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The rising global incidence of obesity cannot be fully explained within the context of traditional risk factors such as an unhealthy
diet, physical inactivity, aging, or genetics. Adipose tissue is an endocrine as well as a metabolic organ that may be susceptible
to disruption by environmental estrogenic chemicals. Since some of the endocrine disruptors are lipophilic chemicals with long
half-lives, they tend to bioaccumulate in the adipose tissue of exposed populations. Elevated exposure to these chemicals may
predispose susceptible individuals to weight gain by increasing the number and size of fat cells. Genetic studies have demonstrated
that the transcriptional regulator inhibitor of differentiation-3 (ID3) promotes high fat diet-induced obesity in vivo. We have shown
previously that PCB153 and natural estrogen 17 3-estradiol increase ID3 expression. Based on our findings, we postulate that ID3 is
a molecular target of estrogenic endocrine disruptors (EEDs) in the adipose tissue and a better understanding of this relationship
may help to explain how EEDs can lead to the transcriptional programming of deviant fat cells. This review will discuss the current
understanding of ID3 in excess fat accumulation and the potential for EEDs to influence susceptibility to obesity or metabolic

disorders via ID3 signaling.

1. Introduction

Obesity is considered to be one of the most significant
public health challenges of the 21st century [1]. Population
based studies have shown the association between obesity
and metabolic disorders which include diabetes, insulin
resistance, coronary heart disease, and fatty liver disease [2-
5]. Obesity is a medical condition defined as the excess accu-
mulation of body fat. The World Health Organization (WHO)
stated in a previous report that approximately 650 million
people were obese, 18 years and older in the world during 2016
[6]. The economic impact of obesity on health care costs has
been estimated to be more than 200 billion dollars in the US
[7]. The European Union (EU) has expected the associated
costs of obesity and diabetes to be over 18 billion euros
per year from exposure to endocrine disrupting chemicals
[8]. Currently, there is an unmet need to understand how
endocrine disrupting chemicals contribute to susceptibility to
obesity and metabolic disorders.

Estrogen is a class of hormones with a myriad of functions
including the regulation of adipose tissue and metabolism [9].
Adipose tissue is a complex metabolic, endocrine organ. The
relative contribution of adipose tissue to steroid production
is significant with adipose tissue producing up to 100% of
circulating estrogen in postmenopausal women and 50%
circulating testosterone in premenopausal women [10, 11].
Aromatase enzyme is expressed in preadipocytes and adipose
tissue stromal cells. Aromatase catalyzes the conversion of
androgens (androstenedione and testosterone) to estrogen
(estrone and estradiol) in the endoplasmic reticulum [12-
15]. Both estrogen receptor (ER) subtypes ERx and ERp are
found in adipose cells [16, 17]. 173-Estradiol (E2) signaling
occurs through both genomic (nuclear) and nongenomic
(extra-nuclear) pathways [18, 19]. Nuclear estrogen receptors
consist of ERa and ER, while membrane estrogen receptors
(mERs: GPER, GPR30, ER-X, and Gq-mER) are mostly G
protein-coupled receptors [20-26]. Since the adipose tissue is
an endocrine organ, it may be susceptible to EEDs. Endocrine
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disruptors are chemicals that alter hormone production
or function including phytoestrogens, heavy metals, and
anthropogenic chemicals. More specifically, EEDs include
compounds such as genistein, arsenic, DES, PCBs, phthalates,
and bisphenol A (BPA). Relative binding affinities of ortho,
para-DDE, hydroxylated PCB, BPA, and DES have been
shown to be significantly weaker than E2 in binding to
nuclear ERs and mERs like GPR30 [27-31]. Moreover, EEDs
have been shown to mimic estrogenic activity and interfere
with the endocrine system through these receptor signaling
pathways [32-34]. A recent study of offspring from pregnant
women exposed to DES showed an association with obesity
[35]. Early-life exposure to DES was shown to increase obesity
in mice at 4-6 months of age compared to control mice
[36]. Thus, elevated exposure to EEDs is of concern because
they may predispose susceptible individuals to weight gain
by increasing the number and size of fat cells. This review
is focused on linking the obesogenic effects of EEDs to ID3
signaling leading to increased fat accumulation or obesity.

