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An integrated insight into the 
response of sedimentary microbial 
communities to heavy metal 
contamination
Huaqun Yin1,2,*, Jiaojiao Niu1,2,*, Youhua Ren3,*, Jing Cong1,2, Xiaoxia Zhang4,6, 
Fenliang Fan5,6, Yunhua Xiao1,2, Xian Zhang1,2, Jie Deng8, Ming Xie8, Zhili He8, 
Jizhong Zhou8,7,9, Yili Liang1,2 & Xueduan Liu1,2

Response of biological communities to environmental stresses is a critical issue in ecology, but 
how microbial communities shift across heavy metal gradients remain unclear. To explore the 
microbial response to heavy metal contamination (e.g., Cr, Mn, Zn), the composition, structure and 
functional potential of sedimentary microbial community were investigated by sequencing of 16S 
rRNA gene amplicons and a functional gene microarray. Analysis of 16S rRNA sequences revealed 
that the composition and structure of sedimentary microbial communities changed significantly 
across a gradient of heavy metal contamination, and the relative abundances were higher for 
Firmicutes, Chloroflexi and Crenarchaeota, but lower for Proteobacteria and Actinobacteria in highly 
contaminated samples. Also, molecular ecological network analysis of sequencing data indicated that 
their possible interactions might be enhanced in highly contaminated communities. Correspondently, 
key functional genes involved in metal homeostasis (e.g., chrR, metC, merB), carbon metabolism, 
and organic remediation showed a higher abundance in highly contaminated samples, indicating that 
bacterial communities in contaminated areas may modulate their energy consumption and organic 
remediation ability. This study indicated that the sedimentary indigenous microbial community may 
shift the composition and structure as well as function priority and interaction network to increase 
their adaptability and/or resistance to environmental contamination.

How microbial communities respond to environmental changes is a key issue in ecology. In recent years, 
industrial activities have a significant influence on the environment. Especially, heavy metals such as Hg, 
Cr, Pb, Mn, and As have induced serious diseases or even death of organisms through contaminated 
waters or soils, although heavy metals in trace amount are beneficial even significant to organisms1–3. A 
series of studies of bioremediation have been conducted and many metal resistance genes in microbes 
have been identified4. To date, such studies have been focused on functional and phylogenetical analysis 
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of microbial response to environmental contamination. For example, in highly contaminated sites, an 
overall lower gene diversity but higher abundance for specific functional genes, such as heavy metal 
homeostasis genes and sulfate-reducing genes were observed1,5. Also a previous study revealed that the 
greatest species diversity appeared in the moderately contaminated sedimentary samples, and the dom-
inant groups included α-Proteobacteria, β-Proteobacteria and Firmicutes6. Interestingly, Chodak et al.7 
reported that the effect of heavy metal contamination on the structure of soil bacteria measured by 
pyrosequencing was not observed as the abundance of many phyla remained unchanged.

The recent development of new technologies provides opportunities to explore those complex 
microbial communities and their response mechanisms to heavy metal contamination. Particularly, 
high-throughput sequencing and functional gene arrays are powerful tools to study the functional diver-
sity, composition, structure and metabolic potential of microbial communities8. For instance, GeoChip 5S 
(GeoChip 5.0, small version), containing about 60,000 probes in biogeochemical cycling of carbon (C), 
nitrogen (N), sulfur (S) and phosphorus (P), has been applied to analyze soil microbial communities9. 
Also, metagenomic sequencing provides us an opportunity to explore the complex and primarily uncul-
tured microbial communities. Recently, Illumina MiSeq sequencing of 16S rRNA genes has been used 
to explore the shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient10.

Xiangjiang River is the tributary of Yangtze River, the valley area of 9.46 square kilometers, located 
in central south of China. It provides drinking water for about 20 millions of people, irrigation water for 
13,200 square kilometers of cultivated lands, and also important to fishery and shipping industry11. In 
past 30 years, the river has been heavily contaminated by heavy metals (e.g., Hg, Pb, As)12, and caused 
many serious pollution incidents11,12. However, it remains unclear how sedimentary microbial commu-
nities respond to heavy metal contamination, and what mechanisms microorganisms may use to adapt 
to contaminated environments.

In this study, we hypothesized that (i) the phylogenetic diversity and structure of microbial commu-
nity would shift under heavy metal contamination; (ii) heavy metals would affect microbial network 
interactions among different phylogenetic groups; and (iii) the functional composition and structure 
of microbial communities would differ across a gradient of heavy metal contamination. To test these 
hypotheses and explore their adaption mechanism, 16 sedimentary samples were taken from four sites 
in the Xiangjiang River and analyzed by GeoChip 5.0 and sequencing of 16S rRNA gene amplicons. The 
study may provide us an integrated insight into the response of microbial communities to heavy metal 
contamination.

Results
Sediment geochemical properties.  ICP analysis of heavy metals revealed the concentrations of Hg, 
As, Co, Cd, Cr, Ni, Pb, Cu, Mn and Zn as well as the amount of total nitrogen and total carbon (Table S2). 
The concentrations of Hg, As, Cd, Cr, Ni, Pb, Cu, Mn and Zn were severely higher than the maximum 
concentrations allowed in the river system. Take Cr as an example, its amount was 591 ~ 805 times of 
the national standard values (0.1 ppm), indicating the river had been heavily contaminated. Detrended 
correspondence analysis (DCA) of those heavy metal concentrations showed that 16 samples were clus-
tered into two groups, namely H group (A1, A2, A3, A4, D1, D2, D3, D4), and L group (B1, B2, B3, B4, 
C1, C2, C3, C4) (Figure S1). The concentrations of all geochemical attributes (e.g., Mn, Zn) in H group 
were significantly (p <  0.05) higher than that in L group, except for Pb.

Phylogenetic composition and structure of sedimentary microbial communities.  A total of 
321,671 high quality 16S rRNA gene sequences were obtained for all 16 samples, and they were resam-
pled with 13,000 sequences per sample, which were clustered into 3,191 OTUs. The rarefaction curve 
showed that our sequencing efforts were enough for this study as the number of OTUs were almost sat-
urated (Figure S2). Both Shannon diversity and Pielou evenness indices showed no significant difference 
between two groups of samples (Table S3). However, the structure of sedimentary microbial community 
was significantly different (p <  0.1) between those two groups demonstrated by dissimilarity tests based 
on sequencing data.

