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Social behavior is one of themost fascinating and complex
behaviors in humans and animals. A fundamental process
of social behavior is communication among individuals.
It relies on the capability of the nervous system to sense,
process, and interpret various signals (e.g., pheromones)
and respond with appropriate decisions and actions.
Eusocial insects, including ants, some bees, some wasps,
and termites, display intriguing cooperative social behav-
ior. Recent advances in genetic and genomic studies have
revealed key genes that are involved in pheromone syn-
thesis, chemosensory perception, and physiological and
behavioral responses to varied pheromones. In this re-
view, we highlight the genes and pathways that regulate
queen pheromone-mediated social communication, dis-
cuss the evolutionary changes in genetic systems, and
outline prospects of functional studies in sociobiology.

Complex systems require the interaction of their sub-
units, which is achieved through various ways of informa-
tion transfer. In an organism, cells communicate through
signals, including autocrine and paracrine signals for local
communication and hormones for long-distance commu-
nication. Communication is also importantwhen individ-
uals organize themselves in groups and operate like cells
in an organism. Many eusocial insects such as ants,
some bees, some wasps, and termites are organized in
this way and are thus commonly viewed as superorgan-
isms: The individuals form a social unit (colony) with a
strong division of labor (Seeley 1989; Hölldobler and Wil-
son 1990, 2009). They display complex cooperative behav-
iors with the following common type of organization:
Inside the nest, the queen is engaged in egg-laying, while
her helper workers carry out all other tasks such as brood
care, nest maintenance, and colony defense. Outside the
nest, different workers forage, alone or together, and bring
food back to share with their nestmates and brood (Höll-
dobler and Wilson 1990; Ross and Matthews 1991; Seeley
1995). Efficient cooperation in eusocial insect superorgan-

isms is based primarily on chemosensation and, to a lesser
extent, on visual and tactile communication.

Chemosensation is ubiquitous in animals, as they regu-
larly interact with their chemical-rich environments.
Some chemicals mediate animal behaviors, and animals
consequently benefit from the evolution of a chemosen-
sory neural system to sense chemical cues and to process
their encoded information. Chemical cues are any chem-
ical feature of the world that can be used to extract rele-
vant information (see Box 1; Wyatt 2014). Such chemical
cues can evolve into pheromones, the chemical signals
emitted by one individual and perceived by another indi-
vidual of the same species, and induce a behavioral or
physiological response (Karlson and Lüscher 1959). In
the most common scenario of the sender-precursor hy-
pothesis of pheromone evolution (see Box 1), a chemical
cue is produced by the sender, which is linked to its phys-
iological condition but not yet established for communi-
cation. This chemical cue is subsequently sensed by an
organism (same or different species) via activation of its
chemosensory receptor neurons, leading to behavioral
and physiological changes in the receiver. If the receiver
benefits from the information about the condition of the
sender through the perception of the cue, the receiver’s
sensory system is selected for improved cue discrimina-
tion and information extraction (Fig. 1). If the sender ben-
efits from the receiver’s response, the previous cue
becomes a signal and is now selected to transfer informa-
tion more efficiently to the receiver. This initiates a posi-
tive feedback loop with stronger and clearer signaling by
the sender (signal ritualization) and more refined percep-
tion and response by the receiver (Fig. 1; e.g., Bradbury
and Vehrencamp 2011). Alternatively, pheromones can
evolve through receiver sensory bias (see Box 1; Stökl
and Steiger 2017), but we do not differentiate between
these two evolutionary pathways at the mechanistic level
of genetic regulation in this review.

Pheromones arewidely used by eusocial insects to coor-
dinate the organization of their colonies. In general,
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animals use a large diversity of pheromones in many con-
texts. Major pheromones of eusocial insects include
queen pheromones, sex pheromones, alarm pheromones,
and trail pheromones with different roles (Hölldobler
and Wilson 1990; Wyatt 2014; Leonhardt et al. 2016).
Pheromone quality, quantity, and release ratemay change
in response to environmental context. Pheromone pro-
duction may vary due to external factors, such as the ab-
sence of pheromones from competitors, as well as
multiple internal factors, such as the sender’s genetics,
age, sex, hormonal state, or previous experience (Wyatt
2014). A better understanding of pheromone evolution re-
quires an understanding of the mechanisms of communi-
cation at the physiological and molecular level.
In this article, we review our current understanding of

the genes involved in signal evolution in the context of
queen pheromones in eusocial insects. Queen phero-
mones play a central role in the organization of insect so-
cieties; e.g., by mediating reproduction. We divide the
process of chemical communication into three parts:
pheromone production in the sender, pheromone percep-
tion in the receiver, and pheromone-induced neural,
behavioral, and physiological responses in the receiver
(Fig. 1). We discuss recent progress in studying the genetic
basis of communication.

Pheromone production

In insects, pheromone production and structure are highly
variable. Pheromones are normally synthesized in a varie-
ty of glands located in different parts of the insect body,
with ducts to the outside. For example, 149 exocrine
glands have been identified across eusocial insects, al-
though not all of them are involved in pheromone produc-
tion (Billen and Šobotník 2015). In addition, cuticular
hydrocarbon pheromones are synthesized in oenocytes

(a group of cells often located in the abdomen close to
the cuticle) and secreted through the cuticle to the surface
of the insect body (Lockey 1988). Because pheromones
evolved from a wide range of chemical cues, the rich
chemical diversity of insect pheromones, including those

Box 1. Terminology

Positive selection
Positive selection or directional selec-
tion shifts trait evolution in one
direction. It can, for example, be dem-
onstrated when the rate of nonsynony-
mous substitutions divided by the rate
of synonymous substitutions in a set of
homologous protein-coding genes is >1
(dN/dS > 1).

