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A hallmark of human locomotion is that it continuously adapts to changes in the
environment and predictively adjusts to changes in the terrain, both of which are
major challenges to lower limb amputees due to the limitations in prostheses and
control algorithms. Here, the ability of a single-network nonlinear autoregressive model
to continuously predict future ankle kinematics and kinetics simultaneously across
ambulation conditions using lower limb surface electromyography (EMG) signals was
examined. Ankle plantarflexor and dorsiflexor EMG from ten healthy young adults were
mapped to normal ranges of ankle angle and ankle moment during level overground
walking, stair ascent, and stair descent, including transitions between terrains (i.e.,
transitions to/from staircase). Prediction performance was characterized as a function of
the time between current EMG/angle/moment inputs and future angle/moment model
predictions (prediction interval), the number of past EMG/angle/moment input values
over time (sampling window), and the number of units in the network hidden layer
that minimized error between experimentally measured values (targets) and model
predictions of ankle angle and moment. Ankle angle and moment predictions were
robust across ambulation conditions with root mean squared errors less than 1◦ and
0.04 Nm/kg, respectively, and cross-correlations (R2) greater than 0.99 for prediction
intervals of 58 ms. Model predictions at critical points of trip-related fall risk fell
within the variability of the ankle angle and moment targets (Benjamini-Hochberg
adjusted p > 0.065). EMG contribution to ankle angle and moment predictions
occurred consistently across ambulation conditions and model outputs. EMG signals
had the greatest impact on noncyclic regions of gait such as double limb support,
transitions between terrains, and around plantarflexion and moment peaks. The use
of natural muscle activation patterns to continuously predict variations in normal gait
and the model’s predictive capabilities to counteract electromechanical inherent delays
suggest that this approach could provide robust and intuitive user-driven real-time
control of a wide variety of lower limb robotic devices, including active powered
ankle-foot prostheses.

Keywords: autoregressive model (NARX), myoelectric control, gait prediction, level walking, stair ambulation,
active powered prosthesis, ankle-foot orthosis and prosthesis
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INTRODUCTION

Human locomotion continuously adapts to changes in the
environment to maintain balance, reacts to unpredictable
perturbations, and predictively adjusts walking patterns to
changes in the terrain (Pearson, 2000; Choi and Bastian, 2007).
Gait adaptability is a major challenge to lower limb amputees due
to the limitations in prostheses and control algorithms (Kannape
and Herr, 2016). Accurately and continuously predicting
variations in gait, particularly during transitions and noncyclic
activities, is limited in commercially available lower limb
prostheses. Gait adaptability could be improved by incorporating
information on user intent (e.g., myoelectric control), allowing
users to modify prosthetic joint dynamics in a more natural, and
less physically and cognitively demanding way.

Developing control algorithms for lower limb prostheses is
challenging and impacts the level of human adaptation to the
device (Huang et al., 2016). The use of finite state machines (FSM)
in combination with mechanical intrinsic sensors embedded in
the prosthesis itself (Cherelle et al., 2014; Sun et al., 2014; Culver
et al., 2018) or worn on the residual limb (Au et al., 2008; Hoover
et al., 2013; Kannape and Herr, 2014; Spanias et al., 2018) has
become an increasingly common approach due to their high
precision and reliability. However, FSM-based control is limited
by the relatively small number of pre-defined, discrete states, the
need to define switching rules for transitioning between states,
and the inability to deal with novel movements.