Analysis of 16S rRNA gene sequences showed that the community composition was apparently differ-
ent between two groups (Figure S3). 746 OTUs were shared by both H and L groups, and these shared 
OTUs belonged mainly to Firmicutes and Proteobacteria. Both H and L communities were mainly com-
posed of Proteobacteria (35.79% for H and 52.16% for L, respectively), followed by Firmicutes (19.81% 
and 40.78%) (Figure S3). Other major phyla for both communities were Bacteroidetes (5.94%, 9.91%), 
Acidobacteria (6.06%, 5.34%) and Actinobacteria (3.23%, 5.35%). In addition, 1%–5% OTUs could not 
be classified into any known phylogenetic groups. In H group, the most abundant genera were Fusibacter 
(27.56%) and Proteiniclasticum (6.66%), while Fusibacter and Janthinobacterium accounted for 14.24% 
and 10.79% of all sequences in L group, respectively (Figure S3).

To reveal how the sedimentary microbial community shifts across the metal concentration gradi-
ent, response ratio analysis was conducted, showing that there were higher percentage of Firmicutes, 
Chloroflexi and Crenarchaeota, and lower percentage of Proteobacteria, Actinobacteria in heavily contam-
inated sites (H group) at the phylum level. At the class level, Deltaproteobacteria, Acidobacteria_Gp6, Gp17 
and Bacteroidia were more abundant in H group, whereas Gammaproteobacteria, Alphaproteobacteria 
and Sphingobacteria were less abundant in H group (Fig.  1a). At the genus level, Acidobacteria_6 and 
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Steroidobacter were more abundant in H group, while the relative abundance of Janthinobacterium, 
Sphingomonas and Arenimonas were higher in L group (Fig. 1b).

Effects of heavy metals on the co-occurrence of microorganisms.  To understand the 
co-occurrence of microbial populations in both H and L microbial communities, OTU data of 16S 
rRNA sequences were used to construct molecular ecological networks (MENs) for H and L groups 
by RMT-based network approach. Major topological properties of two empirical MENs (H-MEN and 
L-MEN) of microbial communities showed that, with the same threshold (0.900), there were a lot more 
nodes and links in H group (394 nodes, 1609 links) than in L group (183 nodes, 406 links) (Table 1). 
The degree distributions in both constructed MENs well fitted the power law model as linear correlations 
were 0.873 and 0.824, respectively, although the degrees of distribution also fitted well with two other 
models (truncated power law and exponential power law) (Figure S4). For the average path distance, 

Figure 1.  Response ratio of bacterial relative abundance of H group to L group at class level (A) and 
genus level (B) with 95% confidence. 

Community

No. of 
original 
OTUs

Similarity 
threshold

Total 
nodes

Total 
links

R 
square 

of 
power-

law

Average 
degree 
(avgK)

Average 
clustering 
coefficient 
(avgCC)

Average 
path 

distance 
(GD) Module Modularity

HighM 500 0.900 394 1609 0.873 8.168 0.324 3.598 24 0.617

LowM 268 0.900 183 406 0.824 4.437 0.364 4.449 17 0.711

Table 1.   Topological properties of the empirical pMENs of microbial communities in H group and L 
group.
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H-MEN had the value of 3.598, less than 4.449 in L-MEN, suggesting that H-MEN might more closely 
connected than L-MEN. The same tendency was also seen from Figure S5.

Furthermore, eigengene analysis13,14 was performed to reveal the higher-order organization of the 
constructed MENs. In this analysis, each module is summarized through singular value decomposition 
analysis with a single representative abundance profile, which is referred to as the module eigengene. Our 
results showed that module eigengene explained 37–70% of the variances in relative OTU abundance 
across different samples in H group and 43–79% of that in L group. Most of the eigengenes (12/14) 
could explain more than 50% of the variations observed. The results suggest that these eigengenes rela-
tively well represented the changes. Module membership was evaluated to determine the extent to which 
an OTU was associated with a module. Most of the OTUs had significant module memberships with 
their respective modules. For example, module E5 in H group had 24 OTUs derived from Bacteroidetes, 
Chloroflexi, Proteobacteria, Acidobacteria, Firmicutes and Actinobacteria. Its eigengene could explain 59% 
of all the variations (Figure S6). Additionally, the relationship between microbial network modules and 
sediment properties were analyzed with Mantel tests. It was found that Hg, Pb, Zn and C were signifi-
cantly (rM <  − 0.6, p <  0.1) correlated with module E5 in H group.

Also, we constructed sub-networks for Acidobacteria_Gp6 and Janthinobacterium to further ana-
lyze their possible interactions with other microorganisms. We analyzed the network interactions of 
Acidobacteria_Gp6 (Fig.  2) with the highest connections in order to explore the possible interaction 
between Acidobacteria_Gp6 and other microbes and the mechanism by which the Acidobacteria_Gp6 
adapt to the heavy metal contaminated environments. The top six Acidobacteria_Gp6 OTUs in H 
group had more complex interactions than their corresponding OTUs in L group, evidenced by more 
nodes and links. They had no connections with Firmicutes or Chloroflexi in L-MEN, but three positive 
links with Chloroflexi and three negative links with Firmicutes in H-MEN. Similarly, we constructed a 
sub-network of Janthinobacterium in order to explore why the relative abundance of Janthinobacterium 

Figure 2.  Effects of heavy metals on the network interactions of Acidobacteria_Gp6. (A) Network 
interactions of the top six OTUs of Acidobacteria_Gp6 with the highest connectivities in H group. (B) 
Network interactions of the corresponding OTUs of Acidobacteria_Gp6 in L group.
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decreased under heavy metal stress. Interestingly, there was only one nodes (0.34% of all nodes) related 
to Janthinobacterium (Fig. 3), although it accounted for about 6.38% of all reads. The results were differ-
ent from Acidobacteria_Gp6, which accounted for 1.54% of all reads but 7.11% of all nodes, suggesting 
that network could reflect how microorganisms use their strategies to survive under stress conditions. 
OTU2 was connected with seven nodes in L-MEN, but only three in H-MEN. The results may be inter-
preted that the interaction of Janthinobacterium with other bacteria was weakened by heavy metals.