Queen pheromone
A queen pheromone is released by re-
productive individuals in a eusocial
insect colony (usually queens) that pri-
marily inhibits reproduction in brood-
care workers. It can have various other
behavioral effects such as attracting the
attention of workers. A more differenti-
ated evolutionary perspective separates
fertility signals that are learned and can

also be expressed by workers from
queen pheromones that induce innate
responses (Smith and Liebig 2017).

Signals versus cues
A signal is a trait that evolves in a
sender to provide information to a re-
ceiver in a way that induces a change in
the behavior of the receiver for the
benefit of both parties (Abbott et al.
2010). A cue can also convey informa-
tion, but it has not been shaped by
natural selection for that function. In
other words, the difference between a
signal and a cue is the function of it: A
signal has evolved exclusively for the
purpose of communication. A cue is
produced for something else but is inci-
dentally used to extract information
(Wyatt 2014).

Sender-precursor hypothesis
The sender-precursor hypothesis de-
scribes coevolution of a signal produced
by the sender and a response in the
receiver such that both the sender and
receiver benefit from the signal. The
signal originates from a cue that is asso-
ciated with a condition of the subse-
quent sender.

Receiver sensory bias
A receiver evolves its sensory system
in a context irrelevant to the sender,
while natural selection favors the cues
from the sender to trigger this pre-
existing response in the receiver.
This can lead to the exploitation of the
receiver by the sender or to the evolu-
tion of a signal that benefits both
parties.

Figure 1. Sender-precursor model for the evolution of phero-
mones. An unselected cue that is secreted by a sender and is asso-
ciated with a condition of the sender is sensed by a receiver
through its olfactory system. If the receiver benefits from the in-
formation about the sender’s condition, the receiver’s olfactory
systemandhigher brain centers are selected for better discrimina-
tion with associated changes in physiology and behavior. Con-
versely, if the sender benefits from the receiver’s response, the
cue is now under selection and becomes a chemical signal (pher-
omone) used for communication. This leads to a positive feed-
back loop with selection for a stronger and clearer signal in the
sender (ritualization) and better discrimination by the receiver
until costs of further modifications outweigh the benefits of sig-
nal ritualization and/or receiver adaptations.

Genetic basis of eusocial insect communication

GENES & DEVELOPMENT 471



of eusocial insects, is not surprising (Hölldobler and Wil-
son 1990; Vander Meer et al. 1998; Bordereau and Pasteels
2011). Any molecule, as long as it can be produced by
senders and perceived by the chemosensory, primarily ol-
factory, system in receivers may potentially evolve into a
pheromone.

A pheromone may also evolve to have multiple func-
tions. This can be seen in the queen pheromones of euso-
cial insects. The main function of queen pheromones is
the inhibition of worker reproduction in a colony by
signaling the presence and fertility of the residing queen
(Seeley 1985; Keller and Nonacs 1993). However, the
pheromone can additionally help the queen, for example,
allowing workers to recognize reproductive individuals
(queen and king in termites), to induce workers to attend
to her/them in a “royal court” (Slessor et al. 1988; Funaro
et al. 2018), or induce subordinate behavior in nonrepro-
ductive workers (Smith et al. 2012b). Workers may also
use queen pheromones to differentiate between queen-
laid and worker-laid eggs in a colony (Endler et al. 2004;
Oi et al. 2015) or use fertility signals to identify “cheat-
ers”; i.e., workers that activate ovaries in the presence
of the queen (Smith et al. 2009). Queen pheromones can
also be involved in the suppression of the rearing of new
queens and/or males (Vargo and Fletcher 1986; Winston
et al. 1990; Oliveira et al. 2020) or suppression of repro-
ductive competitors (Monnin et al. 2002; Smith et al.
2012a).

Although the main function of a pheromone might be
the same across species, the chemicals used as phero-
mones can be quite different. The well-studied cases of
queen pheromones in honeybees and in other species are
goodexamples.Thekey insight into the role of queenpher-
omones in eusocial insects started with the identification
of the first queen pheromone from the honeybeeApismel-
lifera, with its main compounds 9-oxo-2-decenoic acid (9-
ODA) and 9-hydroxy-2-decenoic acid (9-HDA),which con-
stitute the queen mandibular pheromone (QMP) synthe-
sized in the mandibular gland in the honeybee that
functions in inhibiting worker reproduction (Butler 1957;
Winston and Slessor 1992; Hoover et al. 2003). QMP also
acts as an attractant for workers, as well as a sex phero-
mone to attract males during mating flights (Plettner
et al. 1996). However, the use of QMP is not conserved in
other bee species. In the sweat beeLasioglossummalachu-
rum, for example, macrocyclic lactones act as a queen
pheromone (Steitz and Ayasse 2020), while data from
stingless bees and bumble bees suggest that cuticular hy-
drocarbon (CHC) profiles or CHC components function
as queen pheromones (Nunes et al. 2014; Van Oystaeyen
et al. 2014; but see, e.g., Amsalem et al. 2017; Melgarejo
et al. 2018 for different results in bumble bees).