2. Transcription Regulator ID3

The molecular factors that contribute to the development
of excess body fat in response to endocrine disruption have
yet to be fully elucidated. Genetic studies have demonstrated
that the transcriptional regulator ID3 promotes high fat diet-
induced obesity in vivo. The ID (inhibitor of differentiation)
family of small proteins consists of four genes (ID1-ID4).
ID1 and ID3 have been shown to regulate cell growth, self-
renewal, senescence, angiogenesis, and neurogenesis [37-
42]. Depending on the cellular context, ID1 and ID3 have
been shown to exhibit overlapping functions as dual gene
knockout combinations have demonstrated redundancy [43].
ID1 and ID3 have been shown to be coexpressed in early
development of the cell cycle progression, angiogenesis, and
neurogenesis in the mouse model [40-42]. Amongst PCB
congeners, PCB153 has been found to be one of the largest
contributors to total PCB body burden in humans and a diet-
dependent obesogen in the experimental model [44, 45]. We
have previously demonstrated that PCB153 modulates ID3
expression and phosphorylation [46]. ID3 is highly expressed
in the embryonic tissue and highly proliferating and undif-
ferentiated adult cells [43]. We and others have shown that
PCBI53 increases oxidative stress or reactive oxygen species
(ROS) that mediate ID3 expression [47, 48]. Exposure to
estrogenic chemicals has been shown to increase ROS in
the nucleus in which they modify the surrounding DNA
necessary for transcriptional activation of cell growth genes
[49-51]. In other words, ROS that we have already shown
to be induced by treatment with PCBI153 may be involved
in ID3 mediated transcription regulation. EEDs have been
shown to increase ROS production in adipocytes. Di-(2-ethyl
hexyl)phthalate (DEHP) increased ROS in rat adipocytes
[52]. The plastic chemical BPA which has been linked to
obesity in both human and animals studies was demonstrated
to increase ROS levels in mesenchymal stem cells involved in
the process of adipogenesis [53, 54]. Mitochondria are a major
source of ROS production in mammalian cells [55]. Although
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other endogenous ROS sources besides mitochondria such
as NADPH oxidase exist, we have shown that estrogenic
chemicals increase mitochondrial ROS [56]. Furthermore,
the presence of ERax and ERf in mitochondria may poten-
tially be targets of EEDs contributing to oxidative stress [57-
59]. Although there is evidence linking EEDs exposure to
increased mitochondrial (mt) ROS, it is unclear whether it is
responsible for redox-sensitive phosphorylation of ID3 upon
exposure to PCB153.

Transcriptional regulation by ID3 ultimately functions
to increase cell proliferation and preserve multipotency.
ID3 mediated gene regulation governing these processes in
adipocytes and stem/progenitor fat cells provides a possible
explanation for how ID3 promotes high fat diet-induced
obesity in the experimental model [60]. ID3 protein-protein
interactions occur via the helix loop helix (HLH) motif.
ID3 protein interactions block the DNA binding activity of
basic HLH (bHLH) transcription factors encoded by the
genes TCF3, TCF4, and TCF12. TCF3 gene encodes for E12,
E47 proteins. TCF4 gene encodes for E2-2, and TCF12 gene
encodes for HEB proteins in humans [61]. E12, E47, E2-2,
and HEB proteins are a class I bHLH proteins which consists
of basic DNA binding domain. These E-proteins specifi-
cally recognize and bind to Ephrussi-box (E-box) sequences
(CANNTG) on the DNA [62, 63]. ID3 has been most often
reported to interact with proteins encoded by TCF3 gene
[39]. ID3 protein-protein interactions can regulate transcrip-
tion by E-proteins preventing their binding and subsequent
activation of target gene promoters [39]. ID3 has frequently
been described throughout the literature as an inhibitor of
gene expression. For example, ID3 promotes cells to pass
through cell cycle checkpoints by inhibiting the expression of
cell cycle inhibitor gene p21Cipl (Figure1) [64]. However, ID3
can also act as a positive transcriptional regulator depending
on the cellular context. E-proteins suppress the expression of
embryonic genes OCT4, SOX2, and NANOG leading to cell
differentiation [65]. As shown in Figure 1, ID3 can increase
the expression of these embryonic genes by repressing TCF3.
We have demonstrated that ectopic overexpression of ID3
increased OCT4 and SOX2 expression and resulted in a cell
population positive for molecular stem cell markers CD133"
VEGFR3" CD34" [66]. Based on these findings, ID3 can
maintain undifferentiated cells by increasing the expression
of embryonic pluripotency factors via repression of TCF3.
Since ID3 is a transcription regulator of genes involved in
both cell proliferation and stemness, EEDs may facilitate
the uncontrolled proliferation of adipocytes through ID3
contributing to obesity or metabolic disorders.