Overview of functional genes in response to heavy metal contamination.  A total of 29,439 
gene variants were detected. They included gene groups of C, N, P, and S cycling, metal homeostasis, 
organic remediation and secondary metabolism. Shannon index and Pielou evenness were all high in 
both groups (Table S3), suggesting that there were a variety of functional genes in the Xiangjiang River 
sediment, although it was heavily contaminated by heavy metals. Also, the functional structure of sed-
imentary microbial communities shifted under heavy metal conditions. The result of dissimilarity test 
showed that most of the functional gene groups in H group were significantly (p <  0.1) different from 
samples in L group (Table S5), except for genes involved in secondary metabolism and virulence. The 
results suggested that the functional composition and structure of the microbial communities signifi-
cantly changed in the heavy metal contaminated environment.

Effects of heavy metals on key functional genes and processes.  To further understand the 
effect of heavy metals on specific functional processes of soil microbial communities, key genes involved 
in C, N, S and P cycling were examined. Generally, 54 gene families had higher intensity in H group 
than in L group (Table S6a), including 21 genes involved in carbon cycling, four in metal homeostasis, 
three in nitrogen metabolism (nasA for assimilatory N reduction), 24 in organic remediation, and two in 
sulfur metabolism. In contrast, 51 genes showed lower intensity in L group (Table S6b), including 17 in 
carbon cycling, five in nitrogen metabolism, 23 in organic remediation, two in sulfur metabolism (dsrA 
and dsrB for sulfite reduction), one in phosphorus metabolism (ppk for polyphosphate synthesis), and 
three in virulence (ben_bcla, fosx for antibiotic resistance).

Metal homeostasis genes.  A total of 1958 and 2133 probes had positive signals in H group and L group, 
respectively, which were involved in As, Cu, Hg, Si, Te and Cr resistance. At the level of gene family, only 
the intensity of chromium resistance related genes increased significantly (p <  0.1) in H group (Fig. 4a). 
Notably, four metal homeostasis genes showed differences between H and L groups, chrR (chromium 
detoxification), metC (mercury detoxification), merB (mercury detoxification), and silaffin gene (sili-
conbiosynthesis) (Fig. 4c). And their signal intensities were all significantly (p <  0.1) higher in H group 
than in L group. The results suggested that heavy metals increased the abundance of metal homeostasis 

Figure 3.  Effect of heavy metals on the network interactions of the only OUT of Janthinobacterium in H 
group (A) and L group (B). 



www.nature.com/scientificreports/

6Scientific Reports | 5:14266 | DOI: 10.1038/srep14266

genes so that their associated populations of sedimentary microbial communities might adapt to the 
environment.

C cycling genes.  A total of 11,416 and 12,462 probes were present in H group and L group respec-
tively, which were involved in C fixation, methane metabolism and C degradation. Dissimilarity tests 
showed that carbon metabolism related genes were different between two groups. Carbon degradation 
was important for microorganisms to get energy. For carbon degradation, eight genes conferring degra-
dation of alginate, bacterial microcompartments, terpenes, pectin, vanillin/lignin, cutin, protein, lipids 
showed higher relative intensity in H group (Table S6), while sucrose, lignin, chitin, glucose, starch and 
cellulose degradation genes were less abundant in heavily contaminated sites. The results suggested that 
some carbon metabolisms were heavily affected by heavy metals while some functions were enhanced.

Organic remediation genes.  About 6300 probes were involved in the degradation of aromatics, chlo-
rinated solvent, halogenated compounds, herbicides and pesticide related compounds. The total signal 
intensity of the genes remained almost the same between the two groups. Nevertheless, genes involved 
in chlorinated solvents degradation were less abundant in H group, while nitoaromatics were more abun-
dant (Fig.  4a). We also found that 24 genes showed higher intensity in heavily contaminated samples 
(Table S6), and 22 of them (e.g., xylL, benD, nhh) were related to aromatics degradation, while 23 genes, 
including those involved in the degradation of polycyclic aromatics, herbicides related compound and 
pesticides related compound, were less abundant in H group, but only 11 of them were involved in aro-
matics degradation.

Relationships among the community structure, functional genes and sediment properties.  
To explore the effect of sediment properties on the microbial community structure, correlation analy-
ses were performed by the Mental test (Table S4). Hg, Cu, Mn and Zn were generally correlated with 

Figure 4.  Normalized abundance of genes (genes groups) in each group. (A) Normalized gene intensity 
of each sub-group, including alginate, bacterial microcompartments, terpenes, chlorinated solvent, 
nitoaromatics and chromium. (B) Normalized intensity of each gene in groups of carbon cycling, organic 
remediation metabolism, phosphorus cycling, sulfur cycling, and nitrogen cycling. (C) Normalized intensity 
of metal homeostasis genes. (D) Normalized intensity of functional gene groups derived from specific 
microbial phylum (or domain).
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the abundance of 16S rRNA gene sequences. The relative abundance of Firmicutes was positively cor-
related with Hg, Cd, Cu, Mn and Zn. And Cd had a significant (p <  0.05) effect on the abundance of 
Subdivision3, a class of Verrucomicrobia phylum, while Cd, Zn on Actinobacteria, and Hg, Cd, Cu, Zn 
on Proteobacteria.

At the aspect of functional genes, Co, Cd, Cr, Ni, Mn, Zn had significant effect on all gene groups, 
except for virulence (Table  2), and C and N were related to organic remediation genes only. At the 
gene family level, the signal intensity of many important genes showed significant correlations with the 
concentrations of Co, Cd, Cr, Ni, Cu, Mn and Zn (Table S7). Only alkB and arylest, involved in organic 
remediation, were related to the amount of total C and N. These results suggest that the microbial com-
munity functional structure was correlated with heavy metal concentrations in the Xiangjiang River.

Moreover, the phylogenetic and functional data are mutually supported. Based on analysis of 
GeoChip data, we found: (i) for genes involved in metal homeostasis, the intensity of genes derived from 
Acidobacteria increased significantly in H group; (ii) the intensity of genes from Firmicutes increased for 
P metabolism; (iii) the total intensity of genes originated from Archaea increased in H group (Fig. 4d). 
The results comply with sequencing data that Firmicutes, Archaea and many Acidobacteria were more 
abundant in H group.

Discussion
How microbial composition and structure shift under different contaminated environments is critical to 
reveal their adaptation mechanism to contamination. Our results showed that the sedimentary microbial 
community composition changed significantly under heavy metal conditions. The results generally sup-
ported our hypothesis that heavy metals would impact the sedimentary community structure. Although 
two groups of communities were mainly composed of Proteobacteria and Firmicutes, consistent with a 
previous study6, we demonstrated that there were more Firmicutes, Chloroflexi and Crenarchaeota, and 
less Proteobacteria and Actinobacteria in heavily contaminated samples (H group). Thus, it is supposed 
that the phyla Firmicutes, Chloroflexi and Crenarchaeota are highly resistant to heavy metals present in 
Xiangjiang River sediment, while Proteobacteria and Actinobacteria are less resistant or susceptible to 
heavy metals.