Cuticularhydrocarbons areubiquitouslyproduced in in-
sects to prevent desiccation and infections (Howard and
Blomquist 2005). In some groups of solitary insects,
CHCs are used for mate recognition and as sex phero-
mones (see examples in Blomquist and Bagnerès 2010).
Across eusocial insects, CHCs show queen-specific pat-
terns that suggest their broad use as queen pheromones
(Monnin 2006; Peeters and Liebig 2009; Liebig 2010; Van

Oystaeyen et al. 2014). Indeed, CHCs are known to func-
tion as queen pheromones in several ant and at least one
wasp species (Endler et al. 2004; Smith et al. 2009,
2012b, 2016; Holman et al. 2010; Van Oystaeyen et al.
2014). In addition, a combinationofCHCswithother com-
pounds, such as tetrahydrofurans, are used as queen pher-
omone in Odontomachus ants (Smith et al. 2016), while
the monocyclic diterpene neocembrene has a queen pher-
omone function in Pharaoh ants (Oliveira et al. 2020). In
the subterranean termites Reticulitermes flavipes and R.
speratus, the CHC heneicosane and a mixture of butylbu-
tyrate and 2-methyl-1butanol are used as queen phero-
mone (Matsuura et al. 2010; Funaro et al. 2018).
Although it has been suggested that the use of CHCs as
queen pheromones in eusocial insects is conserved (Van
Oystaeyen et al. 2014), the prevalence of CHCs as queen
pheromones might be due to the omnipresence of CHCs
and corresponding olfactory receptors in insects. This in
turnmight make the CHC queen pheromones in different
eusocial insect lineages a case of parallel evolution (Smith
and Liebig 2017; Bolnick et al. 2018), which does not, how-
ever, exclude the evolution of other chemicals as queen
pheromones (Steitz and Ayasse 2020).

We next explore pheromone production in two exam-
ples: the queen mandibular pheromone in honeybees
and CHCs in some other species, because in both cases
their biosynthesis and function have been widely studied
at the genetic level.

Queen pheromones and their biosynthesis in honeybees

QMP in honeybee queens mainly contains 9-ODA and 9-
HDA, while workers synthesize 10-hydroxy-2-decenoic
acid (10-HDA) (Plettner et al. 1996). Both castes have the
biosynthetic machinery to produce all these compounds
but differ in the selectivity in the production of one group
of pheromones over another. The common precursor, the
18-carbon stearic acid (or stearoyl-CoA), is synthesized by
fatty acid synthase (FAS) (Fig. 2) and other enzymes, such
as carboxylases, transacylases, and elongases (for review,
seeWakil et al. 1983). The pathways then bifurcate by add-
ing a hydroxyl group to different positions on the hydro-
carbon chain: the penultimate carbon in queens versus
the terminal carbon in workers, respectively. These steps
are probably catalyzed by enzymes that belong to the cy-
tochrome P450 (CYP) family (Plettner et al. 1998). This
step is followed by β-oxidation to shorten the hydrocarbon
from an 18- to a 10-carbon chain and completed by hy-
droxyl group oxidation to generate 9-HDA and 9-ODA
in queens and 10-HDA in workers (Fig. 2).

Cytochrome P450 (CYP) enzymes, also called mono-
oxygenases, catalyze reactions that add an oxygen atom
to substrates, thereby hydroxylating the substrates. CYP
proteins are involved in multiple biological processes, in-
cluding drug and pesticide detoxification, fatty acid me-
tabolism, and synthesis of important insect hormones,
such as 20-hydroxyecdysone and juvenile hormone (JH)
(Feyereisen 1999), which regulate insect growth, develop-
ment, and reproduction. In the bifurcatedpathways to gen-
erate queen pheromone 9-HDA/ODA and the worker-
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specific 10-HDA, it is likely that two groups of CYP pro-
teins catalyze the hydroxylation reactions at different
carbon positions on stearic acid (Plettner et al. 1996).
There are ∼50–100 CYP genes in most hymenopteran eu-
social insect species (Nelson 2018). The functions of
CYP proteins in pheromone synthesis are likely highly
specific. Although it is not yet clear which CYPs are in-
volved in QMP synthesis, some candidate genes have
been identified among 17CYP genes that are differentially
expressed betweenqueens andworkers (Malka et al. 2014).
Differential expression of CYP genes may represent the

first step in the evolution of QMP, because it creates the
queen- versus worker-specific pathways that give rise to
two distinct end products, linking to their differential fer-

tility status in the colony. Based on the theory of signal
evolution, when a receiver responds to a cue against back-
ground noise, natural selection would be expected to rein-
force the signal by fine-tuning the biosynthetic process
(Fig. 1). Indeed, alcohol dehydrogenases (ADHs) that cata-
lyze the last step only in the queen pheromone synthesis
are up-regulated in the queen mandibular gland, thereby
strengthening the signal produced by queens (Malka
et al. 2014).

Cuticular hydrocarbons as pheromones

CHCs serve as queen pheromones in many eusocial spe-
cies. In addition, CHCs are broadly used as cues for