Alternate approaches have been developed that would
continuously determine the dynamic changes of the joint and
would not require division into discrete states. Impedance and
stiffness control based on joint moment and angle have an
increasingly common approach for actuating active powered (i.e.,
able to generate power during propulsion) lower limb prostheses
(Au et al., 2008; Ha et al., 2011; Hoover et al., 2013; Kannape
and Herr, 2014; Culver et al., 2018; Klein and Voglewede, 2018;
Spanias et al., 2018). Specifically, ankle angle and ankle moment
are common targets for controlling transtibial prostheses. The
continuous estimation of joint moments has focused on the
use of multi-body dynamic musculoskeletal modeling. While
effective, it requires constant and time consuming (e.g., 30 min;
Meyer et al., 2017) re-calibration of model parameters that
are sensitive to changes in muscle-tendon geometry which
may not be well characterized for amputees or orthopedic
impaired individuals (Shao et al., 2009; Meyer et al., 2017), and
consequently, not suitable for real-time applications. Limb joint
mechanics and kinematics have been continuously estimated
from electromyography (EMG) signals (Sepulveda et al., 1993;
Lee and Lee, 2005; Shao et al., 2009; Prasertsakul et al., 2012;
Zhang et al., 2012; Chen et al., 2013, 2018; Ardestani et al., 2014;
Farmer et al., 2014; Ngeo et al., 2014; Li et al., 2015; Liu et al.,
2017a, 2020; Meyer et al., 2017; Huihui et al., 2018; Baby Jephil
et al., 2020; Gupta et al., 2020; Keleş and Yucesoy, 2020; Wang
et al., 2020), hip joint dynamics (Embry et al., 2018; Dey et al.,
2019; Eslamy and Alipour, 2019), knee joint dynamics (Joshi
et al., 2011; Embry et al., 2018; Eslamy and Alipour, 2019), force
myography (Kumar et al., 2021), and ground reaction forces
(GRF) (Liu et al., 2009; Jacobs and Ferris, 2015), among others.

Support vector regression (SVR) and Gaussian process regression
have been used to continuously estimate ankle angle and ankle
moment simultaneously using hip and knee joint kinematics
(Dey et al., 2019) and shank kinematics (Eslamy and Alipour,
2019), respectively. Although simultaneous estimation of ankle
angle and moment was achieved, performance was characterized
during a single type of terrain, i.e., level walking, and
implementation would require deducing user intent indirectly
from mechanical extrinsic or intrinsic prosthetic sensors.

For a seamless and intuitive device actuation, controllers
must recognize the user’s locomotive intention given changes
in the environment. Even though mechanical intrinsic sensors
have high repeatability and reproducibility, they introduce an
intrinsic delay and the resulting control must infer human
intention through secondary information such as gait events or
joint mechanics. Therefore, their actuation is reactive to user’s
biomechanical changes. Surface EMG activity enables a direct
prediction of intended biomechanics given that muscle activity
precedes force generation, and consequently, limb movement,
on the order of 10 ms (Cavanagh and Komi, 1979). Still, the
use of EMG sensors poses challenges in achieving robust control
due to low signal quality, variability associated with sensor
placement and electrode-skin conductivity, cross-talk between
nearby muscles, and signal processing for feature extraction.

Classification algorithms have been used together with surface
EMG to distinguish among discrete locomotion modes (Huang
et al., 2009; Young et al., 2014; Gupta and Agarwal, 2017; Liu
et al., 2017b) while other approaches continuously estimate ankle
joint kinematics (Sepulveda et al., 1993; Prasertsakul et al., 2012;
Zhang et al., 2012; Farmer et al., 2014; Chen et al., 2018; Huihui
et al., 2018; Baby Jephil et al., 2020; Gupta et al., 2020; Keleş and
Yucesoy, 2020; Wang et al., 2020) and kinetics (Sepulveda et al.,
1993; Ardestani et al., 2014; Baby Jephil et al., 2020; Keleş and
Yucesoy, 2020) using EMG signals. Most approaches characterize
performance during a single type of terrain (e.g., level walking)
(Prasertsakul et al., 2012; Zhang et al., 2012; Ardestani et al., 2014;
Farmer et al., 2014; Chen et al., 2018; Gupta et al., 2020; Keleş and
Yucesoy, 2020; Wang et al., 2020) or ankle motion while sitting
(Zhang et al., 2012; Huihui et al., 2018; Baby Jephil et al., 2020).
Models that estimate ankle angle or ankle moment during more
than one condition (e.g., speeds) have begun to emerge. A deep
belief network and principal component analysis, for EMG
dimensionality reduction from ten muscle signals, individually
combined with a nonlinear back-propagation network have been
used to estimate hip, knee, and ankle angle of healthy participants
(Chen et al., 2018). Trained generalized inter-subject networks
continuously estimated changes in speeds during level walking.
Gupta et al. proposed separate subject-specific autoregressive
models for five individual terrain types (level walking, stair
ascent, stair descent, ramp ascent, ramp descent) to estimate
ankle angle using two able-bodied lower limb EMG signals
and knee angle (Gupta et al., 2020). A generalized inter-subject
wavelet neural network (WNN) and feedforward artificial neural
network (FFANN) are capable of estimating ankle moments
using EMG activity from eight muscles and two GRFs of
patients with unilateral knee replacement while performing three
rehabilitation therapy walking programs (Ardestani et al., 2014).
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FIGURE 1 | (A) Modified Helen Hayes infrared lower limb marker set and EMG sensor placement. (B) Experimental walkway setup including (a) force plates
embedded in the floor, (b) stair force plates, (c) staircase, (d) landing platform, and (e) infrared motion cameras. (C) Schematic of step-over-step stair ambulation gait
cycles (GC). Foot contact occurred on the shaded force plates (red, stair ascent; blue, stair descent).