Of microbial populations highly resistant to heavy metals, the relative abundance of Archaea, mainly 
composed of Crenarchaeota in this study, increased in H group. Crenarchaeota were found in heavy 
metal contaminated acidic waters, indicating their high metal resistance15,16. Comparative genomic anal-
yses in previous studies have shown that genes for metabolism, resistance, and detoxification of metals 
are widespread throughout the archaeal domain17, such as arsenic efflux and copper efflux. Also, there 
are researches about Firmicutes, which explain the high metal resistance of this phylum. Of them, a 
study of contaminated soils reported that metal-tolerant cultures were dominated by Geobacter-related 
Deltaproteobacteria and Gram-positive Firmicutes spp.18,19. A metal resistance mechanism may be 
related to Fe(III) reductive bacteria, which can tolerate millimolar concentrations of Cd, Cu, Ni, and Zn. 
Acidobacteria GP6, accounted for almost 30% of Acidobacteria, showed high abundance in this study, 
which may be related to their high metal resistance capability. Acidobacteria GP6 have been found in 
uranium-contaminated sites19,20, indicating their high resistance to heavy metals. It is interesting that, 
as a phylum which includes many species capable of organic degradation21, Chloroflexi showed higher 
abundance in heavily contaminated sites, especially for the class of Anaerolineae and Caldilineae, consist-
ent with previous study6. Commonly, Anaerolineae is often recognized as a large component of micro-
bial communities in sludge wastewater treatment plants22, and has been known to be associated with 
anaerobic degradation of oil-related compounds. In this study, two metal resistance related genes, arsC 

Gene groups Co Cd Cr Ni Mn Zn N C

All 0.028 0.021 0.023 0.021 0.03 0.035 0.078 0.167

Carbon_Cycling 0.032 0.018 0.026 0.033 0.017 0.035 0.079 0.147

Metal_
Homeostasis 0.056 0.013 0.022 0.03 0.047 0.053 0.091 0.154

Nitrogen 0.027 0.012 0.025 0.031 0.012 0.035 0.098 0.176

Organic_
remediation 0.08 0.077 0.014 0.03 0.072 0.062 0.043 0.044

Other 0.097 0.041 0.039 0.05 0.035 0.048 0.087 0.063

Phosphorus 0.016 0.02 0.025 0.028 0.019 0.027 0.055 0.125

Sulfur 0.024 0.015 0.017 0.016 0.02 0.028 0.076 0.143

Virulence 0.079 0.034 0.058 0.064 0.047 0.05 0.164 0.226

Table 2.  Mantel test of GeoChip data with environmental properties in each group. *Significant 
differences (P <  0.05) are indicated in bold.
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and terC, detected in GeoChip were derived from Anaerolineae, and arsM, mer, terC were derived from 
Caldilineae, explaining their relatively higher abundance in H group.

On the contrary, bacteria that have relatively low resistance to heavy metals would account for lower 
abundance in the community, such as Proteobacteria and Actinobacteria. The similar study showed that a 
community was composed primarily of γ- and β-Proteobacteria in a heavy metal polluted groundwater23. 
In this study, about 62% of metal related genes were from Proteobateria. However, the abundance of 
Proteobacteria decreased in H group, especially γ -proteobacteria and α -proteobacteria. A possible reason 
is that some Proteobacteria were dramatically vulnerable to heavy metals. Taking Janthinobacterium as 
an example, it is an important genus of Betaproteobacteria24, and it was found to be susceptible to heavy 
metals, such as Ag, Cu, Hg, Pb and Ni25. In this study, the relative abundance of Janthinobacterium 
decreased significantly in highly contaminated samples, so did the ecological connections with other 
bacteria. Besides, Actinobacteria play an important role in the decomposition of organic materials and 
the production of secondary metabolites with very diverse physiology and few evidence shows that many 
of which are of high metal resistance.

Our ecological network analysis showed that heavy metals altered the network interactions among 
different microbial populations, supporting our hypothesis. In the network, positive interactions may 
reflect commonly preferred conditions or cooperative behaviors26, while negative interactions may reflect 
competitive behaviors, because organisms with similar traits may share similar niche requirements, which 
may result in them “sorting” into similar environments27, thus leading to competitive exclusion among 
organisms with very similar traits. Totally, heavy metals caused more links among OTUs, indicating that 
they tended to cooperate with each other to cope with the stress condition. Adversely, some bacteria who 
did not own the ability to compete with others would be weeded out28. Specifically, in H group, more 
Acidobacteria GP6 were connected with other microorganisms, especially Firmicute and Chloroflexi, thus 
their abundance increased in heavily contaminated sites. On the contrary, the decreased ecological con-
nections of Janthinobacterium with other microorganisms seemed to result in their decrease in relative 
abundance where there were more heavy metals in sediments. Coupled with evidence that Firmicute and 
Chloroflexi owned high metal resistance, it well explains why heavy metals selected for Acidobacteria 
GP6 but against Janthinobacterium. Moreover, eigengene analysis revealed that heavy metals significantly 
altered the topological positions of individual OTUs, and Hg, Cr, Pb, Zn and C were significantly cor-
related with module formation. In a word, ecological network could well descript a whole scene of 
metagenomic data for us and well explain how the whole community structure shifts under stress con-
ditions, suggesting relationships among microorganisms are modulated by environmental factors (heavy 
metals). But further experiments are needed to verify the theory.

However, it is out of our expectation that the alpha-diversity of microbial communities did not 
decrease significantly in H group, but even increased slightly. A pervious study showed that heavy met-
als would decrease the diversity of microbial community and functional genes, but we did not observe 
the same tendency either in microbial populations or functional genes5,29. Our observations comply 
with a similar study about heavy metal pollution in the Xiangjiang River, which showed that there was 
not a simple, negative relationship between heavy metal contamination and the genetic diversity of sed-
iment microbial communities6. It was supposed that the microbes had already adapted to the polluted 
environments and could maintain their diversity by various of resistance mechanisms30. To date, it is 
generally accepted that simple systems are vulnerable to perturbations, so microbes need relatively high 
diversity to maintain their function31. However, current research results on this issue are still conflicting 
with each other.

