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Gait phase classification is important for rehabilitation training in patients with lower

extremity motor dysfunction. Classification accuracy of the gait phase also directly

affects the effect and rehabilitation training cycle. In this article, a multiple information

(multi-information) fusion method for gait phase classification in lower limb rehabilitation

exoskeleton is proposed to improve the classification accuracy. The advantage of

this method is that a multi-information acquisition system is constructed, and a

variety of information directly related to gait movement is synchronously collected.

Multi-information includes the surface electromyography (sEMG) signals of the human

lower limb during the gait movement, the angle information of the knee joints, and the

plantar pressure information. The acquired multi-information is processed and input into

a modified convolutional neural network (CNN) model to classify the gait phase. The

experiment of gait phase classification with multi-information is carried out under different

speed conditions, and the experiment is analyzed to obtain higher accuracy. At the

same time, the gait phase classification results of multi-information and single information

are compared. The experimental results verify the effectiveness of the multi-information

fusion method. In addition, the delay time of each sensor and model classification time

is measured, which shows that the system has tremendous real-time performance.

Keywords: sEMG, multi-information fusion, gait phase classification, lower limb rehabilitation exoskeleton,

convolutional neural network (CNN), real-time

INTRODUCTION

Disability of the lower body or related body parts will lead to walking difficulties (Jung et al., 2015).
Gait recovery is one of the main goals of patients with lower limb motor dysfunction (Wolbrecht
et al., 2008). The traditional rehabilitation process is labor-intensive that several therapists are
required throughout the training of one patient (Yang et al., 2019). The wearable lower limb
rehabilitation exoskeleton is used for gait rehabilitation of patients with lower limb dysfunction
(Yin et al., 2020; Céspedes et al., 2021), such as spinal cord injury, cerebral palsy, and stroke (Hobbs
and Artemiadis, 2020; Nolan et al., 2020). A suitable lower limb rehabilitation exoskeleton will
improve the life quality of patients with lower limb disorder greatly (Young and Ferris, 2017).
In order to realize smooth human-machine coupling and achieve robot-facilitated rehabilitation
training, it is necessary to synchronize the action of wearable lower limb rehabilitation exoskeleton
with that of the body. Therefore, accurate classification of the gait phase is required. The
classification of the gait phases correctly is critical for robots to assist timely (Wei et al., 2021).
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The human leg sEMG signal can offer valuable motion
information, such as symmetric and periodic motion in human
gait (Deng et al., 2020; Gao et al., 2021; Yao et al., 2021), and
it is characterized by simple signal acquisition, intuitive data,
and the non-invasive acquisition method (Kim et al., 2018; Lin
et al., 2020; Ma et al., 2020). Artificial neural networks have
made great progress, are widely used in the field of classification,
and have shown great performance (Adewuyi et al., 2016; Atzori
et al., 2016). Therefore, sEMG of legs is combined with an
artificial neural network (Cheng et al., 2020) in human gait phase
classification (Lee et al., 2017). Morbidoni et al. (2019) proposed
a deep learning method for classifying a swing phase and a stance
phase. This method is mainly based on the sEMG signal and
does not need to extract features from the signal. Through the
test of 12 subjects, the accuracy is up to 92.6%, which proves
the effectiveness of the sEMG signal in gait classification. Joshi
et al. (2013) obtained sEMG data from human lower limbs and
used the machine learning method to classify each stage of the
gait cycle, which improved the classification accuracy of each
stage of the gait cycle. Ziegier et al. (2018) proposed a method
based on EMG data to classify the standing stage and the swing
stage of the gait of healthy people by using bilateral leg muscle
signals. This method introduces a new EMG feature, which is
calculated according to the EMG of muscle pairs on both sides,
and the classification accuracy of the proposed method reaches
96%. Di Nardo et al. (2021) studied the influence of different
sEMG signal processing specifications and different numbers of
sEMG sensors on the performance of the gait phase classification
method based on neural network prediction and obtained an
average accuracy of 93.4%. However, although the abovemethods
have good performance, the accuracy still needs to be improved.

Plantar pressure is widely used in the research of gait phase
classification (Joo et al., 2014; Xie et al., 2020). Luo et al. (2020)
arranged plantar pressure sensors at the heel and toe and used the
working state of plantar pressure sensors to classify gait stages,
and the accuracy of this method reached 94.1%. Nazmi et al.
(2019), respectively, arranged plantar pressure sensors under
the heel and thumb, and divided the gait phase by analyzing
the contact state between the heel and toe and the ground; the
accuracy of this method reached 87.5 and 77%. Although the
above method is enough to detect gait events, the accuracy of
gait phase classification is not high, and the phase classification is
relatively rough. In addition, Liu et al. (2016) used a single-joint
angle to classify the gait phase, and the accuracy reached 94.45%,
which proved the feasibility of the method. Grimmer et al. (2019)
used the angle sensor to detect the stance and swing and obtained
good results. However, the target achieved only by this method
still needs to be improved.

