over fivefold under LPS repo-
larization in macrophages cocultured with DRGs, suggest-
ing a role of DRG in inhibiting M2 to M1 repolarization. 
In coculture M2 macrophages, the protein level of ARG1 
was increased by twofold without repolarization com-
pared with monoculture. After 24 h of LPS repolarization, 
the ARG1 protein level was higher by threefold in cocul-
ture compared with monoculture (Figure 5B,C). Besides 
the protein expression levels, we also observed the mRNA 
levels of Arg1 and Nos2 (encoding iNOS) were changed 
accordingly (Figure 5D).

In accordance with the in vitro results, a correla-
tion analysis of 161 PSS genes with either M2 or 

M1 macrophages showed the majority of PSS genes were 
positively correlated with M2 while negatively correlated 
with M1 (Figure  S3). In conclusion, our work suggests 
that neuron signals promote the immunosuppressive phe-
notype of macrophages, which confirms the observation 
of PSS association with M2 but less of M1 as shown in 
Figure 4C.

3.6  |  Neuronal signals versus 
patient outcome

Observing the PSS correlations with immune cells, we 
analyzed how these correlations could be translated to pa-
tient outcome and therefore performed log-rank test over 
TCGA tumors. For each tumor type, patients were evenly 
divided into three groups based on the PSS score (top, 
middle, and bottom one-third), and log-rank tests were 
performed over three clinical endpoints: overall survival 
(OS), disease-specific survival (DSS), and progression-free 
interval (PFI). Among 33 tumor types (PNET excluded 
due to low sample number), we found that high PSS 
scores were associated with good outcomes (OS, DSS, PFI, 
Figure S4A–C) in LGG, but poor outcomes in stomach ad-
enocarcinoma (STAD; OS, DSS, PFI, Figure 6A–C), blad-
der urothelial carcinoma (BLCA; OS, DSS, PFI, Figure 
6D–F), uterine corpus endometrial carcinoma (UCEC; 
OS, DSS, Figure  S4D–F), and colon adenocarcinoma 
(COAD; DSS, Figure  S4G–I). Worth noting that when a 
correlation between PSS and outcome was observed, a 
high PSS score was generally correlated with poor prog-
nosis in non-neuronal tumors. Even though PAAD had 
higher PSS scores among non-neuronal tumors, how-
ever, the PSS score was not prognostic in this tumor type 
(Figure S4 J–L).

4   |   DISCUSSION

To carry out meaningful gene expression correlation anal-
yses, the selection of the PSS gene list is critical. We used 
peer-reviewed publications for well-accepted genes that 
are enriched in presynapses. SynGo PSS gene list included 
some genes that were not exclusively presynaptically lo-
calized, but they had been indicated in the literature for 
modulating presynaptic functions. We further narrowed 
down the PSS gene list by focusing on genes with enriched 
transcripts detectable in the neuropil analysis, since most 
neuronal fragments in tumors come from the neurites. It 
is of note that the neurite-specific transcript publications 
were mostly based on rodent brain tissues, and thus were 
likely an approximation of what is happening in human 
tumor-innervating nerves. If the tumor-innervating 
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nerves are very different from those of central nervous 
system (CNS), we would miss these genes. However, neu-
ral signaling pathways are relatively conserved across spe-
cies. When we looked at the correlation of the PSS with 
neuronal tumor types as well as postsynaptic signatures, 
they had extremely high correlations. This suggests like 
neurons, the TME components may both “emitting” and 
“receiving” neural signals. On the other hand, this also 
suggests that the resolution of the current analysis was 
limited, and we could not differentiate different types of 
neural signals. Future experiments that detect mRNAs 
in the DRG or nodose ganglia neurites will provide valu-
able resources for a refined gene signature for tumor-
innervating nerves. Using the same methodology, other 
gene lists such as glial/Schwann cell markers could also 
be used to further validate the correlations between nerves 
and glia, as well as glia with the immune cells.

The analyses in this study were mostly based on cor-
relations between gene signatures and deconvoluted cell 
types in a large reference dataset. While correlations may 
suggest possible relationships, thus providing hypotheses 
to be further validated or tested, they can occasionally be 
influenced by hidden variables (confounding factors). For 
convincing causal relations, the hypotheses need to be val-
idated by carefully designed in vitro or in vivo perturbation 
experiments. When the PSS gene set was highly correlated 
with a certain cell type (deconvoluted cell types by xCell), 
it could either suggests that these cell types coexist with 
innervation, or that they could resemble nerve signaling, 
such as neuroendocrine cells and adrenal gland. Neural 

signal was negatively correlated with proliferation signa-
ture in many tumor types. It could either be that neural 
signals were inhibiting tumor cell proliferation or equally 
possible that tumor content was inversely proportional 
to the number of stromal cells, thus creating an artificial 
negative correlation. In fact, when we cocultured various 
tumor cell lines with various neuronal cells in vitro, we 
saw both promoting and inhibition of tumor proliferation 
(for example, DRG cells promote proliferation in small-
cell lung cancer and prostate cancer cell lines, but inhibit 
proliferation in pancreatic cell lines, data not shown).