Collectively, all the results above might provide some clues for us to unveil the molecular mechanism 
about how microbial communities shift to respond the contamination of heavy metals. Generally, micro-
bial community shift is the result of adaptation of many kinds of bacteria, by taking various strategies. 
Some of resistant systems are widespread and serve in the basic defense of the cell against superfluous 
heavy metals, but some are highly specialized and occur only in a few bacteria. Specifically, cells have 
five basic mechanisms to improve their metal resistance, such as discharge toxic metals32,33. Moreover, 
there are also some other mechanisms that help microbial community survive under stress conditions, 
such as reductive precipitation, sulfate reduction and metal sulfide precipitation34. Our third hypothesis 
is that not only the metal resistance related genes but other functional genes would change under stress 
conditions, and the GeoChip data analysis complied with our hypothesis. Of course, metal homeostasis 
genes, like chrR, metC and merB were more abundant to realize chromium and mercury detoxification, 
and this was the key mechanism about how microbes adapted to polluted environments. Besides, we 
also found that gene groups involved in C, N, P, S, metal homeostasis and organic remediation showed 
significant difference between H and L samples, and these gene groups significantly correlated with the 
concentrations of Co, Cd, Cr, Ni, Mn and Zn, indicating the response of microbes to metal contamina-
tion is complex. In genes involved in sulfur metabolism, soxY, a gene conferring the function of sulfur 
oxidation, was more abundant in H group while dsrA for sulfite reduction was less abundant (Fig. 4b). 
Previous study showed that the dsr gene was most significantly correlated with pore water metals5, 
because sulfate reducing bacteria could reduce metal toxicity by precipitation or reduction. Our result 
is opposite with it, and the reason probably is that the correlation between dsr abundance and metals is 
metal type dependent. As for sulfur oxidation genes, it is well known that metals and S always coexist in 
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extreme environments35, like sulfide minerals ore or acid mine drainage (AMD), which can explain the 
correlation between sulfur oxidation genes and metals.

Except for the basic finding that metal resistance related genes increased in H group to perform the 
key functions to survive in the polluted sediments, we also found some assistant and indirect metabo-
lisms, which may impact the community more profoundly in a long term. In this study, we focused on 
the carbon metabolism and organic degradation, for many genes in these groups increased significantly 
in H group, indicating their importance in coping with metal contamination. First, previous studies show 
that the pathways of organic remediation and heavy metal pollution could share the same efflux pump 
and oxygenation complex in Pseudomonas putida KT244036,37. So bacteria with capability of organic 
remediation may also have potential heavy metal resistance. It provides a possible way to explain why 
some organic remediation genes showed higher relative intensity in H group. Second, C source is not 
only necessary to maintain basic metabolism, but also can be used to absorb metals through complex-
ation, reduction and volatilization of metal(loid)s38. For example, chitosan and lignin can be used to 
absorb Cr39,40. Our results revealed that metals and organic C were closely positively related, consistent 
with previous observations41. This study also indicated that microbes may give priority to degrade carbon 
source like Pectin, Vanillin/Lignin, Protein and Lipids, while the metabolism related to sucrose, lignin, 
chitin, starch, cellulose degradation were weaken. Heavy metals did have impact on substrate utilization 
pattern of microbial communities42,43. The reason may be that lignin and chitin were bound with metal 
ions so not available for microbial degradation.

Finally, we take module E5, which had high Phi value (59%) and significant correlations with envi-
ronmental factors, as an example to illustrate how different microbial populations cooperate to survive 
in heavily contaminated environments. Basically, genera with metal resistance genes survived even pros-
pered in heavily contaminated sites, such as OTU171 (Legionella) and OTU123 (Rhodobacter). Metal 
homeostasis genes, like arsC, chrR, mer and terC from these two genera were detected, and their intensity 
was higher in H group. Furthermore, the relative abundance of those populations which were positively 
connected with high metal resistant species increased in H group, and the same to their functional 
genes. It can be seen that OTU293 (Verrucomicrobium) was negatively connected with Acidobacteria GP6 
(highly resistant to heavy metals) and an unclassified OTU38, thus the intensity of genes derived from 
Verrucomicrobium decreased in H group, involved in starch (amyA) and hemicellules (xylA) degradation. 
By contrast, for OTUs negatively connected with microbial populations of high resistance, genes derived 
from them showed lower intensity in H group, such as OTU1109 and its functional genes, amyA and 
xylA. The result suggested that the abundance pattern of a kind of microbial population (or functional 
genes) is not only determined by whether they have metal resistance or not, but also the relationship 
with other populations.

In summary, response and adaptation of biological communities to environmental stress is a criti-
cal issue in ecology. In this study, we constructed a concept model that: part of microorganisms could 
take different strategies to survive under stress conditions, and other microorganisms would enhance 
their interactions with the former to adapt to the heavy metal contaminated environments, thus the 
relative abundance of these microorganisms increased while others decreased. Finally, a new microbial 
community with different composition formed. Therefore, microbial communities shifted their composi-
tion, functional structure, and network interaction to adapt to heavy metal contamination, and all these 
changes were significantly correlated with sediment properties.

Materials and Methods
Site description, sampling and DNA extraction.  In this study, 16 sediment samples were collected 
from four sites in the Xiangjiang River (Table S1), China, with four samples in each site. These four sites 
had different distance from a sewage outlet. The composition of heavy metals including Hg, As, Co, Cd, 
Cr, Ni, Pb, Cu, Mn and Zn in the sediments was analyzed by ICP-AES44. Total sedimentary organic and 
N was quantified by Kjeldahl distillation45. The amount of total sedimentary organic C was analyzed by 
potassium dichromate oxidation-ferrous sulphate titrimetry46.

DNA isolation, amplification, Illumina sequencing and data processing.  DNA was extracted 
using a TIANamp Bacterial DNA Kit (MO BIO Laboratories, Inc., Carlsbad, CA). The V4 region of the 
16S rRNA genes was amplified with the primer pair 515F (5′ -GTGCCAGCMGCCGCGGTAA-3′ ) and 
806R (5′ - GGACTACHVGGGTWTCTAAT-3′ ) combined with Illumina adapter sequences, a pad and a 
linker of two bases, as well as barcodes on the reverse primers47. Sample libraries were generated from 
purified PCR products. The MiSeq 500 cycles kit was used for 2 ×  250 bp paired-ends sequencing on 
MiSeq machine (Illumina, San Diego, CA).