Keleş et al. achieved the simultaneous estimation of ankle
angle and moment during level walking using a time-delay
FFANN and simulated EMG data of a healthy population (Keleş
and Yucesoy, 2020). These studies support the feasibility of
continuously estimating ankle joint angles and ankle moments
independently and simultaneously using EMG signals. However,
simultaneous estimation of both ankle angle and moment across
multiple types of terrains (e.g., level walking, stair ascent/descent)
including transitions between them has not been demonstrated.
Moreover, almost all estimations of ankle angle and moment were
reactive rather than predictive (i.e., future estimates). A predictive
approach would help overcome delays in sensing, processing, and
actuation of the mechanical device and also help to modify gait
proactively in response to upcoming changes in terrain.

An EMG-driven nonlinear autoregressive neural network
with exogenous inputs (NARX) with predictive future states
can address these challenges and provide a robust and intuitive
control of active powered ankle-foot prostheses. Previous work
has demonstrated the ability of a single-output feedforward
(open-loop) NARX model to continuously predict future ankle
angle of the prosthesis using within-socket EMG activity from
the residual limb of transtibial amputees (Silver-Thorn et al.,
2012; Farmer et al., 2014). The incorporation of natural, yet
abnormal, EMG signals significantly reduced average errors
in ankle angle during the gait cycle and phase transitions.
However, the subject-specific model was limited to the prediction
of a single ambulation condition (level treadmill walking)
and did not estimate ankle moments needed in stiffness and
impedance control.

In this study, the feedforward NARX model architecture was
expanded to a multiple-output model that provided simultaneous
estimates of future intended state of ankle angle and ankle
moment across multiple ambulation conditions using lower
limb surface EMG signals as input. Ankle plantarflexor and
dorsiflexor EMG signals (antagonistic muscles) from healthy
young adults were used to continuously predict normal ranges of
ankle angle and moment during level overground walking, stair
ascent, and stair descent, including transitions between terrains
(i.e., transitions to/from staircase). Prediction performance was

quantified using novel data sets and characterized as a function
of the model parameters (prediction interval, sampling window,
and number of hidden units) to identify optimal subject-specific
parameters that minimized error. Models were trained and
optimized for each participant to account for individual’s specific
variations of EMG activity and limb dynamics. The suitability of
the model prediction for prosthetic control was then examined
by statistically analyzing the prediction variability at critical
performance points (Protopapadaki et al., 2007; Sinitski et al.,
2012; Loverro et al., 2013) within ambulation conditions where
excessive deviations could lead to trips or falls. Gait intention,
via lower limb EMG signals, was explored by quantifying
the impact of EMG inputs on the model prediction of ankle
angle and moment.