Exposure to EEDs may also exert their negative health
effects by altering epigenetic marks including DNA methy-
lation and histone acetylation ultimately influencing gene
expression in adipose tissue cells. Epigenetic transgener-
ational inheritance of obesity has been demonstrated in
animals exposed to EEDs: BPA and phthalates [67]. Early-
life exposures to EEDs like DES and PCB153 are known to
alter DNA methyltransferase activity [68]. Since altered DNA
methylation have been found in PCB153 exposed adipocytes
[69], it is biologically plausible that chromatin modifications
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FIGURE 1: ID3 regulates a variety of cellular processes which includes cellular growth, senescence, apoptosis, differentiation, angiogenesis,
and neoplastic transformation. This figure illustrates the ID3 interaction with E-proteins. The ID3 protein controls transcription of genes like
p21°P!, OCT4, SOX2, and NANOG by binding to the E-proteins and preventing them from interacting with the E-box sequence on the DNA.

including acetylation/deacetylation of histones are another
way for ID3 to regulate transcription. ID proteins have been
shown to promote acetylation and transcriptional activity
by recruiting histone acetyltransferase (HATs): (i) CREB-
binding protein (CBP), (ii) p300 (E1A binding protein p300),
and/or P300/CBP-associated factor (PCAF) to the chromatin
[70]. Moreover, ID proteins interact with another chromatin
modifying the protein, ZRF1 [71]. These evidences suggest
that ID3 may regulate transcription through interactions
with both transcription factors and chromatin modifying
proteins. Although a molecular risk factor for obesity from
exposure to EEDs is not known, we propose that ID3’s
demonstrated involvement in HFD-induced obesity coupled
with its functional role in transcription regulation of cell
proliferation and stemness makes it a likely candidate for
environmental disruption by EEDs.

3. Role of ID3 in Adipose Tissue

ID3 is expressed during embryonic development but declines
throughout the maturation of the embryo [41]. Multipotency
of adipocyte progenitor cells has been shown to be main-
tained by ectopic expression of ID3 [72]. Two types of adipose
tissue in the body consist of white adipose tissue (WAT) and
brown adipose tissue (BAT) [73]. The storage of excess energy
in the form of triglycerides occurs in WAT. Exposure to a
HFD or excessive energy intake can increase total body WAT
by the accumulation of triglycerides that may lead to obesity
through chronic exposure [74]. Several studies indicate a
novel role for ID3 as a regulator of obesity. HFD-induced
obesity was shown to be reduced in ID3—/— knockout (ID3
KO) compared to wild-type mice [75]. Exposure to a HFD
showed increased ID3 expression in the expanded visceral
WAT of only wild-type mice. Hence, ID3 KO prevented the
observed increase in obesity from exposure to the HFD. ID3
KO mice had a significant reduction in VEGFA protein. The

decrease of VEGFA was attributed to repression of its gene
promoter due to the loss of ID3 in knockout mice. This
study concluded that the loss of ID3 prevented HFD-induced
obesity via inhibiting VEGFA expression and adipose tissue
angiogenesis necessary to support the expansion of visceral
fat. Moreover, recently researchers have demonstrated in a
mouse model that ID1 protein, which is also a member
of ID protein family, suppresses peroxisome proliferator-
activated receptor g coactivator la (PGCla) which controls
BAT-mediated thermogenesis and stimulates energy storage
in adipocytes. Eventually, ID1 promotes obesity [76]. Our
investigations of PCB153 exposed endothelial cells demon-
strated that redox-sensitive ID3 signaling contributes neo-
vascularization and vascular sphere formation [46]. Based on
these evidences, we propose that the increase in fat cells from
exposure to EEDs depends on ID3 mediated increase in blood
vessels needed for the growth of fat tissue (Figure 2) [77].
Besides supporting an increase in blood supply to the fat
tissue, ID3 may directly impact transcriptional programming
of fat stem cells exposed to EEDs. For instance, the HFD-
induced proliferation of fat stem cells was shown to be
significantly inhibited in Id3 KO mice [60]. Since ID3 is
important in the maintenance of multipotency, environmen-
tal disruption from exposure to EEDs may increase self-
renewal of fat stem cells. The abundance of fat stem cells cou-
pled with ID3 mediated proliferation may in turn lead to fat
accumulation. Genetic knockout of cyclin-dependent kinase
inhibitor p21“"" produces adipocyte hyperplasia and obesity
in mice [78]. Consistent with this study, HFD significantly
increased ID3 expression and decreased p21“P! mRNA in
adipocyte progenitors [60]. Hence, Id3 KO mice may be
protected from HFD-induced obesity due to the absence
of adipocyte progenitor cells and/or high levels of p21“¥",
Together these evidences implicate ID3 as a molecular risk
factor of obesity susceptible to environmental disruption
especially to EEDs that accumulate in the fat tissue.
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FIGURE 2: ID3 regulated adipocyte proliferation. EEDs are known to increase mitochondrial reactive oxygen species production. Since ID3 is
redox-sensitive protein, ROS increases ID3 expression. ID3 binds to E12 protein and releases the repression of transcription of downstream
genes like VEGF which may induce angiogenesis. This may share a similar pathway with HFD-induced obesity model in which ID3 increases
obesity based on angiogenesis that support adipocyte proliferation. The scheme shows ID3 transcription regulation of genes involved genes

in HFD-obesity.