Whether the above information can be fully combined to
find out the accurate relationship to improve the accuracy of
gait phase classification is an interesting problem. Therefore, a
multi-information fusion method for gait phase classification
in the lower limb rehabilitation exoskeleton is proposed to
improve the classification accuracy in this article. Firstly, the
gait phase classification experiments at different speeds were
carried out and analyzed, and the accuracy of gait phase
classification was significantly improved. Secondly, the gait phase

classification results of multi-information and single information
are compared. The experimental results show that the gait phase
classification method based on multi-information fusion has
good performance.

The structure of this paper is as follows: The second section
introduces the gait phase classification system, gait information
acquisition device, data preprocessing, and the neural network
model for gait phase classification. The third section shows
the design of the gait acquisition experiment and the software
environment of the experiment. The fourth section is the result
and discussion of the experiment.

METHODOLOGY

Gait Phase Classification System
A real-time gait classification system based on wireless multi-
information fusion is designed and implemented. The gait
classification system of human lower limb movement consists of
the gait information acquisition part and the gait information
processing part. The gait information acquisition part includes
plantar pressure acquisition, knee angle acquisition, and sEMG
signal acquisition. The acquired knee joint angle information and
plantar pressure information are, respectively, transmitted to the
single-chip microcomputer (Atmel atmega328p microprocessor,
ATMEL Inc., USA) and two linear voltage modules (FRP
resistance voltage converter, Telesky Inc., China). The output of
the sensor that acquires the knee joint angle and plantar pressure
is an analog quantity, and the single-chip microcomputer
performs 50Hz A/D sampling on it and records the time stamp
at the same time. In the experiment, the microcomputer and
the linear voltage module were integrated into an aluminum
metal box with a length of 180mm, a width of 160mm, and
thickness of 48mm, and the aluminum was sealed and wrapped
with tin foil to shield the interference of space clutter signals. The
function of the linear voltage module is to convert the resistance
signal of the thin-film pressure sensor into the voltage signal.
The part of gait information processing is mainly a computer
and the neural network model. The communication between the
microcomputer and the linear voltage module and the computer
uses the Lora wireless transmission module (Lora-01, Alientek
Ltd, China) to transmit data information, which reduces the
energy loss of wired transmission, and the redundancy of the
connection line and is more convenient to wear and move at
any time.

Figure 1 shows the structure of the gait phase classification
system. The sEMG acquisition system acquires the sEMG
signal of the gait movement of the human leg, communicates
wirelessly with the myoRESEARCH software in the computer,
and transmits it to the neural network model of the computer.
The Hall angle sensor acquires the knee joint angle information
of human gait movement. The plantar pressure sensor collects
the pressure information of the plantar in the stance phase
of the human gait movement. The collected information is
synchronized using a synchronization cable. The input to the
neural network was the sEMG signal and the knee joint angle.
After training with a label of gait events detected by plantar
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FIGURE 1 | Structure of gait phase classification system.

FIGURE 2 | The composition of the plantar pressure collection device; (A) the

thin-film pressure sensor and its parameters, (B) the physical product of the

plantar pressure collection device.

pressure information, it can output gait phase classification
results in real time.

Gait Information Acquisition
Plantar Pressure Acquisition Device
The information collection of plantar pressure acquisition device
is realized by a thin-film pressure sensor (IMS-C20A, Vicos
Digital Tech. Ltd, China), which is, respectively, arranged in
a multilayer cotton insole, as shown in Figure 2. Six identical
thin-film pressure sensors are, respectively, placed on the heel,
middle, and front of the two insoles to collect plantar pressure
information on the heel, sole, and toe of the feet. When the
sensor is being compressed, the amplified piezoelectric voltage
is saved to the computer in the form of a digital signal through
A/D. The specific parameters of the thin-film pressure sensor and
the corresponding acquisition position relationship are shown in
Table 1.

TABLE 1 | Corresponding acquisition position of a thin-film pressure sensor.

Thin-film pressure sensor Position of acquirement

Left foot Right foot

Sensor 6 Sensor 3 Toe

Sensor 5 Sensor 2 Sole

Sensor 4 Sensor 1 Heel

FIGURE 3 | A knee joint angle acquisition device.