MATERIALS AND METHODS

Participants
Ten healthy young adults (7 males; age = 21.9 ± 1.4;
mass = 72.5 ± 8.8 kg; height = 1.8 ± 0.09 m) participated in the
study. Participants were excluded if they presented neurologic or
orthopedic impairments that would affect their ability to walk or
follow instructions. The study was approved by the Institutional
Review Board at Marquette University (Milwaukee, Wisconsin),
and all participants provided written informed consent.

Experimental Procedure
During a single experimental session, participants ambulated at
a self-selected speed wearing athletic shoes in three different
ambulation conditions, level overground walking (LW), stair
ascent (AS), and stair descent (DS). Twenty-five reflective
markers were placed on the participant’s key anatomical
landmarks (posterior superior iliac spine and bilaterally on the
anterior superior iliac spine, greater trochanters, thighs, medial
and lateral femoral condyles, shanks, medial and lateral malleoli,
calcaneus, second and fifth metatarsal heads, anterior end of
first distal phalanx) to define seven lower body segments (pelvis,
thighs, shanks, feet) based on a modified Helen Hayes marker
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FIGURE 2 | Multiple-input multiple-output feedforward (open-loop) NARX model. EMG linear envelopes (ankle dorsiflexor and plantarflexor) and experimentally
measured values of ankle angle and ankle moment were weighted and fed via tapped delay lines to a single hidden layer containing nonlinear units with hyperbolic
tangent sigmoid transfer functions. Intermediate outputs were weighted and linearly combined to provide continuous and simultaneous predictions of future ankle
angle and moment over time.

set (Figure 1A). TrignoTM wireless surface EMG electrodes
(Delsys, Inc., Natick, MA, United States) were placed bilaterally
over the tibialis anterior (dorsiflexor), and the gastrocnemius
medialis (plantarflexor). Anthropometric measures (height and
weight) were then taken. The walkway was instrumented with
two 3-dimensional 6-channel force plates (Advanced Mechanical
Technology, Inc., Watertown, MA, United States) embedded
in the floor, a modified 4-step (17.78 cm rise, 60.45 cm
width, 29.10 cm run; 1st step: 46.34 cm width, 26.45 cm
run) instrumented staircase (Advanced Mechanical Technology,
Inc., Watertown, MA, United States) and a landing platform
(1.22 m × 0.91 m) (Figure 1B). To minimize session duration
and set-up time, ambulation conditions were not randomized.
Prior to data collection, participants walked on the walkway
to get accustomed to the researcher instructions and staircase
setup. First, during stair ascent trials, participants traversed the
walkway (∼3 m), ascended the stairs in a step-over-step fashion,
and walked to the end of the landing platform (AS trial). Each
stair ascent trial was followed by a subsequent stair descent trial,
during which participants turned when instructed, crossed the
platform, descended the stairs, step-over-step, and returned to
their starting position (DS trial). For level ground walking, the
staircase and landing platform were removed and participants
walked the entire length of the walkway (∼5 m). Participants
were encouraged to take breaks as needed to minimize potential
fatigue. A minimum of 15 trials were completed for each
ambulation condition.

Data Acquisition and Signal Processing
Surface EMG activity, kinetic, and kinematic data were collected
and synchronized. Surface differential EMG recordings were
amplified (909 V/V), sampled at 1,200 Hz, filtered to obtain
linear envelopes, and down sampled to 120 Hz. EMG linear
envelopes were obtained using a band-pass filter from 20 to
499.5 Hz (4th order zero-phase Butterworth), followed by full-
wave rectification, and a low-pass filter with a 5.5 Hz cutoff
frequency (4th order zero-phase Butterworth). Kinetic data were
sampled at 1,200 Hz, low-pass and notch filtered (4th order
zero-phase Butterworth) at 15 Hz and 59–61 Hz, respectively,