4. Role of ID3 in Inflammation

The inflammatory process across multiple organ systems
has been implicated in the development of obesity and
metabolic disorders. For example, insulin resistance and
systemic inflammation result from complex interactions
between the vasculature, adipose tissue, and immune cells
[79, 80]. As described previously, ID3 is essential for vas-
culogenesis as well as the self-renewal of fat cells. However,
its role in inflammation brings additional complexity to its
role in disease pathogenesis. Inflammatory factors produced
during obesity are a major pathway for developing metabolic
complications. The induction of cytokines has been observed
in population studies of obesity and/or metabolic syndrome
(MetS). Several lines of evidence suggest that ID3 medi-
ated inflammation may contribute to obesity through an
imbalance in pro- and anti-inflammatory factors secreted
by fat cells. Dysregulated expressions of adipokines have
been observed in Id3 KO mice [81]. Adiponectin is a known
adipokine that is one of the proinflammatory factors secreted
by adipocytes and implicated in the development of obesity
and metabolic disorders as described in the following studies.
Low circulating levels of adiponectin have been linked to

several components of the metabolic syndrome like intra-
abdominal body fat distribution, hyperlipidemia, low high-
density lipoprotein (HDL) levels, and insulin resistance/type
2 diabetes [81]. Adiponectin gene expression [82] and cir-
culating adiponectin levels [83] are lower in patients with
type 2 diabetes than in nondiabetic individuals. Population
studies have shown that circulating adiponectin concentra-
tions are reduced in obese individual [82-84]. In a cross-
sectional study of men and women who were obese and lean,
the negative relationship between plasma adiponectin and
visceral fat (measured by computed tomography scan) was
significantly stronger than that with subcutaneous fat [85].
Consistent with the observed association of low adiponectin
in obesity and metabolic disorders, ID3 was found to suppress
the transcription of adiponectin in adipocytes [81].
Interleukins are also potent mediators of the inflamma-
tory response in immune and vascular cells. ID3 is known
to regulate the production of IL-5, IL-6, IL-8, and IL-10
which have been observed in population studies of obesity
and/or MetS [60, 86, 87]. Monocyte chemoattractant protein-
1 (MCP-1) regulates inflammation in visceral adipose tissue
and is increased in both obese mice and humans [60, 88].
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FIGURE 3: ID3 mediated inhibition of adiponectin contributes to excess adipocytes. Low circulating levels of adiponectin have been linked
to several components of the metabolic syndrome. The figure illustrates how EEDs may lead to decrease in adiponectin levels via ID3
redox signaling. Elevated levels of ID3 protein bind to E47, which further prevent cobinding with SREBP-1C and may result in blocking
the transcription of adiponectin gene. Additionally ID3 demonstrates regulation of MCP-1 causing increase in inflammation and adipocyte
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Expression of MCP-1 was shown to be mediated by ID3
in fat stem cells, and MCP-1 promoted the recruitment
of macrophages to the adipose tissue [60]. MCP-1 trans-
genic mice increased macrophage proliferation and induced
expression of adipokines such as tumor necrosis factor-«
and interleukin-6 in adipocytes [89, 90]. Furthermore, pre-
treatment adipocytes with adiponectin significantly reduced
expression of MCP-1 when exposed to lipopolysaccharides
[91]. This demonstrates the inverse relationship between
adiponectin level and MCP-1 expression. Based on this
evidence, dysregulation of adipose tissue inflammation via
ID3 may potentially be susceptible to exposure by EEDs.
Repression of adiponectin, as well as activation of MCP-
1 expression by EEDs, may create an imbalance of adi-
pose tissue inflammatory factors. Individuals exposed to
EEDs may be susceptible to ID3 mediated inflammation
from macrophage recruitment via MCP-1 as well as loss of
anti-inflammatory adipokine adiponectin [92]. The contri-
bution of ID3 to vasculogenesis, energy metabolism, and
the immune system make it a unique molecular factor to
study in obesity because it cuts across these complex organ
systems. Based on these studies, we have illustrated poten-
tial mechanisms that EEDs may share with HFD-induced
obesity via ID3 control of adipose inflammation shown in
Figure 3.