Knee Joint Angle Acquisition Device
The knee joint angle acquisition device is composed of a Hall
angle sensor (GT-B, Taizhou QT tech. Ltd, China), a 2-link, a
flexible coupling, and several straps, as shown in Figure 3. The
Hall angle sensor is a shaft-type angle measurement sensor. Its
effective angle is 180 degrees, and the resolution is 0.18 degrees.
The Hall angle sensor was installed on one end of the flexible
coupling, which connects the shank and the thigh link. The
function of the flexible coupling is to prevent the upper and
lower links from being too rigid when the knee joint is moving,
causing discomfort to the knee joint movement. The axis of the
angle sensor was aligned with the human knee joint according to
different individuals in order to fully synchronize the human leg
and the knee joint.
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FIGURE 4 | An sEMG acquisition device.

FIGURE 5 | The gait phase classification process, (A) 0 and 1 states of the

thin-film pressure sensor, (B) gait sub-phase classification.

sEMG Data Acquisition
In the gait movement information acquisition experiment, the
sEMG acquisition device used is an 8-channel Ultium-EMG
sEMG signal acquisition instrument developed by Noraxon,
USA, as shown in Figure 4. This device is a wireless transmission
device that can acquire eight channels of sEMG signals with
an acquisition frequency of up to 1,500Hz. The timestamp of
acquiring sEMG signals can be recorded simultaneously. The
whole system includes eight sEMG signal sensors to obtain the
sEMG signal of the human body, two receivers (Mini DTS
Receiver) to transmit the acquired sEMG signal, a synchronizer
to synchronize receiver data, and a sensor charger to turn on
and off the sensor and charge the sensor. Combined with the
myoMUSCLE software platform provided by the company, the
sEMG signal can be acquired and simply processed in real time.

Data Preprocessing
The Signal Denoising Method
The human sEMG signal is complex and feeble, and it is
susceptible to the influence of many external factors, such as
the signal acquisition device, the experimental environment, and
the physical condition of the subject, resulting in the acquired
sEMG signal containing a lot of external noise. During the
experiment, the main noise of the sEMG signal is especially the
power frequency interference and motion artifacts. Butterworth
filter has the characteristics of a flat frequency response curve in
the passband, no fluctuation, frequency response gradually drops
to 0 in the stopband, and a steeper frequency response decline
curve, which is often used for noise reduction of the sEMG signal
(Gui et al., 2019; Li Z. et al., 2020; Ma et al., 2020). Therefore, to
retain the useful data information in the collected sEMG signal
and eliminate the interference noise during the experiment, the
20–450Hz 4th-order Butterworth filter is used for filtering, and
then the 50Hz 2nd-order notch filter is used to eliminate the
power frequency interference and can obtain effective sEMG data
for the subsequent data analysis.

Data Set Construction
The segmented sEMG with gait phase labels and knee joint angle
data is required as input to the classification model. Because gait
movement is the symmetrical movement of the left and right
feet, the right foot is chosen as the research object. In order to
simplify the segmentation process, three complete gait cycles are
selected, and the acquired sEMG data are divided into gait phases
according to the on-off state of the plantar pressure sensor. In
the plantar pressure acquisition device, three thin-film pressure
sensors measure the force between the heel, sole, and toe, and,
according to the working state and working time of the three
thin-film pressure sensors of the right foot, the gait is divided
into four substages, namely, pre-stance, mid-stance, ter-stance,
and swing phase. Figure 5 shows the classification process of the
gait phase. In Figure 5A, the sensor is working when it is under
pressure, which is represented by “1,” and when it is not under
pressure, it is represented by “0.” In Figure 5B, red, black, blue,
and orange correspond to the swing phase, the pre-stance phase,
the mid-stance phase, and the ter-stance phase, respectively. The
states of 0 and 1 of the thin-film pressure sensors reflect different
gait substages at different times. When the thin-film pressure
sensors sensor1 (4), sensor2 (5), and sensor3 (6) are all “0,” the
gait phase is in the swing phase. When sensor1 (4) is “1” and
sensor2 (5) and sensor3 (6) are “0,” it means that the heel touches
the ground, the sole and toe do not, and the gait phase is in
the pre-stance phase. When more than two of the sensor1 (4),
sensor2 (5), and sensor3 (6) in the thin-film pressure sensor are
“1,” and the thin-film pressure sensor corresponding to the sole
remains “1,” more than two lines appear to overlap on the image.
It shows that there are three situations: heel and sole contact the
ground at the same time, but toe does not contact, or heel, sole,
and toe contact the ground at the same time, or heel does not
contact, sole and toe contact the ground at the same time, at
this time, the gait phase is in the mid-stance phase. It is worth
noting that, in practice, there is still a state, that is, sensor1 (4)
and sensor3 (6) are not working, sensor2 (5) is working, and
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TABLE 2 | The relationship between the gait phase and the state of the thin-film

pressure sensor.