When looking at the relationship between PSS and im-
mune subtypes, correlation analysis showed that the PSS 
was more associated with suppressive/less active subtypes 
than pro-inflammatory/active subtypes. Furthermore, tu-
mors with higher neuron fractions tend to have less im-
mune cell fractions.

How could the neural signaling modulate immune 
cells in TME? It was found that the nervous system 
forms close associations with immune cells such as T 
cells, macrophages, neutrophils, NK cells, mast cells, 
and dendritic cells.42–44 Neuropeptides, transmitters, cy-
tokines, chemokines, and purines could modulate the 
immune cells from various perspectives, such as prop-
agation, induction, recruitment, migration, maturation, 
T-cell priming, and macrophage phagocytosis. Neurons 
have been shown to play a role in multiple diseases such 
as arthritis, asthma, diabetes (pancreatitis), inflamma-
tory bowel disease, psoriasis, contact dermatitis as well 
as inflammatory diseases based on neural manipulation/

F I G U R E  5   DRG facilitates M2 polarization of macrophages. (A) Schematic of DRG-macrophage coculture and polarization. (B) 
Representative FACS plots of iNOS and ARG1 expression in monoculture and coculture macrophages. (C) ARG1 and iNOS protein level in 
macrophages measured by FACS. (D) Arg1 and Nos2 (encoding iNOS) gene expression levels by RNAseq
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F I G U R E  6   Presynapse signature versus patient outcomes. Kaplan–Meier curves of STAD (stomach adenocarcinoma) and BLCA 
(bladder urothelial carcinoma) patients grouped by PSS scores, red, green, and blue represent low, mid, and top 1/3rd patients. P-value is 
estimated by log-rank test. (A) STAD overall survival (OS), (B) STAD disease-specific survival (DSS), (C) STAD progression-free interval 
(PFI). (D) BLCA overall survival (OS), (E) BLCA disease-specific survival (DSS), (F) BLCA progression-free interval (PFI)
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modulation experiments in vitro as well as in vivo.45,46 
Pro-  and anti-inflammatory effects from the nervous 
system have been observed, suggesting a dynamic in-
teraction between the nervous system and the immune 
system.42,43,45 Though these mechanisms have not been 
studied in the context of tumor, they might share similar 
mechanisms like PSS association with immunosuppres-
sive states in various tumor types.

Whether other neural signal contributing cell types 
like fibroblasts can interact with macrophages similarly 
as bona fide nerves requires future dedicated experi-
ments. We reason it is likely based on (a) the TCGA PSS 
and M2  macrophage correlation was observed across 
many solid tumor types, even though some of the tumor 
types had very little deconvoluted neurons, and (b) 
more than 60% of the presynapse signature genes are 
expressed (TPM > 1) in TME myofibroblasts (for exam-
ple, LRRC15+ fibroblasts in PADC, NSCLC, Figure S5), 
where the fibroblast expression level was derived from 
single cell RNA-seq data by Buechler et al.47 This sug-
gests fibroblasts have needed molecules to perform the 
neural function.

Given the observation that neural signal is as-
sociated with immune-suppressive component, we 
looked the neuropeptides and neuropeptide receptors 
in terms their correlation with immune cells in TME, 
and found the neuropeptide receptors are significantly 
more correlated to M2 than M1  macrophages (t-test 
p  =  2.3  ×  10−11, Figure  S6). Note that in the model 
system of mouse DRG and M2 coculture, significant 
number of neuropeptides and receptors are indeed ex-
pressed with TPM > 1. To identify the particular group 
of neural signals affecting immune polarization would 
require more investigations.

In summary, our analysis based on TCGA dataset in-
vestigated a neural gene expression signature in tumor set-
tings and observed that (1) multiple stromal cell types may 
utilize neural signals as communication tools, (2) neural 
signals were associated with immune suppressive or inac-
tive TME, which was further confirmed by in vitro DRG-
macrophage coculture experiments, and (3) the PSS was 
predictive of patient outcome in multiple, non-neuronal 
tumor types. To the best of our knowledge, this is the first 
time that the neural signaling has been revealed to cor-
relate with suppressive immune subtypes in TME across 
many tumor types.
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