Figure 2. Pheromone production, perception, and its induced responses. (Top panel) The precursors of sender’s QMP and CHC phero-
mones, normally 16- to 20-carbon fatty acyl-CoA (or fatty acid), are synthesized from acetyl-CoA, the multistep reactions catalyzed by
fatty acid synthase (FAS) and other enzymes. QMP synthesis is catalyzed by enzymes such as cytochrome P450 mono-oxygenases and
alcohol dehydrogenases (ADHs), while CHC synthesis is catalyzed by cytochrome P450, elongases, and desaturases. The most common
forms of CHC pheromones are alkanes (saturated) and methyl-alkanes, and alkenes (unsaturated). (Middle panel) Pheromones are sensed
primarily by the receiver’s odorant receptors (ORs) expressed in peripheral neurons (ORNs), whose dendrites are located in the sensillum,
and axons project to glomeruli in the antennal lobe (AL). TheOR genes and number of glomeruli have been expanded in the evolution of
hymenopteran insects, notably in those organized in societies. The signal is further processed in the mushroom bodies (MB), the lateral
horn (LH), and the central brain. (OL) Optic lobe. (Bottom panel) The altered neuronal activity in the brain may cause the secretion of
neurotransmitters, biogenic amines, and hormones, leading to systemic changes in physiology (e.g., reproduction and pheromone synthe-
sis) and behavior in the receiver.
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recognition of colony members, which is based on herita-
ble variation in CHC production between colonies (e.g.,
van Zweden and D’Ettorre 2010; Walsh et al. 2020). The
widespread use of CHCs as queen pheromones or fertility
signals in eusocial insects might be due to their ubiqui-
tous presence on the insect cuticle, the ability of insects
to perceive hydrocarbons, and possible links between hy-
drocarbon biosynthesis and a physiological condition. In
H. saltator, for example, CHCprofiles inworkers are char-
acterized by short chain hydrocarbons, while in reproduc-
tive workers the whole CHC profile is shifted to longer
chain hydrocarbons (Liebig et al. 2000). When workers ac-
tivate their ovaries, this shift is initiated andwhen ovaries
become inactive again, their CHC profile reverts back
(Liebig et al. 2000). Besides ovarian activity, task, age,
mating status, and social stress are other factors that can
lead to CHC variation (Sprenger and Menzel 2020). This
sensitivity of the CHC profile to various intrinsic factors
makes CHCs excellent precursors for a pheromone
because the cue linked to a sender’s physiological condi-
tion and a receiver’s ability to recognize that cue are al-
ready present, which matches the core hypothesis of the
sender-precursor model of pheromone evolution (Fig. 1).
Thus, the mechanism of CHC biosynthesis is an impor-
tant piece in understanding the evolution of CHCs as
pheromones.

CHCs vary substantially, differing primarily in chain
length, the position of double bonds and the position of
methyl-groups in the carbon chain (Martin and Drijfhout
2009). CHC chain lengths are typically in the range of 25
to 39 carbons in eusocial insects, but lengths of 18–45 car-
bons have been observed. This range is limited by the in-
creased volatility of shorter chains and the higher
viscosity or even crystallinity of larger compounds, al-
though carbon chain modifications also contribute to dif-
ferences in both their volatility and viscosity (Gibbs
2002). Within and between species, a variety of different
CHCs occur; e.g., different ant species display varied pro-
files of CHCs, including nonbranched, monomethyl-,
dimethyl-, trimethyl-, and tetramethyl-alkanes, as well
as monoenes, dienes (with two double bonds), trienes,
and methylalkenes and methylated dienes. Among these
hydrocarbons, dimethyl-alkanes and monomethyl-al-
kanes display the most dramatic structural variations
(Martin andDrijfhout 2009), whichmakes themmore dis-
tinct and thus more likely to be used as pheromones (Hol-
man et al. 2010). This does not, however, preclude the use
of other CHC structures as pheromones, such as straight-
chain alkanes or alkenes in ants and termites (Fig. 2; Smith
et al. 2009; Funaro et al. 2018). These compounds are less
frequent in ant CHC profiles (Martin and Drijfhout
2009), which is an alternative explanation to structural
complexity for their less frequent use as pheromones.

CHC biosynthesis normally starts with 16- to 20-car-
bon fatty-acyl-CoAs, such as stearoyl-CoA, followed by
elongation via fatty acyl-CoA elongases, formation of dou-
ble bonds via acyl-CoA desaturases, and removal of CoA
via reductases and cytochrome P450 in tandem with the
coenzyme NADPH. In addition, the methyl groups in
methyl-branched hydrocarbons arise from substitution

of malonyl-CoAwithmethylmalonyl-CoA during the ini-
tial assembly of the fatty acid chain (Howard and Blom-
quist 2005). Thus, most methyl branches are placed very
early in the overall biosynthesis.

There are multiple elongases in the genome of eusocial
insects: for example, 11 elongases in Harpegnathos salta-
tor (Bonasio et al. 2010). Interestingly, recent phylogenetic
analysis of desaturases of 15 insects, including social Hy-
menoptera demonstrated that insect desaturases repre-
sent an ancient gene family with eight subfamilies that
differ strongly in their degree of conservation and the fre-
quency of gene gain and loss. In three subfamilies, ants ex-
hibit particularly large expansions of desaturase genes,
which display species-, sex-, and caste-specific gene ex-
pression profiles (Helmkampf et al. 2015). These data sug-
gest that some desaturases have undergone positive
selection (see Box 1) during the evolution of ants.

A subfamily CYP4G genes encode P450 enzymes used
by insects to produce cuticular hydrocarbons (Nelson
2018). The final step in the formation of the CHC is per-
formed by a P450 enzyme that functions as an oxidative
decarbonylase (Qiu et al. 2012). In this step, the precursor
aldehyde is transformed into a hydrocarbon with the re-
lease of carbon dioxide. The essential role in the produc-
tion of specific CHCs involved in insect communication
has been demonstrated in a knockdown study in a termite.
The knockdown of a P450 enzyme in queens of the ter-
mite Cryptotermes secundus led to significant changes
in their royal CHC profile with subsequent lack of queen
recognition by workers (Hoffmann et al. 2014).

The role of CHCs in communication and desiccation re-
sistance demonstrates how important P450 enzymes are
for insects. In fact, the active site sequences of the P450
subfamily CYP4G are highly conserved. Thus, it is sur-
prising that the evolution of P450 genes is characterized
by apparently random birth and death processes. This dis-
crepancy might be explained by their two unrelated func-
tions in desiccation resistance and communication:While
CYP4G genes ensure production of CHCs for sufficient
desiccation resistance, the specific CHC profile composi-
tion is not conserved and thus allows for random birth and
death of CYP4G during evolution, thereby producing var-
iation as a basis for their function in chemical communi-
cation (Feyereisen 2020).