Gait phase Plantar pressure sensor

Sensor1(4) Sensor2(5) Sensor3(6)

Swing 0 0 0

Pre-stance 1 0 0

Mid-stance 1 1 0

1 1 1

0 1 0

0 1 1

Ter-stance 0 0 1

it is also in the mid-stance phase. When sensor1 and sensor2
(5) are “0” and sensor3 (6) is “1,” it means that only the toe
of the foot contacts the ground, and the gait phase is at the
ter-stance phase. Table 2 shows the corresponding relationship
between the working state of the thin-film pressure sensor of
the right foot and each substage of the gait phase. After the gait
classification is completed, gait data are generated. The gait data,
plantar pressure, and joint angle data have the same length.

Select the classic machine learning neural network model
support vector machine (SVM) (Li et al., 2015) and deep learning
neural network model long short-term memory (LSTM) (Liu
et al., 2018) and back-propagation neural network (BPNN) (Chen
et al., 2018) to compare with CNN. After filtering the sEMG data,
use the sliding window to extract the mean absolute value (MAV)
and root mean square (RMS) features of the sEMG signal, which
can be expressed as:

MAV =
1

N

n
∑

i=1

|xi| (1)

whereN is the number of sample points in the sampling window,
xi is the amplitude of the i-th sEMG sample point.

RMS=

√

√

√

√

1

N

N
∑

i=1

(xi − x)2 (2)

whereN is the number of sample points in the sampling window,
xi is the amplitude of the i-th sEMG sample point, x̄ represents
the average value of sEMG data in this window.

In this article, six-channel sEMG data of human lower limbs
and one channel knee joint angle data are acquired. The sliding
window method is used to extract RMS and MAV features from
the raw sEMG data output by the sEMG sensor. The number of
sample points in the sliding window is 30, and the sliding step
length is 30. The sEMG feature data can be obtained after feature
extraction processing of the sEMG data. At this time, the original
sEMG data of each channel will generate two-channel (RMS and
MAV) sEMG feature data, and the number of sEMG feature data
channels will be changed from the 6 channels to 12 channels. At
the same time, the length of sEMG feature data, the length of knee

joint angle data, and the length of gait data are the same. Figure 6
shows the process of data processing.

Since the length of the sEMG feature data is the same as the
length of the knee joint angle data, after the feature extraction
process is completed, the knee joint angle data and the sEMG
feature data are converted into an input feature image matrix.
The number of sEMG feature data channels is 12, which, together
with one channel of knee joint angle data, forms a 13-dimensional
input feature image matrix. The input feature image matrix is
slidingly intercepted by the sliding window method, and the
length of the sliding window size is set to 20; therefore, the feature
image matrix size is 20× 13× 1, and then is input into the neural
network model. The knee joint angle data and feature data of the
sEMG data are used as input. The total sample of sEMG data is
22,500, of which the first 80% is allocated as the training set and
the last 20% as the test set.

Since the length of the sEMG feature data is the same as
the length of the gait data, the time stamp corresponding to
each sample point in the gait data and the sEMG feature data is
consistent. When using the sliding window method to intercept
the sEMG feature image matrix, the gait data corresponding to
the sample points at the end of the sEMG feature image matrix is
used as the label of the sEMG feature image matrix.

At this point, the training and testing data sets input to the
neural network can be obtained. The neural network input data
in the data set include the original sEMG signal after feature
processing data and the knee joint angle data of the lower limbs,
and the gait data as the label data in the data set. The sEMG
signal data and the lower limb joint angle data are features fused
through the convolutional neural network (CNN) to realize the
gait classification.

A Neural Network Model for Gait Phase
Classification
Convolutional Neural Network is a feed forward neural network
(Chen et al., 2019) and is the most commonly used network
model in the field of deep learning (Zhai et al., 2017). Figure 7
shows the architecture of a CNN for gait phase classification.
In this article, the dimension of the input data into the neural
network model CNN is low, and the input data will be lost after
adding the dimension reduction operation of the pooling layer,
so the pooling layer is removed from the CNN model, and only
the convolution layer exists. This will not affect the function of
the CNN model and make its structure more concise. It also
improves the training speed of the CNN model and the output
speed of the gait phase classification results.