5. Role of Estrogen in Obesity

Although EEDs such as DES have been shown to be detri-
mental to an experimental model of obesity, the meaning of
these studies becomes even more complex from studies of the
natural estrogen, E2. Estrogen is essential in the regulation of
metabolism and regional distribution of adipose tissue [93,
94]. The presence of ERa and ERf in adipocytes established
the initial link between estrogen levels and adipose cell
function [95]. Population based studies have shown that ER«
expression was reduced in adipocytes from obese compared
to normal weight females [96]. Adipose cells also constitute
a significant fraction of total estrogen synthesis in males and
postmenopausal females [97]. It has been shown that a muta-
tion in the aromatase gene results in estrogen deprivation and
fat accumulation in men [98]. In support of the protective
effect of E2 in obesity, HFD fed mice exposed to E2 showed
less adipogenesis [99]. E2 treatment decreased expression of
lipogenic genes such as SREBP-1c (Sterol Regulatory Element
Binding Protein 1c) and LXR-a (Liver X Receptor «), a
positive regulator of SREBP-1c in adipose tissue [100]. Essen-
tially, SREBP-1c can promote the expression of lipogenic
genes such as FAS and acetyl-CoA carboxylase (ACC-1)
[101]. However, by lowering the expression of SREBP-Ic,
E2 control the adipose cells differentiation. Estrogen and
metabolic hormones like leptin, insulin, and adiponectin are



interlinked through hypothalamic GnRH neuronal network.
ER« localizes along with leptin receptors in the hypothalamic
region of CNS [102, 103]. Recently, it has been shown that
specific silencing of ER« in hypothalamus results in increased
food intake and a decline in energy expenditure resulting
in development obesity via cholecystokinin signaling [104].
Peripheral effects are exerted directly on adipose tissue and
include effects on thermogenesis and lipid synthesis through
ER« [98]. Moreover, estrogen regulates the secretion and
circulating levels of leptin in blood through local production
of estrogen by adipocytes. Although the role of E2 is beneficial
with respect to suppressing the accumulation of fat cells,
EEDs could disrupt estrogen signaling pathways [105, 106].
Therefore, the involvement of EEDs in interfering estrogen
signaling cannot be ignored.

6. Estrogenic Endocrine Disrupting
Chemicals and Obesity

Many studies have discussed the effects of EEDs on repro-
ductive, immune, and nervous systems, and several excellent
reviews are available on these topics [107-109]. We focus here
on the possible involvement of EEDs in the development
of obesity and metabolic syndrome (MetS). MetS is a term
for a combination of disorders that may include impaired
glucose tolerance or insulin resistance, dyslipidemia, high
blood pressure, and obesity [110]. Key factors are abdominal
obesity and insulin resistance, where normal insulin levels
are insufficient to reduce circulating levels of glucose or
triglycerides.

The molecular mechanisms behind a possible involve-
ment of EEDs, the so-called obesogens, in obesity are poorly
understood. There are over one hundred chemicals, both
natural and synthetic, classified as endocrine disruptors that
exhibit estrogenic activity and are recognized as environmen-
tal estrogen [111-114]. The health concern over environmental
estrogen is partly based on the pivotal role that natural
estrogen such as E2 plays in reproduction and development.
The synthetic estrogen diethylstilbestrol (DES), which was
used by physicians to prevent miscarriages and in the live-
stock industry to enlarge poultry, cattle, and sheep [113],
has become classic environmental estrogen used to model
exposure in animals and humans. DES is now recognized
to have led to dysfunction in reproductive organs, abnormal
pregnancies, reduced fertility, immune system disorders, and
depression in the daughters of women who received treat-
ment [115]. A variety of agricultural and industrial chemicals
known as organochlorines possess estrogenic activity [111,
112]. For example, o,p’-DDT an isomer of the technical grade
pesticide DDT which accounts for up to 20% of the mixture
[113] has been reported to be estrogenic in several species
[111]. The organochlorine, polychlorinated biphenyl (PCB)
which was primarily used in electrical transformers and
capacitors, was reported to impair reproduction in marine
mammals that fed on PCB contaminated fish [111]. Although
DDT and PCBs have been banned and are not used in the
United States, wildlife and humans can still be exposed due
to their stability in the environment. The lipophilic property
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of these synthetic compounds allows them to enter the
food chain as well as bioaccumulate in the adipose tissue
of animals and humans. For example, a combination of
environmental estrogen, such as DDT, PCBs, chlordane, and
dieldrin, have been found in bald eagles [111]. In human breast
milk and adipose tissue, residues of DDT, PCBs, and other
organochlorine pesticides have been documented [116-119].