Plasticity of pheromone synthesis

The production of queen pheromones varies with repro-
ductive status and between castes, demonstrating its dy-
namic nature and genetic control. In the cape honeybee,
A. mellifera capensis, for example, workers can function-
ally take the reproductive role in queenless colonies.
When this happens, workers display queen-like physiolo-
gy and behavior, suggesting a strong phenotypic plasticity
in this species, including queen pheromone production. In
fact, when workers replace the queen, they begin to syn-
thesize QMP, in tandem with altered expression of P450
(CYP) genes (Malka et al. 2009; Wu et al. 2017), indicating
the plasticity of enzyme production in response to an al-
tered environment.
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Plasticity in the productionofCHCqueenpheromones is
probably widespread considering changes in the CHC pro-
files of reproductive individuals in ant, bee, andwasp socie-
ties (Peeters and Liebig 2009; Liebig 2010). Specifically, the
level of queen- or reproductive-specific CHC expression is
positively correlated with the level of ovarian activity in,
for example, the ponerine ants Dinoponera quadriceps
and H. saltator (Peeters et al. 1999; Liebig et al. 2000). In
one of the most extreme cases, the queen CHC profiles in
the ant Camponotus floridanus changes from 0% to 60%
reproductive-specific CHCs, when queens increase their
egg-laying rates during colony development from the foun-
dation stage to colony sizes with more than 1000 workers
(Endler et al. 2006). These compounds are exclusively in
theshorter-chainpartof theCHCprofile.This examplesug-
gests strong changes in the regulation of genes associated
with the production of the appropriate CHCs. In fact, the
transition of workers to reproductive individuals after
queen removal in the ant H. saltator is associated with a
wide range of changes in their gene expression profile, in-
cluding CYP genes, elongases, and desaturases (Bonasio
et al. 2010). Concurrently, the CHC profile shifts from
short-chain to long-chain hydrocarbons, with a strong in-
crease in a queen-specific hydrocarbon, 13,23-dimethyl-
heptatriacontane (13,23 dimethyl-C37), one of the likely
queen pheromone compounds in H. saltator (Liebig et al.
2000). Why we find specific hydrocarbons associated with
queen pheromones seems unclear. Although CHC profiles
of ant workers from different species are associated with
varying ecological conditions such as humidity or tempera-
tures (Sprenger and Menzel 2020), reproductive queens in
established ground nesting colonies are largely protected
from desiccation, which thus should not constrain their
CHCprofiles and allow for largevariationswithin the range
ofCHCs along the species-specific gene repertoire involved
in CHC synthesis.

Summary of pheromone production

Genomic and transcriptomic evolutionary comparisons
across species should also help with explaining the large
variation in fecundity-related expression of CHC profiles
in ants. For example, are genes involved in producing
CHC queen pheromones more under stabilizing selection
compared with genes involved in producing the species-
specific CHC profile? Transcriptome analysis has been
widely used to identify candidate genes involved in pher-
omone synthesis. To further understand the evolution of
pheromones, specific enzymes need to be identified for
each step in pheromone synthesis; for example, the CYP
genes that determine the queen versus worker biosyn-
thetic pathways in honeybees. In other words, functional
analysis via geneticmanipulations should follow the tran-
scriptome analysis that identifies candidate enzymes. For
example, CRISPR-mediated functional studies have been
performed in eusocial insects (see “Conclusion and Per-
spective”), and these types of studies will facilitate the
characterization of enzymes involved in regulating the
pheromone biosynthesis, as well as the evolutionary anal-
ysis of these enzymes.

Pheromone perception in peripheral receptor neurons

When a sender-produced pheromone or cue reaches a re-
ceiver, it first stimulates activation of peripheral chemo-
sensory neurons, which in turn induce behavioral and
physiological responses. The chemosensory system is es-
sential to discriminate among a large variety of chemicals
in the environment. Chemosensory neurons in insects are
localized in hair-like structures, called sensilla, on anten-
nae and other appendages, with axons projecting to the
brain (Fig. 2). They express odorant receptors (ORs), gusta-
tory receptors (GRs), ionotropic receptors (IRs), Pickpock-
et (Ppk), and Transient receptor potential (Trp) receptors
(Joseph and Carlson 2015). The odorant receptor neurons
(ORNs) that express ORs are specialized in detecting
most volatile chemicals, including low volatility CHCs,
while some volatiles, such as CO2, can be sensed by
GRs (Kwon et al. 2007). Besides receptor proteins, neuro-
nal cells as well as glial cells surrounding neurons in the
sensilla also express accessory proteins. For example, sen-
sory neuron membrane protein (SNMP) likely acts as an
essential cofactor of certain odorant receptors (Benton
et al. 2007); odorant binding proteins (OBPs) and chemo-
sensory proteins (CSPs) escort chemicals from the cuticu-
lar pore of the sensillum hair to the cell membrane of the
chemosensory neurons (Leal 2013; McKenzie et al. 2014;
Pelosi et al. 2014).
Chemosensory neurons in insects utilize a general de-

coding rule of “one neuron, one receptor.”ORNs normal-
ly only express one OR gene, and the axons of all ORNs
expressing the same OR gene converge to the same glo-
merulus located in the antennal lobe (AL) in the brain
(Fig. 2; Vosshall et al. 2000; Hansson and Stensmyr
2011; Grabe and Sachse 2018; Yan et al. 2020). However,
exceptions have been found in Drosophila and mosqui-
toes. For example, some neurons express two or more
OR genes, and some OR-expressing neurons also express
IRs (Task et al. 2020; Younger et al. 2020; McLaughlin
et al. 2021). In addition, different OR-expressing and IR-
expressing neurons show coconvergence onto the same
glomerulus in mosquitoes (Younger et al. 2020).
The insectOR gene family evolved from another family