The model super parameter epochs are set to 300, the batch
size is set to 100, softmax function is used as the activation
function of the last layer of the model, Adam optimizer is used
to update the model parameters, and the initial learning rate is
set to 0.001. During training, the cross-entropy loss function is
used to optimize the output. Softmax function and cross-entropy
loss function are shown in formula (3) and formula (4)

⌢

y i = softmax(xi) =
exp(xi)

m
∑

j=1
exp(xj)

, i = 1, 2, ...,m (3)
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FIGURE 6 | The process of data processing.

FIGURE 7 | CNN architecture of the gait classification model.

J = −
1

N

N
∑

i=1

yi log(
⌢

y i) (4)

where xi is the input value of each node in the output layer,
⌢

y i is
the probability of actual output,yi is the category label, m is the
number of categories, and N is the number of batches input to
the model at one time.

EXPERIMENT

Experimental Design
Five able-bodied subjects took part in this experimental study,
aged between 24 and 28, height between 168 cm and 185 cm, and
weight between 60 and 70 kg, and had not taken any strenuous
exercise before the experiment. Before the experiment, to ensure
that the experiment is effective, the following steps should be
carried out:
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FIGURE 8 | The gait information acquisition device, (A) the installation position of the sEMG sensor, (B) the wearing effect and information acquisition process of the

gait information acquisition device.

• Clean the skin: remove the body hair on the tested muscle and

wipe it with medical alcohol.
• Equipment placement: paste the electrode piece at the position

of the muscle to be measured, and paste the electrode piece

along with the muscle fiber of the leg, which is conducive to

signal acquisition. Place the sEMG sensor about 2 cm away

from the electrode and connect the electrode correctly. The

electrode piece and the sEMG sensor are fixed with medical

adhesive tape to prevent falling off during movement.
• Equipment detection: check the paste of the electrode sheet to

ensure the paste is tight. Start the sEMG acquisition device;
check the transmission status of each channel to ensure the
normal transmission of the sEMG signal.

Six sEMG sensors are arranged in muscle positions: vastus
medialis (VM), vastus lateralis (VL), semitendinosus (ST), biceps
femoris (BF), tibialis anterior (TA), and gastrocnemius lateralis
(GA). When the EMG sensor is installed, wear other gait
information acquisition equipment. The knee angle acquisition
device is arranged on the outside of the thigh with an
adhesive bandage, and the position of the Hall angle sensor
is on the same axis with the rotation center of the knee
joint, to ensure that the thigh rod and leg rod will not
affect the rotation of knee joint (motion interference) when
they move with the leg. Three thin-film pressure sensors
embedded in the front, middle, and back of the insole
were used to acquire the pre-stance, mid-stance, and ter-
stance of the gait phase. Figure 8 shows the gait information
acquisition device. Each muscle position corresponds to an
sEMG acquisition device channel, and the corresponding
relationship between the muscle and sEMG sensor channel is
shown in Table 3.

TABLE 3 | Corresponding channels of the sEMG sensor and muscle.

Muscle location Channel

Thigh Vastus Medialis 1

Vastus Lateralis 2

Biceps Femoris 3

Semitendinosus 4

Shank GastroenemiusLateralis 5

Tibialis anterior 6

Different Speeds
Five subjects were tested with different gait speeds. Taking into
account the conditions of healthy people, lower limb dyskinesia,
and the elderly, the walking experiments were carried out at
1, 2, and 3 km/h, respectively, and the gait data were collected
at three speeds. Among them, the speed of 3 km/h is close to
the daily gait speed of normal people, while the speed of 2 and
1 km/h is gradually lower than the daily gait speed. During the
gait walking experiment, the subjects rest 15min between each
gait speed to ensure that the leg muscles are in a relaxed state, and
muscle fatigue may cause the distortion of sEMG information
and affect the classification results of the gait phase. Each subject
was acquired three times of gait data at the same gait speed, and
the subjects rest for 5min in each gait data acquisition to ensure
the relaxation of leg muscles and check whether the equipment is
loose to avoid affecting the results of gait data acquisition.

Comparison of Multi-Information and Single

Information
In order to verify the superiority of the proposed method,
the comparative experiments of multi-information and single
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information were carried out at 1-, 2-, and 3-km/h gait speeds.
Plantar pressure is the label of sEMG data. Multi-information is
to collect sEMG data of legs and knee joint angle data at the same
time and input them into the gait classification model at the same
time to classify the gait phase. Single information only collects
sEMG information of legs during gait movement and inputs it
into the gait classification model to classify the gait phase. At
the same time, the multi-information and single information
are compared with four gait classification models (SVM,
BPNN, LSTM, and CNN), and the classification performance of
different classification models with multi-information and single
information input is obtained.