Sequences with perfect matches to barcodes were split to sample libraries, and trimmed. OTU cluster-
ing was performed through UCLUST at 97% similarity level48, and taxonomic assignment was through 
the RDP classifier49 with a minimal 50% confidence estimate. The above steps were conducted through 
the Galaxy pipeline (http://zhoulab5.rccc.ou.edu/) developed by Qin et al. (unpublished). Subsequent 
analyses were performed in R50. Finally, samples were rarefied at 13,000 sequences per sample. All the 
16S rRNA sequences were deposited in GenBank database and the accession number were KP784842 -  
KP788032.

http://zhoulab5.rccc.ou.edu/
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Microarray hybridization, data processing and statistical analysis.  For each sample, micro-
bial community DNA was extracted and purified as described previously5. Amplified DNA was labeled 
and hybridized with GeoChip 5.0. All GeoChip 5.0 hybridization data are available at the Institute for 
Environmental Genomics, University of Oklahoma (http://ieg.ou.edu/). The hybridized GeoChip 5.0 was 
analyzed as previously described51. Then functional gene diversity was calculated using Shannon-Weiner’s 
H′  and evenness. Statistical differences between the functional microbial communities from the different 
sites were analyzed by analysis of variance (ANOVA). Multivariate statistical analyses of GeoChip data 
included detrended correspondence analysis (DCA) for comparing the different functional gene commu-
nities and canonical correspondence analysis (CCA) for linking microbial communities to environmental 
variables. Mantel test52 was used to calculate correlations between functional gene abundance and envi-
ronmental attributes. All other analyses were performed in R v. 2.6.1 with the packages vegan v. 1.11-350.

Network construction and characterization.  16S rDNA sequencing data was used to construct 
phylogenetic molecular ecological networks (pMEN) as describe previously53. As previously described, 
random matrix theory (RMT) based approaches were used for network construction, hub and connector 
gene identification, and topological property determination with an automatic threshold54,55. To ensure 
correlation reliability, OTUs in at least 5 out of 8 replicates were used for network analysis. Various net-
work properties such as average degree, average path distance, average clustering coefficient and mod-
ularity index were characterized. The network modules were generated using rapid greedy modularity 
optimization. The construction and major analyses of pMEN were performed online (http://ieg.ou.edu/). 
A stand T test was employed to determine the significance of network indexes between the pMENs 
and random networks and across different experimental conditions. Besides, based on singular value 
decomposition (SVD), eigengene network analysis was performed to summarize the gene abundance 
data from each module in pMENs. Finally, sample trait-based significance13 was defined, and a Mantel 
test was used to examine the relationships between the trait-based gene significance and sediment prop-
erties. The Cytoscape 2.6.056 software was used to visualize the network graphs. Other information about 
genes (e.g., taxonomy, relative abundance), and edge information (e.g., weights and positive and negative 
correlations) was also imported into the software and visualized in the network figures. Since we were 
primarily interested in the impact of heavy metals on network interactions, the pMENs were constructed 
separately under low and high concentrations of heavy metals.

References
1.	 Waldron, P. J. et al. Functional Gene Array-Based Analysis of Microbial Community Structure in Groundwaters with a Gradient 

of Contaminant Levels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 43, 3529–3534, doi: 10.1021/es803423p (2009).
2.	 Li, J., Richter, D. d., Mendoza, A. & Heine, P. Four-decade responses of soil trace elements to an aggrading old-field forest: B, 

Mn, Zn, Cu, and Fe. Ecology 89, 2911–2923 (2008).
3.	 Schlesinger, W. H., Cole, J. J., Finzi, A. C. & Holland, E. A. Introduction to coupled biogeochemical cycles. Frontiers in Ecology 

and the Environment 9, 5–8 (2011).
4.	 Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M. & Thamaraiselvi, K. Biosorption of chromium and nickel by heavy metal 

resistant fungal and bacterial isolates. Journal of hazardous materials 146, 270–277, doi: 10.1016/j.jhazmat.2006.12.017 (2007).
5.	 Kang, S. et al. Functional gene array-based analysis of microbial communities in heavy metals-contaminated lake sediments. 

FEMS microbiology ecology 86, 200–214, doi: 10.1111/1574-6941.12152 (2013).
6.	 Zhu, J. et al. Phylogenetic analysis of bacterial community composition in sediment contaminated with multiple heavy metals 

from the Xiangjiang River in China. Marine Pollution Bulletin 70, 134–139, doi: 10.1016/j.marpolbul.2013.02.023 (2013).
7.	 Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K. & Niklińska, M. Diversity of microorganisms from forest soils 

differently polluted with heavy metals. Applied Soil Ecology 64, 7–14, doi: 10.1016/j.apsoil.2012.11.004 (2013).
8.	 Zhang, Y. et al. An integrated study to analyze soil microbial community structure and metabolic potential in two forest types. 

PloS one 9, e93773, doi: 10.1371/journal.pone.0093773 (2014).
9.	 Zhao, M. et al. Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and 

cropping. The ISME journal 8, 2045–2055, doi: 10.1038/ismej.2014.46 (2014).
10.	 Deng, J. et al. Shifts of tundra bacterial and archaeal communities along a permafrost thaw gradient in Alaska. Molecular Ecology. 

n/a–n/a, doi: 10.1111/mec.13015 (2014).
11.	 Chen, S. Y. Heavy Metal Pollution in Xiangjiang River Basin and Its Emergency Response. Water Practice & Technology 5, 1–2, 

doi: 10.2166/wpt.2010.075 (2011).
12.	 Wang, L. et al. Heavy metal pollution of soils and vegetables in the midstream and downstream of the Xiangjiang River, Hunan 

Province. Journal of Geographical Sciences 18, 353–362, doi: 10.1007/s11442-008-0353-5 (2008).
13.	 Horvath, S. & Dong, J. Geometric Interpretation of Gene Coexpression Network Analysis. PLOS computational biology 4, 

e1000117, doi: 10.1371/ (2008).
14.	 Langfelder, P. & Horvath, S. Eigengene networks for studying the relationships between co-expression modules. BMC systems 

biology 1, 54, doi: 10.1186/1752-0509-1-54 (2007).
15.	 Almeida, W. I. et al. Archaeal and bacterial communities of heavy metal contaminated acidic waters from zinc mine residues in 

Sepetiba Bay. Extremophiles : life under extreme conditions 13, 263–271, doi: 10.1007/s00792-008-0214-2 (2009).
16.	 Gough, H. L. & Stahl, D. A. Microbial community structures in anoxic freshwater lake sediment along a metal contamination 

gradient. The ISME journal 5, 543–558, doi: 10.1038/ismej.2010.132 (2011).
17.	 Bini, E. Archaeal transformation of metals in the environment. FEMS microbiology ecology 73, 1–16, doi: 

10.1111/j.1574-6941.2010.00876.x (2010).
18.	 Burkhardt, E. M., Bischoff, S., Akob, D. M., Buchel, G. & Kusel, K. Heavy metal tolerance of Fe(III)-reducing microbial 

communities in contaminated creek bank soils. Applied and environmental microbiology 77, 3132–3136, doi: 10.1128/AEM.02085-
10 (2011).