Evidence supporting the contribution of EEDs varies
from correlative to direct induction of fat tissue. In the Faroe
Islands, a study on children showed an association between
prenatal dietary exposure to PCBs and DDE (a breakdown
product of DDT) and increased body weight [120]. Early-life
exposure to BPA was associated with increased body weight
in young children [121]. Also, exposure to PCBs during fetal
development or at a young age was linked with increased
weight in boys and girls at puberty [122]. In support of
these correlative studies, in vivo models showed that fetal
exposure to either BPA or DES predisposes adult rodents
to develop obesity [123, 124], while exposure to certain PCB
congeners has also been shown to predispose animals to
weight gain [125]. Moreover, Zanella et al. demonstrated
exposure to genistein induced adipose tissue development
in low fat diet mice and adipocyte proliferation in 3T3-L1
cell line [126]. Exposure to estrogenic PCBI53 has also been
shown to worsen HFD-induced obesity and nonalcoholic
fatty liver disease (NAFLD) in mice [44]. In vitro studies on
adipocyte cell lines like 3T3-L1 cell line have shown that very
low concentrations of BPA increase adipocyte differentiation
and lipid accumulation in a dose-dependent manner [127].
Based on these studies, prenatal exposure to EEDs may
reprogram the fate of the stem cell compartment responsible
for adipocyte cells, which we will describe later with respect
to ID3.

7. ID3 Mediated Obesity from
Exposure to EEDs

Estrogenic hormone replacement therapy has been shown to
protect against many age-related changes in adipose tissue
remodeling at menopause [128]. However, fetal exposure to
EEDs has been demonstrated to have an opposite effect in
the rodent model, which we have described previously. These
effects may be in part directed by nuclear receptor signaling.
BPA is a estrogenic chemical and has binding affinity for
ER«x and ERp [105]. Experiments on adult mice showed
that BPA acts via ERa causing an imbalance in the basal
metabolic regulation of body in addition to increased fat
mass [129]. Both ER signaling and synthesis of estrogen by
aromatase cannot be ruled out as targets of disruption by
EEDs. Our novel discovery shows that PCBI53 alters the
expression and activation of ID3 through ROS formation
[46]. In addition, we demonstrated that the Pyk2-mediated
estrogen-induced ID3 mRNA contributes to the growth of
microvascular lesions [130]. ID1 which is one the members of
ID proteins has been shown to interact with estrogen receptor
betal (ER1) in breast cancer cells [131]. Moreover, it has been
shown that ID1 expression is tightly regulated by E2 via ER
genomic pathway in mouse uterus [132].
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ID3 was shown to regulate mitochondrial function and
morphology associated with changes in the expression of
electron transport chain (ETC) complex components: CI
(subunit NDUFBS8), CII (subunit SDHB), CIII (subunit
UQCRC2), CV (subunit ATP5A), and CIV (subunit MTCO1)
[65]. Furthermore, inhibition of ID3 significantly decreased
mRNA levels of mitochondrial transcription factor A (Tfam).
Metabolic disorders and obesity are closely linked to higher
lipid accumulation and lipogenesis. The synthesis of triglyc-
erides (TG) is a critical step in lipogenesis process, and
mitochondria facilitate the synthesis of key intermediates like
glycerol 3-phosphate through the glyceroneogenic pathway
and mitochondrial anaplerosis to sustain TG synthesis in the
adipocyte [133]. Also, mtDNA content which is a marker
for the mitochondrial number was shown to be increased
significantly in white adipocytes during lipogenesis [134].
Both WAT and BAT harbor a substantial number of mito-
chondria [135]. Dysfunctional mitochondrial function results
in increased ROS production in adipocytes and eventually
results in lipid accumulation and insulin resistance [136-139].
Since ID3 is a known transcription regulator activated by
PCBI53, we propose that its effects on fat cell mitochondrial
function may include a yet to be discovered shift in the
metabolic program of adipocyte cell mitochondria. The study
of the ID3 mediated mitochondrial programming holds
potential promise in the prevention and treatment of obesity
and metabolic disorders.

Epigenetic imprinting of adipocyte progenitor or fat stem
cells by ID3 in the maternal programming of obesity shown
in offspring exposed to EEDs is another plausible mechanism
based on the following evidence. Specifically, we postulate
that EEDs can induce ROS-mediated ID3 phosphorylation
and acetylation, histone acetylation, and DNA base oxida-
tion collectively that control expression of ID3 target genes
involved in obesity and metabolic programming. This in
turn controls the fate and epigenetic footprints of adipocyte
progenitor cells. Reactive oxygen species like H202 are highly
diffusible molecules. In addition to affecting ID3 signaling
pathways, ROS can also facilitate histone acetylation and
oxidize nuclear DNA resulting in chromatin modification.
These modifications are significant because transcription in
eukaryotes occurs in the context of DNA, packaged into
chromatin. The basic unit of chromatin is the nucleosome,
in which DNA is wrapped around the core histones H2A,
H2B, H3, and H4. Acetylation of lysine in the histone tails
can facilitate the opening of repressive chromatin structures
in promoter regions to provide access for the transcription
regulator ID3. In support of our concept that both histone
acetylation and ROS-mediated DNA oxidation control the
transcription of EED-induced genes, we and others have
shown that E2 and PCB153-induced ROS in the nucleus, par-
ticularly H202, modify the surrounding DNA [49, 50, 140]. It
has been recently shown that DNA oxidation through recruit-
ing 8-oxoguanine DNA glycosylase triggers chromatin and
DNA conformational changes that are essential for estrogen-
mediated transcription of genes [49]. ROS generating agents
and inflammation have been shown to modulate chromatin-
bound hSirT1 deacetylase activity on the promoters of several
genes [141-144]. Taken together, EEDs through induction of