Five-Fold Cross-Validation
Cross validation is a common method used to verify the
performance of the model in the process of modeling (Jung,
2018). It divides the original data into the training set and the
test set. First, the training set is used to train the model, and then
the test set is used to test the trained model so as to evaluate
the performance of the model. In this paper, the 5-fold cross
validation method is used to evaluate the model. Data of each
subject are divided into five subsets. Each time, any subset is
taken as the test set and the rest as the training set. After that,
five models can be obtained. Finally, the average accuracy of the
test set is taken as the evaluation index of the subject under the
5-fold cross validation method.

Software Environment
The neural network model CNN of gait phase classification used
in this study is compiled on the deep learning network framework
Keras 2.3.0. The Keras network framework is an open-source
artificial neural network library written in Python language,
which can be used as the advanced application program interface
(API) of TensorFlow. In this article, the python libraries used
include NumPy, Sklearn, SciPy, andMatplotlib. The wholemodel
implementation process is implemented on Pycharm software,
and the model training is completed on a computer with an
independent GPU. The specific configuration of the computer is
shown in Table 4.

RESULT AND DISCUSSION

Accuracy is a key index of human gait classification (Gao et al.,
2021). In this article, two evaluation indexes are used, accuracy
and F1-score, which can be expressed as:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

F1-score =
2TP

2TP + FP + FN
(6)

where TPindicates correctly identifying positive samples as
positive, FN indicates wrongly identifying positive samples as
negative, FPindicates wrongly identifying negative samples
as positive, and TN indicates correctly identifying negative
samples as negative.

TABLE 4 | Computer configuration information.

Index Parameter

Central Processing Unit (CPU) Intel Core i5 4570

Graphics Processing Unit (GPU) Nvidia GTX1070 8GB

Operating system Windows10

Computer memory DDR3 1600 16GB

Software environment Python 3.7.6

Different Speeds
As shown in Figures 9–11, the classification results of four
models (CNN, LSTM, BPNN, and SVM) of five subjects (P1,
P2, P3, P4, and P5) with gait movement of 1 km/h, 2 km/h,
and 3 km/h are shown. The classification accuracy and F1-score
of the four models are different. In terms of Figure 9A, the
classification effect of five subjects in the CNN model is the
best, the classification accuracy of each subject is higher than
that of the other three models, the prediction results of five
subjects are between 93 and 98%, and the standard deviation of
prediction results each subject is relatively small, indicating that
the prediction results of themodel are relatively stable. Compared
with CNN, the classification effect of LSTM, BPNN, and SVM
is unsatisfactory, the LSTM has the highest accuracy of 92%
in five subjects, BPNN has the highest accuracy of 90% in five
subjects, and SVM has the worst effect of 82%. In addition, the
classification accuracy of LSTM, BPNN, and SVM in five subjects
fluctuates greatly, and the standard deviation is also large, which
indicates that the results of gait phase classification are unstable.
Figure 9B shows five subjects in four neural network models
F1-score. In the F1-score evaluation, the performance of CNN
is better than the other three. The F1-score fluctuation of five
subjects is relatively small, concentrated in 91–92%, and the
standard deviation of the F1-score of each subject is also small,
indicating a better classification effect. Compared with CNN, the
other three models performed mediocrely in five subjects.

Figures 10, 11 show the classification results of the four
models for five subjects at 2 and 3-km/h gait speeds. With the
same trend of 1-km/h gait speed, the classification results of CNN
are better than those of SVM, BPNN, and LSTM. However, with
the increase of gait speed, the accuracy and F1-score of the four
models are decreased. At 3 km/h, the classification accuracy of
five subjects in the CNN model is about 90%, and the F1 score is
up to 82%.

In terms of the analysis in Figures 9–11, we can see that,
under the 5-fold cross-validation method, the CNN model
outperformed the other three. The classification results of the
five subjects are better than the other three models, and the
classification effect is stable. It can well realize the classification
of the gait phase, and the accuracy and F1-score have good
performance, which proves the superiority and generalization
ability of the CNN model. In addition, different gait speeds
also have a great influence on the results of the gait phase
classification of the four models. From the perspective of the four
models as a whole, the accuracy of gait phase classification of the
model is higher at lower gait speed, while the accuracy of gait
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FIGURE 9 | The results of gait phase classification of different models with the 5-fold cross-validation method at 1 km/h, (A) the average accuracy of gait phase

classification of different models of five subjects, (B) the average F1-score of gait phase classification in different models of five subjects.

FIGURE 10 | The results of gait phase classification of different models with the 5-fold cross-validation method at 3 km/h, (A) the average accuracy of gait phase

classification of different models of five subjects, (B) the average F1-score of gait phase classification in different models of five subjects.