and down sampled to 120 Hz. Kinematic data were sampled at
120 Hz using an OptiTrack (NaturalPoint, Inc., Corvallis, OR,
United States) motion capture system (14 to 16 Flex 13 cameras).
Markers were manually identified using AMASS (C-Motion, Inc.,
Germantown, MD, United States) software and processed in
Visual 3D (C-Motion, Inc., Germantown, MD, United States)
to extract limb kinematic (ankle angle) and foot kinetic (ankle
moment, normalized to participant’s body mass) time series and
gait events. Marker trajectories, and kinematic and kinetic time
series were subsequently low-pass filtered (15 Hz, 4th order zero-
phase Butterworth) and interpolated (3rd order polynomial, max.
gap of 20 frames) in Visual 3D. Ankle angle in the sagittal plane
was computed as the motion of the foot segment relative to
the shank segment coordinate system using Euler angles. Ankle
moment in the sagittal plane was calculated using conventional
inverse dynamics and resolved to the shank segment coordinate
system (C-motion, 2015).

Gait events were defined kinematically as HS for heel strike
and TO for toe off on floor, and kinetically as ON for first
foot contact on force plate, OFF for last foot contact on force
plate (threshold 10 N). All trials were temporally normalized
and truncated from 225 ms before the first heel strike on the
first force plate to the first heel strike before contralateral toe
off on the last force plate (percent trial). As a result, level
walking condition consisted of one gait cycle and each stair
ambulation condition consisted of three continuous gait cycles,
as of traversing from level walking to stair stepping to level
waking (Figure 1C). Staircase transitions, the short instance
when transitioning between terrains, were defined from the start
of the swing phase of the limb being investigated to the start of the
swing phase of the contralateral limb of the transition step, except
during the transition from the platform to the staircase (stair
descent) where the transition limb was the contralateral limb.

NARX Neural Network Model
A model of lower limb state was developed to continuously
predict simultaneous ankle kinematics and kinetics across
ambulation conditions and terrain transitions. Specifically,
a feedforward (open-loop) multiple-input multiple-output
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NARX model (Leontaritis and Billings, 1985; Narendra and
Parthasarathy, 1990) was created, trained, and tested in MATLAB
(R2017a, The MathWorks Inc., Natick, MA, United States) using
the Neural Network Toolbox. The feedforward NARX model
consisted of an input layer containing the windowed EMG
linear envelopes of the ankle dorsiflexor and plantarflexor and
the experimentally measured values of ankle angle and ankle
moment (targets) passed through separate tapped delay lines,
a single hidden layer containing nonlinear units, and a linear
output layer containing separate outputs for the predicted
(i.e., future estimates) ankle angle and moment in the sagittal
plane (Figure 2).

The feedforward NARX model output, ŷj(t+m), at each time
point was calculated as,

vn (t +m) = f1
( d∑

q=0

2∑
i=1

ani
(
q
)
xi
(
t−q

)
−

d∑
q=1

2∑
j=1

cnj

(q)yj(t−q)+ b1n
)

, n = 1,2, ...,N (1)

ŷj (t +m) = f2

( N∑
n=1

wjnvn (t +m)+ b2j

)
, j = 1,2 (2)

where vn(t+m) was the output of nth unit in the hidden layer,
N was the total number of hidden units, m was the prediction
interval in time steps (τ = m1t), d was the sampling window
length (D = d1t), xi(t-q) was the input of the ith EMG linear
envelope for the prior q time step, yj(t-q) was the past jth desired
target value (ankle angle and moment), ani, cnj, and wjn were
the weights of EMG inputs, desired target values, and ankle
angle and moment outputs, respectively, b1n and b2j were the
bias weights at the hidden and output layers, respectively, f1 was
a nonlinear hyperbolic tangent sigmoid function, and f2 was a
linear function with unit slope. The sampling window specified
the number of prior input values over time (exogenous and
targets) used to calculate future ankle angle and moment. The
prediction interval specified the time between the current inputs
(exogenous and targets) and the model output predictions of
future ankle angle and moment.