ROS may increase histone acetylations by posttranslational
activation of acetylases and oxidation of DNA bases, which
are necessary for ID3-mediated transcription regulation of
target genes involved in obesity and metabolic complications.

Given the significant role of ID3 in stemness, it is
possible that EEDs exposure may contribute to an increase
in adipocyte progenitor cells. Epigenetic changes mediated
by ID3 on the stem cells may ultimately increase the total
number of fat cells that can be produced by an individual.
Subsequent environmental exposures of these susceptible
individuals who have a high number of fat stem cells, to begin
with, will tend to accumulate more adipose tissue.

8. Interaction of ID3 and EEDs

In order to investigate how environmental exposures affect
human health at genetic and protein level, we used Compar-
ative Toxicogenomics Database (CTD) which is a publicly
available database. CTD is a public website and research
tool that consists of scientific data illustrating chemical-
gene interactions and chemical-disease associations. CTD
includes in vitro and in vivo data studies describing relation-
ships between chemicals, genes, and diseases. The database
manually curates information about EEDs-gene/protein
interactions and EEDs-disease and gene-disease associations.
We used these public databases to investigate the role of
ID3, especially in various metabolic pathways. This tool
can be used to decipher gene-environment or gene-EEDs
interactions involved in the generation of metabolic diseases.

We initially selected specific 44 EEDs as shown in
Table 1 from the list of chemicals. We then chose obe-
sity, heart block, diabetic cardiomyopathies, idiopathic pul-
monary fibrosis, hyperemia, mitochondrial complex i defi-
ciency, aortic aneurysm, metabolic syndrome X, diabetic
angiopathies, cardiomyopathy, hypertension, coronary dis-
eases, weight gain, body weight changes, overweight, and
diabetes to represent MetS. Furthermore, we checked MetS-
related diseases to these 44 EEDs. We established that 664
genes are overlapping in both the MetS and EEDs list of genes.
Because ID3 is our candidate gene, we created a list of genes
related to ID3 and MetS-related diseases. We established that
139 genes are associated with this group. Furthermore, we
found 18 common genes related to both these groups demon-
strated in Figure 4 and Table 2 [145]. To show an interaction
between these 18 common genes, we additionally inputted
them into STRING, a database of recognized and predicted
protein-protein interactions. The interactions contain direct
(physical) and indirect (functional) associations which stem
from computational prediction, interactions aggregated from
other (primary) databases, and from knowledge transfer
between organisms. As seen in Figure 5 and Table 2, STRING
provides a network of these 18 common proteins and fur-
thermore provides a pathway description for the mutually
represented proteins [146]. We created Table 3 with the help
of STRING network, and it shows that the involvement
of the ID3 protein in the various metabolic pathway. The
CTD database revealed that 18 common genes associated
with MetS diseases and EEDs. Furthermore, out of these 18



BioMed Research International

TaBLE 1: List of estrogen endocrine disruptors (EEDs) curated through CTD (comparative Toxicogenomics Database).