FIGURE 11 | The results of gait phase classification of different models with the 5-fold cross-validation method at 3 km/h, (A) the average accuracy of gait phase

classification of different models of five subjects, (B) the average F1-score of gait phase classification in different models of five subjects.
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phase classification of the model decreases significantly with the
increase of gait speed. From Figures 9–11, when the gait speed is
1 km/h, the accuracy of CNN, LSTM, BPNN, and SVM is 98, 92.5,
90.5, and 82% respectively, and the highest value of F1-score is
92, 89.5, 85, and 75%, respectively; when the gait speed is 3 km/h,
the accuracy of CNN, LSTM, BPNN, and SVM is 90, 89, 82, and
90%, respectively, and the highest value of F1-score is 82, 80, 76,
and 45%, respectively.

Figure 12 shows the average confusion matrix of the accuracy
of the three speeds of the best classification model CNN
in the 5-fold cross-validation method. The confusion matrix
provides visualization of the classification performance of the
gait substages. The vertical axis of the matrix represents the real
category of the test data set, and the horizontal axis of the matrix
represents the corresponding classification results. The values
of these three confusion matrices are the average classification
accuracy of all objects under three different gait speeds. In terms
of Figure 12, the gait phase substages of the three speeds have
excellent classification results, and the gait phase substages of
each speed can be divided. It can be seen from the figure that
the classification accuracy of the swing and the pre-stance is
above 99.14 and 92.91%, respectively, under the three speeds.
Especially when the speed is 1 km/h, the classification accuracy
reaches the highest, 99.50 and 99.14%, respectively. In the mid-
stance phase and the ter-stance phase, the classification accuracy
performance is undistinguished. Compared with the swing phase
and the pre-stance phase, the highest classification accuracy at
1 km/h is only 92.44 and 86.67%, and the highest classification
accuracy at 2 km/h is 89.32 and 85.33%, which dropped by
3.12 and 1.34%, respectively; when the gait speed is 3 km/h, the
classification accuracy is 85.08 and 79.49%, which dropped by
7.36 and 7.18%, respectively.

In terms of Figure 12, gait speed has a great influence on
the classification of gait phases. At a gait speed of 1 km/h,
the classification effect of the gait phases is better, and the
classification accuracy of the substage of the gait phases is high,
especially for the swing phase. When the gait speed is 3 km/h, the
classification effect of the substage of the gait phase is lower than
1 km/h, and the accuracy also gradually decreases. For the mid-
stance and ter-stance, the classification accuracy of each speed
is significantly lower than the swing and pre-stance, and the
main reason is that the number of samples acquired during the
movement is insufficient, which leads to the classification effect
becoming mediocre.

Comparison of Multi-Information and
Single Information
In addition, under the model of the 5-fold cross-validation
method, we carried out comparative experiments of different
input signals to the neural network model. At the same speed,
the accuracy of gait phase classification and the average value
of F1-score of five subjects (P1, P2, P3, P4, and P5) were taken
to compare the classification effect of sEMG and sEMG + angle
input to SVM, BPNN, LSTM, and CNN neural network models.
Figures 13–15 show the gait classification results of different
input signals in the four models under three motion speeds of

1, 2, and 3 km. In terms of Figure 13A, when sEMG + angle is
used as input, the result of gait phase classification is better than
that of sEMG alone, and the classification accuracy of CNN is the
highest, and the average accuracy of five subjects is close to 95%.
The second was LSTM. When sEMG + angle was used as input,
the average accuracy of five subjects was close to 89%. BPNN is
worse than CNN and LSTM. When sEMG + angle is used as
input, the average accuracy of five subjects is about 87.5%, and the
SVM classification effect is the worst, about 78%. When sEMG
was used as input alone, the average accuracy of five subjects in
the CNN model was close to 90%, and the accuracy of LSTM,
BPNN, and SVM was about 82.5, 80.5, and 76%, respectively. It
can be seen from the figure that, when sEMG + angle is used
as input, compared with sEMG alone, the classification accuracy
of SVM, BPNN, LSTM, and CNN is improved by 2.6, 8, 7.3,
and 5.6%, respectively. At the same time, F1-score is used as the
evaluation index. As shown in Figure 13B, when sEMG + angle
is used as the input of the neural networkmodel, the classification
result is better than that of sEMG alone. As before, taking the
average value of F1 score of five subjects, the average value of F1-
score of SVM, BPNN, LSTM, and CNN neural network models
reaches 70, 87.5, 89, and 95%, respectively, which is 10, 20, 18.5,
and 14.7% higher than that of sEMG alone.