19.	 Gupta, K., Chatterjee, C. & Gupta, B. Isolation and characterization of heavy metal tolerant Gram-positive bacteria with 
bioremedial properties from municipal waste rich soil of Kestopur canal (Kolkata), West Bengal, India. Biologia 67, 827–836, doi: 
10.2478/s11756-012-0099-5 (2012).

http://ieg.ou.edu/
http://ieg.ou.edu/


www.nature.com/scientificreports/

1 1Scientific Reports | 5:14266 | DOI: 10.1038/srep14266

20.	 Barns, S. M., Cain, E. C. & Sommerville, L. Acidobacteria Phylum Sequences in Uranium-Contaminated Subsurface Sediments 
Greatly Expand the Known Diversity within the Phylum. Applied and environmental microbiology 73, 3113–3116, doi: 10.1128/
AEM.02012-06 (2007).

21.	 Sutton, N. B. et al. Impact of long-term diesel contamination on soil microbial community structure. Applied and environmental 
microbiology 79, 619–630, doi: 10.1128/AEM.02747-12 (2013).

22.	 Nielsen, P. H., Kragelund, C., Seviour, R. J. & Nielsen, J. L. Identity and ecophysiology of filamentous bacteria in activated sludge. 
FEMS Microbiology Reviews 33, 969–998, doi: 10.1111/j.1574-6976.2009.00186.x (2009).

23.	 Hemme, C. L. et al. Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. The 
ISME journal 4, 660–672, doi: 10.1038/ismej.2009.154 (2010).

24.	 SP, L., TR, F. & BJ, T. Janthinobacterium agaricidamnosum sp.nov., a soft rot pathogen of Agaricus bisporus. Int Syst Bacteriol 
49, 1577–1589, doi: 10.1099/00207713-49-4-1577 (1999).

25.	 Shi, Y.-L., Lu, X.-Z. & Yu, W.-G. A new Beta-agarase from marine bacterium Janthinobacterium sp. SY12. Microbiol Biotechnol 
24, 2659–2664, doi: 10.1007/s11274-008-9792-5 (2008).

26.	 Raes, J. & Bork, P. Molecular eco-systems biology: towards an understanding of community function. Nat Rev Micro 6, 693–699 
(2008).

27.	 Green, J. L., Bohannan, B. J. & Whitaker, R. J. Microbial biogeography: from taxonomy to traits. Science 320, 1039–1043, doi: 
10.1126/science.1153475 (2008).

28.	 Pointing, S. B. et al. Highly specialized microbial diversity in hyper-arid polar desert. Proceedings of the National Academy of 
Sciences of the United States of America 106, 19964–19969, doi: 10.1073/pnas.0908274106 (2009).

29.	 Golebiewski, M., Deja-Sikora, E., Cichosz, M., Tretyn, A. & Wrobel, B. 16S rDNA pyrosequencing analysis of bacterial community 
in heavy metals polluted soils. Microbial ecology 67, 635–647, doi: 10.1007/s00248-013-0344-7 (2014).

30.	 L, C. et al. Ingestion risks of metals in groundwater based on TIN model and dose-response assessment – a case study in the 
Xiangjiang watershed, central-south China. Total Environ. 408, 3118–3124, doi: 10.1016/j.scitotenv.2010.04.030 (2010).

31.	 Midgley, G. F. Ecology. Biodiversity and ecosystem function. Science 335, 174–175, doi: 10.1126/science.1217245 (2012).
32.	 Valls, M. & Lorenzo, V. D. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal 

pollution. FEMS Microbiol Rev 26, 327–338, doi: 10.1111/j.1574-6976.2002.tb00618.x (2002).
33.	 Nies, D. H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Reviews 27, 313–339, doi: 10.1016/s0168-

6445(03)00048-2 (2003).
34.	 Gadd, G. M. Microbial influence on metal mobility and application for bioremediation. Geoderma 122, 109–119, doi: 10.1016/j.

geoderma.2004.01.002 (2004).
35.	 Yang, Y. et al. Diversity of bacterial communities in acid mine drainage from the Shen-bu copper mine, Gansu province, China. 

Electronic Journal of Biotechnology 11, 0–0, doi: 10.2225/vol11-issue1-fulltext-6 (2008).
36.	 David. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. 

Environmental Microbiology, doi: 10.1046/j.1462-2920.2003.00463.x (2003).
37.	 Muller, J. F. The role of multidrug efflux pumps in the stress response of Pseudomonas aeruginosa to organic contamination. 

Virginia Polytechnic Institute and State University (2006).
38.	 Park, J. H. et al. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of 

hazardous materials 185, 549–574, doi: 10.1016/j.jhazmat.2010.09.082 (2011).
39.	 Liu, Y.-q., Liu, Y.-g., Hu, X.-J. & Guo, Y.-M. Adsorption of Cr(VI) by modified chitosan from heavy-metal polluted water of 

Xiangjiang River, China. Transactions of Nonferrous Metals Society of China 23, 3095–3103, doi: 10.1016/s1003-6326(13)62839-3 
(2013).

40.	 Lu, Q. F., Huang, Z. K., Liu, B. & Cheng, X. Preparation and heavy metal ions biosorption of graft copolymers from enzymatic 
hydrolysis lignin and amino acids. Bioresource technology 104, 111–118, doi: 10.1016/j.biortech.2011.10.055 (2012).

41.	 Valsecchi, G., Gigliotti, C. & Farini, A. Microbial biomass, activity, and organic matter accumulation in soils contaminated with 
heavy metals. Biol Fertil Soils 20, 253–259, doi: 10.1007/BF00336086 (1995).

42.	 Liao, M. & Xie, X. M. Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in 
a reclaimed mining wasteland of red soil area. Ecotoxicology and environmental safety 66, 217–223, doi: 10.1016/j.
ecoenv.2005.12.013 (2007).