of chemosensory receptors, gustatory receptor (GR) genes
(Brand et al. 2018; Robertson 2019). They encode seven-
transmembrane domain proteins that display an inverted
topology compared with G protein-coupled receptors, the
corresponding chemosensory receptors in mammals. In-
sect ORs presumably act as ligand-gated ion channels,
formed by heterotetramers, four-subunit protein com-
plexes. Each heterotetramer contains two molecules of
an obligate coreceptor called Orco, plus two molecules
of a ligand-binding tuning OR (Benton et al. 2006; Sato
et al. 2008; Wicher et al. 2008; Butterwick et al. 2018).
In contrast to Orco genes, which are highly conserved
among insects, OR genes have undergone a high rate of
birth and death. As a result, they show little conservation
between orders, while within Hymenoptera, among
wasps, bees, and ants, conservation has been found in
some OR gene subfamilies, such as 9-exon ORs (see be-
low; Zhou et al. 2012, 2015; McKenzie et al. 2016).
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We next explore pheromone perception in more detail
at the evolutionary and functional level of the chemosen-
sory system.

Evolution of the chemosensory system in eusocial insects

When a receiver extracts information from a chemical cue
in the first step of pheromone evolution, its chemosensory
system already possesses olfactory receptors to sense these
chemicals. Selection acts on the sender tomake the phero-
monemore distinct, as well as on the receiver to recognize
and respond to the pheromonemore efficiently (Fig. 1). The
latter includes the peripheral sensory system and subse-
quent sensory processing areas of the brain (Fig. 2).

Most insect species contain <100OR genes and a similar
number of glomeruli, the subunits of the antennal lobes.
Thisnumber is stronglyexpanded in the flour beetleTribo-
lium castaneum and in Hymenoptera, including wasps,
bees, and ants (for review, see Yan et al. 2020 and more
bee species in Brand andRamírez 2017). In ants and at least
one social wasp, there are 300–500OR genes, which clus-
ter into 27 subfamilies, with the 9-exon subfamily being
the largest, containing between one-third and one-half of
the known OR genes (Zhou et al. 2012, 2015; McKenzie
and Kronauer 2018; Legan et al. 2021). Given that OR
genes are already expanded in parasitic solitary wasps,
such as Nasonia vitripennis (225 OR genes) (Zhou et al.
2012), it is generally assumed that they started to expand
as an adaptation to complex cues in hosts to assist in
host recognition (Zhou et al. 2012; Yan et al. 2020). In con-
trast, the nonhymenopteran eusocial insects, termites in
the order of Blattodea, do not show expansion of the OR
gene family but rather an expansion of IR gene family (Ter-
rapon et al. 2014; Harrison et al. 2018), consistentwith the
termite chemosensory system having evolved indepen-
dently for its role in eusocial organization.

The expansion of the OR family in the Hymenoptera is
associated with positive selection (Roux et al. 2014; Zhou
et al. 2015; Saad et al. 2018) in both solitary aswell as social
species, suggesting that it can be driven by factors associat-
edwith both eusocial organization and solitary life. The ex-
pansion of OR genes (or IR genes in termites) in the
ancestors of eusocial insects may have been a pre-existing
sensory sensitivity in receivers that helped enhance com-
municationanddiscriminationabilities associatedwithco-
lonial life. The combination of inputs frommore narrowly
tuned individual receptors enhances detection of slight dif-
ferences among structurally similar chemicals or profiles of
odorants (Wyatt 2014; Grabe and Sachse 2018; Yan et al.
2020), which is useful, for example, for the discrimination
of complex CHC profiles of colonymembers versus outsid-
ers.Due to thediversityofqueenpheromonesused indiffer-
ent eusocial species, the ORs that are used to sense queen
pheromones must vary as well. The diverse gene gains or
losses across eusocial insects match these expectations
(Zhou et al. 2015). The OR diversity associated with the
many different cues and pheromones can be achieved by
tandem duplications (e.g., McKenzie and Kronauer 2018).
Duplicated ORs in ants are associated with positive selec-
tion of amino acid positions at ligand binding sites of the re-

ceptor molecule that indicate neofunctionalization and a
shift to the perception of novel odorants (Engsontia et al.
2015; Saad et al. 2018).

Function of odorant receptors and their role
in neural development

At the level of peripheral neurons and receptors, some in-
sect odorant receptors are very narrowly tuned, respond-
ing only to one or a limited range of ligands, whereas
others are broadly tuned and act as “generalists,” respond-
ing to a variety of ligands (Grabe and Sachse 2018). During
signal evolution, narrowly tuned receptors may have un-
dergone strong positive selection for critical odors or sig-
nals, while broadly tuned receptors likely provide pre-
existing sensitivity to a wide range to chemicals, the ini-
tial step of signal evolution that allows certain cues to in-
duce a response in receivers. On the other hand, a
pheromone or cue may activate only a single ORN
type or a panel of ORNs to induce behavioral and physio-
logical responses in receivers. In eusocial insects, specifi-
cally dedicated coding and combinatorial processing are
both involved in mediating chemical responses (Su et al.
2009; Grabe and Sachse 2018).