Figures 14, 15 are the comparison results of 2- and 3-km/h
gait speed, respectively, and the overall trend is the same as
Figure 13. The classification accuracy and F1-score of the four
neural network models are gradually increasing from SVM to
CNN, and the classification results with sEMG + angle as input
are better than those with sEMG as input alone. It is worth noting
that when the gait speed is 3 km/h, the F1-score of LSTM is
higher than sEMG + angle, which is different from the results in
Figures 13, 14. The reason for this phenomenon is that, among
the five subjects, the effect of information collection is not good
due to the fast gait speed or unstable walking posture; when data
are input into the neural network, the output F1-score is low,
resulting in low average F1-score. In general, when sEMG+ angle
is used as input, the output results of four neural network models
are better than that of sEMG alone. Therefore, multi-information
has a satisfactory classification effect for gait phase classification.

Table 5 shows the classification time of several classification
models on a single sample and the delay time of each sensor of
the gait acquisition device. In the gait information acquisition
experiment, the delay time of the sEMG sensor is 114± 5ms, and
the delay time of the sensor of the knee joint angle acquisition
device is about 0.1 ± 0.03ms, and the delay time of the sensor
of plantar pressure acquisition device is about 0.12± 0.05ms. At
the same time, in the process of gait phase model classification,
the single sample classification time of SVM, BPNN, LSTM, and
CNN is 0.18, 0.33, 1.53, and 0.37ms, respectively. Because sEMG
information acquisition, knee angle information acquisition, and
plantar pressure information acquisition are carried out at the
same time, the delay time of the sEMG sensor includes the
sensor delay time of the knee joint angle acquisition device
and the plantar pressure acquisition device. It is known from
Li K. et al. (2020), the delay time of human sEMG action is
about 150ms, and the delay time of the sEMG sensor and the
model for single sample classification is <150ms, so the gait
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FIGURE 12 | The accuracy confusion matrix of different gait speeds of the CNN model at the 5-fold cross-validation method, (A) a confusion matrix of 1 km/h, (B) a

confusion matrix of 2 km/h, (C) a confusion matrix of 3 km/h.

FIGURE 13 | The comparison results of different models of multi-information and single information input with the 5-fold cross-validation method at 1 km/h, (A)

comparison results of four model accuracy with different input information, (B) comparison results of four models F1-score with different input information.

FIGURE 14 | The comparison results of different models of multi-information and single information input with the 5-fold cross-validation method at 2 km/h, (A)

comparison results of four model accuracy with different input information, (B) comparison results of four models F1-score with different input information.
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FIGURE 15 | The comparison results of different models of multi-information and single information input with the 5-fold cross-validation method at 3 km/h, (A)

comparison results of four model accuracy with different input information, (B) comparison results of four models F1-score with different input information.

TABLE 5 | Sensor delay time and classification time of a single sample.

Index SVM LSTM BPNN CNN

sEMGsensor delay time 114 ± 5ms 114 ± 5ms 114 ± 5ms 114 ± 5 ms

Keen angle acquisition sensor delay time 0.1 ± 0.03ms 0.1 ± 0.03ms 0.1 ± 0.03ms 0.1 ± 0.03 ms

Plantar pressure acquisition sensor delay time 0.12 ± 0.05ms 0.12 ± 0.05ms 0.12 ± 0.05ms 0.12 ± 0.05 ms

Classification time of single sample 0.18ms 0.33ms 1.53ms 0.37 ms

phase classification system has real-time performance. Besides,
although the classification time of CNN is slightly higher than
SVM and BPNN in a single sample, the classification effect of
CNN is better than SVM and BPNN, so CNN is selected as the
neural network model of gait phase classification.

CONCLUSION

In this article, a gait phase classification method based on
multi-information fusion is proposed. The principle of the gait
phase classification system, the structure of the gait information
acquisition device, and the data preprocessing method are given.
The performance and the generalization ability of the model are
proved by 5-fold cross-validation. Two task experiments using
the proposed multi-information fusion gait phase classification
method were carried out. In the 5-fold cross-validation method,
the experimental results demonstrated that the average accuracy
and the average F1-score of the proposed method reach 98
and 92%, respectively, for the gait phase classification at 1-
km/h gait speed. For different input information experiments,
in the case of three gait speeds, the classification effect of multi-
information is far better than that of single information. At the
same time, the delay time of the sEMG sensor, the Hall sensor of
knee angle acquisition device, and the thin-film pressure sensor
of plantar pressure acquisition device was measured, and the
time of the neural network model to classify a single sample
was also measured, which proved the real-time performance of
gait phase classification system. Due to the integration of the

information directly related to gait movement, the proposed
multi-information fusion method for gait phase classification is
better than the reported (Liu et al., 2016; Luo et al., 2020) gait
classification method or system.
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