Chemical name Chemical ID CASRN Interaction count Organism count
Bisphenol A C006780 80-05-7 5 3
Benzo(a)pyrene D001564 50-32-8 4 2
Coumestrol D003375 479-13-0 3 1
Genistein D019833 446-72-0 3 1
Titanium dioxide C009495 13463-67-7 3 2
Cadmium chloride D019256 10108-64-2 2 2
Carbon tetrachloride D002251 56-23-5 2 2
Dietary fats D004041 8016-25-9 2 1
Diethylhexyl phthalate D004051 117-81-7 2 1
Diuron D004237 330-54-1 2 2
Flutamide D005485 13311-84-7 2 2
3,4-Dichloroaniline C014464 95-76-1 1 1
4,4 -Hexafluorisopropylidene diphenol C583074 1 1
Aluminum D000535 7429-90-5 1 0
Amitrole D000640 61-82-5 1 1
Ammonium chloride D000643 12125-02-9 1 1
bis(4-Hydroxyphenyl)sulfone C543008 80-09-1 1 1
Caffeine D002110 58-08-2 1 1
cobaltous chloride C018021 7646-79-9 1 1
Copper sulfate D019327 7758-98-7 1 1
Dimethoate D004117 60-51-5 1 1
9,10-Dimethyl-1,2-benzanthracene DO015127 57-97-6 1 1
Formaldehyde D005557 50-00-0 1 1
Glycidol C004312 556-52-5 1 1
Lead acetate C008261 301-04-2 1 1
Lithium chloride D018021 7447-41-8 1 1
Methoxyacetic acid C013598 625-45-6 1 1
Methoxychlor D008731 72-43-5 1 1
Methylcholanthrene D008748 56-49-5 1 1
Methylmercuric chloride C004925 115-09-3 1 1
Methylmercury Compounds D008767 593-74-8 1 1
Monobutyl phthalate C028577 131-70-4 1 1
n-Butoxyethanol C017096 111-76-2 1 1
Nickel sulfate C029938 7786-81-4 1 1
Nicotine D009538 54-11-5 1 1
Octyl methoxycinnamate Cl118580 5466-77-3 1 1
Perfluorooctanoic acid C023036 335-67-1 1 1
Phenol D019800 108-95-2 1 1
Polychlorinated biphenyls D011078 59536-65-1 1 1
Propiconazole C045950 60207-90-1 1 1
Quercetin DO011794 117-39-5 1 1
Oxyquinoline D015125 148-24-3 1 1
Vinclozolin C025643 50471-44-8 1 1
Zinc D015032 7440-66-6 1 1
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FIGURE 4: Representation of overlapping genes. Left circle summarizes ID3 and MetS-interacting genes (139), the right circle summarizes
EEDs and MetS-interacting disease genes (682), and the middle area signifies overlapping genes (18) between the two groups.
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genes, 17 are associated with ID3. Based on these findings,
we suggest there may be a molecular mechanism present
between ID3/MetS-interacting genes, EED/MetS-interacting
genes, and ID3/EED-interacting genes. We have summarized
a potential model in Figure 6 of how EEDs-induced ROS
modifies redox-sensitive ID3 protein signal transduction
pathways that may contribute to the adipocytes proliferation
and eventually may give rise to obesity.

S
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FIGURE 5: STRING protein illustration of common 18 genes to ID3 and MetS-related diseases and EEDs and MetS-related diseases.

9. Conclusion

ID3 has been shown to promote obesity in experimental
models of HFD-induced obesity. Studies have reported asso-
ciations between obesity and exposure to EEDs: BPA, DES,
and PCBs. Based on the evidence discussed in this review,
elevated exposure to EEDs or unopposed increase in the
body burden of estrogen may increase the expression of
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FIGURE 6: Summarization of ID3 interaction with EEDs, which may contribute to obesity.

TABLE 2

ID3, MetS related diseases & EEDs genes
APOE
ATF3
BMPR2
GPX3
ID1

1D3

1D4

IGF1
MDK
MEST
MFGES8
MMP14
MMP3
NKX2-5
SREBF1
ST6GAL1
THBS1
VEGFA

the transcription regulator ID3. Although we cannot rule
out the contribution of ER signaling and aromatase activity

in the promotion of adipogenesis by EEDs, we propose
that ID3 may be an additional molecular risk factor for
obesity from environmental exposure to estrogenic chemi-
cals. Emerging evidence demonstrated that ID3 can regulate
mitochondrial function and morphology associated with
changes in the expression of electron transport chain complex
components and TFAM. We have previously shown that
ER independent mitochondrial ROS signaling contributes
to the growth of cells treated with 17-estradiol [50, 56,
147]. Therefore, ID3 mediated metabolic programming of
mitochondria may be dysregulated by exposure to EEDs
and increase susceptibility to obesity. In addition, the ID3
dependent production of adipocytokines and recruitment
of macrophages in adipose tissue are suggested to play
an important role in the inflammatory process to enhance
susceptibility to obesity or metabolic complications. The
potential for EEDs to influence susceptibility to obesity or
metabolic disorders via ID3 dependent signaling have been
summarized in Figure 6. To conclude, we have systematically
reviewed the existing evidence to illustrate the association
between ID3, EEDs, and obesity. Furthermore, we extended
this understanding of how ID3 and metabolic perturbations
by environmental factors such as EEDs can increase the risk
of obesity. Research is warranted to better define the influence
of EEDs and ID3 gene-environment interactions on obesity.
A better understanding of how ID3 and EEDs affect the risk
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of obesity may open up new avenues for prevention and
treatment of diseases that metabolic syndrome manifest.
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