The role of some ORs in social organization has already
been elucidated. The 9-exon ORs, for example, seem to be
essential for the establishment of the organization of colo-
ny structure and for communication between castes.
Indeed, (1) the 9-exon subfamily is the largest among 27
OR subfamilies in hymenopteran eusocial insects, and
(2) 9-exon ORs are mainly expressed in females (Zhou
et al. 2012;McKenzie et al. 2016; Leganet al. 2021).The ex-
pansion ofOR genesmay allow an increase in the specific-
ity and sensitivity of reception, leading to the hypothesis
that 9-exon ORs are specialized in detecting queen phero-
mones and CHC cues. In fact, many ORs in the 9-exon
family in the ant H. saltator are sensitive to CHCs (Pask
et al. 2017), although other ORs outside of this group
also respond to CHCs (Slone et al. 2017). This suggests a
mechanism of combinatorial processing. For example,
two H. saltator ORs (HsOR263, HsOR271) respond to
13,23-dimethyl-C37, a likely component of theH. saltator
queen pheromone, which also indicates the specificity of
certainORs inpheromone response (Pasket al. 2017; Slone
et al. 2017). Likewise, in honeybees, theORAmOR11 spe-
cifically responds to 9-ODA, one of the main components
of the queen pheromone QMP (Wanner et al. 2007).

It is commonly assumed that, unlike mammals, the de-
velopment of most insect neurons is hardwired and does
not depend on neuronal activity (Yan et al. 2020). For in-
stance, knockout of Orco in Drosophila does not affect
the ORN development (Larsson et al. 2004) but results
in postdevelopment defects in axons and glomeruli
(Chiang et al. 2009). However, recent evidence in other in-
sect species, such as ants, suggests that development of
the chemosensory system is dependent on the expression
ofOrco genes (Trible et al. 2017; Yan et al. 2017; Maguire
et al. 2020). In the ants H. saltator and Ooceraea biroi,
loss-of-function mutations in Orco strongly reduce the
number of ORNs and glomeruli (Trible et al. 2017; Yan
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et al. 2017), indicating its function in regulating neural de-
velopment. The underlying mechanism is not clear yet.
One explanation is that neuronal survival in ants is activ-
ity-dependent; alternatively, lack of Orco may lead to
misfolding of OR proteins and subsequent cell death. In-
terestingly,Orco andOR genes are expressed early in neu-
ral development in ants as well as in mosquitoes and are
required for the correct development of glomeruli in O.
biroi (Maguire et al. 2020; Ryba et al. 2020). In contrast,
Drosophila Orco is only expressed at late stages of ORN
development and after maturation of glomeruli (Larsson
et al. 2004). Furthermore, overexpression of one OR
gene inmosquito neurons suppresses the expression of en-
dogenous ORs, a phenomenon reminiscent of mice, but
not in Drosophila (Maguire et al. 2020).

Summary of pheromone perception

As shown above, recent studies have challenged our previ-
ous understanding of the development of ORNs and indi-
cated the complexity of the insect chemosensory system.
More insects, including eusocial species, need to be ex-
plored. Further data from different insects will help us
determine whether, despite the differences in odorant re-
ceptor structure in insects and mammals, the develop-
ment of their ORNs may have undergone convergent
evolution and shares larger similarities than previously
thought.

Physiological and behavioral responses to pheromones

In insects, pheromones or chemical cues usually activate
a unique combination of projection neurons (PNs), either
directly or mediated by local interneurons in AL glomeru-
li. These PNs project to the mushroom bodies (MB) and
lateral horn (LH) where the signal is integrated (Fig. 2;
Su et al. 2009). The processing of integrated signals leads
to subsequent physiological and behavioral responses
via two main pathways: (1) activated neurosecretory cells
secrete neurotransmitters and hormones to induce local
and global changes in internal physiological conditions,
and (2) axon projections along the ventral nerve cord
(VNC) activate muscle cells to produce behaviors (Gilbert
2012). Eusocial insects largely share with solitary insects
the essential genes that regulate neural development
and activity, while certain genes have evolved to form a
social gene toolkit in which genes have been co-opted to
regulate social communication and social behavior
(Amdam et al. 2006; Robinson et al. 2008).
While brain structures are highly conserved among in-

sects, specific neural circuits display striking variations
between species, sexes, age, castes, and varied environ-
mental conditions (Hammer and Menzel 1995), which
potentially leads to different responses to queen phero-
mones. QMP has variable effects on workers of different
ages and task group. This pheromone controls social hier-
archy and division of labor in the colony and also regulates
awide range of social behavior in honeybeeworkers. First,
QMP restricts aggressive behavior, such as stinging, in

workers (Kolmes andNjehu 1990). Second,QMP regulates
behavior in nurse workers by suppressing behaviors relat-
ed to rearing new queens, which maintains colony stabil-
ity (Winston et al. 1990). Third, QMP regulates behavior
in foragers through its effect on JH levels. Foraging behav-
ior is positively correlated with JH levels in eusocial
insects (Pankiw et al. 1998), and QMP delays the transi-
tion from nursing to foraging via the down-regulation of
JH, krüppel homolog 1 (a JH-responsive gene), and cyclic
guanosine monophosphate (cGMP) (Pankiw et al. 1998;
Grozinger et al. 2003; Fussnecker et al. 2011). QMP also
induced age-dependent attraction inworkers. Young nurs-
es are normally attracted by QMP, while old foragers are
not. The attractive response to QMP is closely associated
with lower levels of dopamine and dopamine receptors
(Beggs et al. 2007; Vergoz et al. 2009), which highlights
the importance of pathways downstream frompheromone
receptors for differential responses to pheromones (Fig. 2).
In contrast to pheromone receptors and pheromone pro-

duction, which are subject to rapid evolution and strong
positive selection, pathways downstream from the phero-
mone receptors are largely conserved. For example, bees
and ants diverged 150 million years ago and produce dis-
tinct queen pheromone molecules, but they share queen
pheromone-responsive genes and pathways, including ol-
factory perception, neurotransmission, lipid metabolism,
and transport, as well as reproduction (Holman et al.
2019). Five major royal jelly proteins (MRJPs) show in-
creased expression in workers that are not exposed to
queen pheromones, consistent with the need to rear new
queens when the previous old queen dies. While the role
ofMRJPs in ants is not clear, oneMRJP ranked the second
queen pheromone-responsive gene in the ant Lasius niger,
also showing up-regulation when not exposed to its queen
pheromone (Holman et al. 2019).
Further studies in social wasps, ants, and termites have