43.	 Knight, B. P., Mcgrath, S. P. & Chaudri, A. M. Biomass carbon measurements and substrate utilization patterns of microbial 
populations from soils amended with cadmium, copper or zinc. Appl. Environ. Microbiol 63, 39–43 (1997).

44.	 Ramsey, M. H. & Thompson, M. High-accuracy analysis by inductively coupled plasma atomic emission spectrometry using the 
parameter-related internal standard method. Anal. At. Spectrom 2, 497–502, doi: 10.1039/JA9870200497 (1987).

45.	 McKenzie, H. A. & Wallace, H. S. The Kjeldahl determination of Nitrogen: A critical study of digestion conditions-Temperature, 
Catalyst, and Oxidizing agent. Australian Journal of Chemistry 7, 55–70 (1954).

46.	 Liu, C., Zhu, Z., He, X., Zhang, B. & Xia, N. Rapid determination of organic carbon in marine sediment samples by potassium 
dichromate oxidation-ferrous sulphate titrimetry. Rock Miner Anal 6, 205–208 (2007).

47.	 Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The 
ISME journal 6, 1621–1624, doi: 10.1038/ismej.2012.8 (2012).

48.	 Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461, doi: 10.1093/
bioinformatics/btq461 (2010).

49.	 Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the 
new bacterial taxonomy. Applied and environmental microbiology 73, 5261–5267, doi: 10.1128/AEM.00062-07 (2007).

50.	 Statistical Package, R. R: A language of environment for statistical computing. Vienna, Austria: R Foundation for Statistical 
Computing (2009).

51.	 Liang, Y. et al. Development of a Common Oligonucleotide Reference Standard for Microarray Data Normalization and 
Comparison across Different Microbial Communities. Applied and environmental microbiology 76(4), 1088, doi: 10.1128/
AEM.02749-09 (2010).

52.	 E., S. P., C., L. J. & R., S. R. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst zool 
35, 627–632 (1986).

53.	 Zhou, J., Deng, Y., Luo, F., He, Z. & Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in 
response to elevated CO2. mBio 2, doi: 10.1128/mBio.00122-11 (2011).

54.	 Zhou, J. et al. Functional molecular ecological networks. mBio 1, doi: 10.1128/mBio.00169-10 (2010).
55.	 Luo, F. et al. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. 

BMC bioinformatics 8, 299, doi: 10.1186/1471-2105-8-299 (2007).
56.	 Cline, M. S. et al. Integration of biological networks and gene expression data using cytoscape. Nat. Protoc 2, 2366–2382, doi: 

10.1038/nprot.2007.324 (2007).



www.nature.com/scientificreports/

1 2Scientific Reports | 5:14266 | DOI: 10.1038/srep14266

Acknowledgements
This research was supported by the National High Technology Research and Development Program of 
China (2012AA101403), the National Key Basic Research Program of China (No. 2010CB630901), High 
Tech Research and Development Program (863 Program: 2012AA061502).

Author Contributions
H.Y. conceived the experiment. H.Y. and Y.R. performed the experiment. Y.R. and J.N. analyzed the data 
and wrote the manuscript. H.Y. and X.L. supervised overall experimental and theoretical works. Y.X., 
X.Z., Z.H. and Y.L. participated in discussions. J.C., X.Z., F.F., J.D., M.X. and J.Z. reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: Yin, H. et al. An integrated insight into the response of sedimentary microbial 
communities to heavy metal contamination. Sci. Rep. 5, 14266; doi: 10.1038/srep14266 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The 
images or other third party material in this article are included in the article’s Creative Com-

mons license, unless indicated otherwise in the credit line; if the material is not included under the 
Creative Commons license, users will need to obtain permission from the license holder to reproduce 
the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

http://www.nature.com/srep
http://creativecommons.org/licenses/by/4.0/

	An integrated insight into the response of sedimentary microbial communities to heavy metal contamination

	Results

	Sediment geochemical properties. 
	Phylogenetic composition and structure of sedimentary microbial communities. 
	Effects of heavy metals on the co-occurrence of microorganisms. 
	Overview of functional genes in response to heavy metal contamination. 
	Effects of heavy metals on key functional genes and processes. 
	Metal homeostasis genes. 
	C cycling genes. 
	Organic remediation genes. 

	Relationships among the community structure, functional genes and sediment properties. 

	Discussion

	Materials and Methods

	Site description, sampling and DNA extraction. 
	DNA isolation, amplification, Illumina sequencing and data processing. 
	Microarray hybridization, data processing and statistical analysis. 
	Network construction and characterization. 

	Acknowledgements

	Author Contributions
	﻿Figure 1﻿﻿.﻿﻿ ﻿ Response ratio of bacterial relative abundance of H group to L group at class level (A) and genus level (B) with 95% confidence.
	﻿Figure 2﻿﻿.﻿﻿ ﻿ Effects of heavy metals on the network interactions of Acidobacteria_Gp6.
	﻿Figure 3﻿﻿.﻿﻿ ﻿ Effect of heavy metals on the network interactions of the only OUT of Janthinobacterium in H group (A) and L group (B).
	﻿Figure 4﻿﻿.﻿﻿ ﻿ Normalized abundance of genes (genes groups) in each group.
	﻿Table 1﻿﻿. ﻿  Topological properties of the empirical pMENs of microbial communities in H group and L group.
	﻿Table 2﻿﻿. ﻿ Mantel test of GeoChip data with environmental properties in each group.



 
    
       
          application/pdf
          
             
                An integrated insight into the response of sedimentary microbial communities to heavy metal contamination
            
         
          
             
                srep ,  (2015). doi:10.1038/srep14266
            
         
          
             
                Huaqun Yin
                Jiaojiao Niu
                Youhua Ren
                Jing Cong
                Xiaoxia Zhang
                Fenliang Fan
                Yunhua Xiao
                Xian Zhang
                Jie Deng
                Ming Xie
                Zhili He
                Jizhong Zhou
                Yili Liang
                Xueduan Liu
            
         
          doi:10.1038/srep14266
          
             
                Nature Publishing Group
            
         
          
             
                © 2015 Nature Publishing Group
            
         
      
       
          
      
       
          © 2015 Macmillan Publishers Limited
          10.1038/srep14266
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep14266
            
         
      
       
          
          
          
             
                doi:10.1038/srep14266
            
         
          
             
                srep ,  (2015). doi:10.1038/srep14266
            
         
          
          
      
       
       
          True
      
   