identified a large number of queen pheromone-responsive
genes and pathways, notably the insulin pathway, G pro-
tein-coupled receptors (GPCRs), neurotransmitters, and
vitellogenin (Libbrecht et al. 2013; Berens et al. 2015;
Gospocic et al. 2017; Calkins et al. 2019; Haroon et al.
2020). Functional studies have been performed to reveal
the role of key genes (e.g.,Corazonin [Crz], which encodes
a neuropeptide) in regulating behavior and reproduction:
The queen pheromonemay lead to the increased secretion
of Crz that promotes worker foraging behavior. It also sup-
presses worker reproduction via down-regulation of vitel-
logenin, a profertility protein, in the fat body (Gospocic
et al. 2017).
Genes that control transcription and cell identity also

display caste-specific expression and pheromone re-
sponse. These genes are known to regulate epigenetic
processes in eusocial insects (Bonasio 2012; Yan et al.
2014, 2015; Allis et al. 2015; Opachaloemphan et al.
2018). Epigenetic processes that are responsive to queen
pheromone include DNA methylation in honeybees
(Holman et al. 2016) and ants (e.g., Bonasio et al. 2012;
for review, see Yan et al. 2015), as well as histone modi-
fications. For example, histone lysine 27 acetylation
(H3K27ac) regulates caste determination, neural
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development, and olfaction-mediated learning and mem-
ory in the carpenter ant Camponotus floridanus. Manip-
ulation of H3K27 acetylation can drive major workers
to forage (Simola et al. 2016). Furthermore, a key regula-
tor, neuronal corepressor for element-1-silencing tran-
scription factor (CoREST) appears to mediate the effects
of histone deacetylation and further regulates juvenile
hormone esterase and epoxide hydrolase, two enzymes
that degrade juvenile hormone, thereby controlling ant
foraging behavior (Glastad et al. 2020).

One of the downstream effects of pheromone exposure
(or lack of it) is alteration of pheromone production in re-
ceivers. Variable levels of hormones are associated with
differential production of CHCs and pheromones in in-
sects. InDrosophila, the loss of ovaries and its secreted ec-
dysone lead to the reduction of the synthesis of long-chain
hydrocarbons (Baron et al. 2018), while reduced insulin
signaling decreases the synthesis of sex pheromone and
decreases female sexual attractiveness to males (Kuo
et al. 2012). Although the mechanisms are not clear,
caste-specific hormone profiles may also regulate phero-
mone production in eusocial insects: Workers that are re-
leased from the inhibiting effects of a queen pheromone
may show an increase in insulin and ecdysone synthesis
and a decrease in JH synthesis, which subsequently in-
duce the production of queen pheromones and other re-
productive-specific compounds (Fig. 2). For example, the
cape honeybee A. mellifera capensis develops the ability
to reproduce in the absence of the host queen pheromone
QMP, which is accompanied by changes in pheromone
production (Mumoki et al. 2018). During the transition
to reproductive status, the alcohol dehydrogenase (ADH)
that converts 9-HDA to 9-ODA (QMP) is dramatically
up-regulated in the mandibular gland (five times higher
in queenless workers comparedwith queenrightworkers).
Likewise, as described above, the transition from nonre-
productive to reproductive status as a consequence of
the lack of queen pheromones is associated with alter-
ations of CHC profiles and the production of queen pher-
omones in transitioning ants in H. saltator and D.
quadriceps (Peeters et al. 1999; Liebig et al. 2000), among
other species (Peeters and Liebig 2009; Liebig 2010). The
queen-like pheromone profile established in some work-
ers plays an important role in regulating other workers’
behavior and suppressing their reproductive potential.

Summary of responses to pheromones

In social insects, pheromones coordinate cooperation in
their societies by inducing a wide range of physiological
and behavioral responses. Although large efforts have
been made, we know little about how these responses
are regulated. For example, howdo signals from peripheral
neurons integrate in the central brain and how does the
central brain regulate the secretion of hormones in euso-
cial insects? Analysis of neuronal circuits and functions
in the brain will benefit from advanced techniques, such
as single-cell transcriptome analysis that has been used
for eusocial insect research (Sheng et al. 2020), as well as
development of genetic tools, as described below.

Conclusion and perspective

Recent progresses in genomics, genetics, and epigenetics
of eusocial insects have greatly enhanced our understand-
ing of the genetic basis of social communication. Geno-
mic studies, notably transcriptomic analyses, have
identified a large number of developmental stage- and
caste-specific genes at the three key steps of communica-
tion: pheromone synthesis, pheromone perception, and
the resulting physiological and behavioral changes. How-
ever, the precise functions of these candidate genes are
most often not yet clear. Full functional analysis will re-
quire further development of genetic tools for eusocial in-
sects. These efforts will be enhanced by the fact that some
eusocial insect species produce a large proportion of repro-
ductively active individuals, which will facilitate the es-
tablishment of mutant or transgenic lines (Yan et al.
2014). So far,mutant and/or transgenic lines have been de-
veloped in the honeybee A. mellifera and the ant species,
H. saltator, O. biroi, and S. invicta (Schulte et al. 2014;
Kohno et al. 2016; Trible et al. 2017; Yan et al. 2017;
Kohno and Kubo 2018; Hu et al. 2019; Roth et al. 2019;
Chiu et al. 2020). These genetic manipulations, and
more to follow, will pave the way toward a better under-
standing of the role of genes in controlling social commu-
nication, neural development, and pheromone-induced
physiology and behavior in eusocial insects.
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