Separate models were trained for each participant. During
training, ten randomized trials from each ambulation condition
of a single limb were organized as a concurrent set of
sequences and divided into contiguous blocks where 80-percent
(8 complete trials/condition) were used for training and 20-
percent (2 complete trials/condition) were used for validation.
An additional trial of each ambulation condition (novel test trial)
was held back and used to separately assess model performance
after training using a leave-one-out 10-fold cross-validation.
Each model was trained and optimized to minimize the mean
squared error (MSE) between the ankle angle and moment
targets and the model predictions using a Levenberg-Marquardt
backpropagation supervised learning procedure. To fit ankle
angle and moment equally, training errors (i.e., MSE) were
normalized to the range of [−2, 2] corresponding to normalizing

model predictions and targets between −1 and 1 using a min-
max mapping of the k-fold training dataset. For each training
dataset, ten networks were trained using different initial weights
and biases to improve shallow network generalization and
avoid overfitting. The network with the lowest MSE averaged
across ambulation conditions was selected as the generalized
network for that k-fold dataset. To explore the capabilities of
the network, NARX model performance was characterized as a
function of the prediction interval (τ; 33, 42, 50, 58, 67, 75, 83,
108, 142 ms), sampling window (D; 8, 17, 33, 50, 67, 83 ms),
and number of hidden units (N; 2 to 16 in steps of 2) with
error goal bounded to 1-percent of the moment variance of
all recorded trials (1% training error goal). Subsequently, while
the prediction interval was fixed to 58 ms (7 time steps) to
counteract electromechanical inherent delays of the Marquette
University’s ankle-foot prosthesis (Sun and Voglewede, 2012;
Sun et al., 2014; Klein and Voglewede, 2018), minimum MSE
averaged over all novel test trials and ambulation conditions (10
complete trials/condition) was used to determine the optimal
sampling window and number of hidden units. The training
process was then repeated using the fixed prediction interval and
the optimal sampling window and number of hidden units with
an error goal of zero to maximize network performance for each
participant. This optimized subject-specific network structure
was used to evaluate model performance after training, unless
otherwise specified.

Model Performance Measurements and
Statistical Analysis
The number of participants included in the analysis of stair
ambulation conditions was reduced to eight because two
participants initiated trials with the limb opposite to the one
being analyzed. All performance measurements and statistical
analysis were averaged across ten novel test trials and then across
participants for each ambulation condition (LW, n = 10; AS and
DS, n = 8).

Root mean square error (RMSE) and coefficient of
determination (R2) were calculated between the target and
model prediction of ankle angle and moment for each test trial
to evaluate model performance. The coefficient of determination
(R2), obtained from squaring the cross-correlation peak, was
used to quantify the ability of the model to reproduce the
temporal profiles of angle and moment for each ambulation
condition and their transitions.

Using the first set of models (1% training error goal), simple
linear regressions were performed to examine the effects of
prediction interval, sampling window, and number of hidden
units on model performance. For each model output and
ambulation condition, a linear fit (slope and intercept) was
performed in MATLAB (R2017a) using the average RMSE
collapsed along a single model parameter dimension (i.e., RMSE
averaged across two of the three model parameters). Goodness of
fit was assessed by the coefficient of determination (R2), and an
ANOVA (p < 0.001) was performed for each model parameter
and ambulation condition to determine whether the fitted slope
was significantly different from zero.
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FIGURE 3 | Experimentally measured linear envelope of EMG signals, ankle angle, and ankle moment for level overground walking, stair ascent, and stair descent of
a typical participant (S04). Percent trial is normalized from 225 ms before first heel strike on the first force plate to the first heel strike before contralateral toe off of the
last force plate. Vertical lines denote gait events (solid: limb used to train the model; dashed: contralateral limb) defined based on force plate and floor contact (ON,
first contact on force plate; OFF, last contact on force plate; HS, heel strike on floor; TO, toe off on floor). Contralateral gait events are identified by a lowercase “c”
(e.g., cTO, contralateral toe off). Staircase ambulation (black horizontal bar) is defined as the first foot contact on the staircase to the first foot contact on level ground
of the limb used during training. Staircase transitions to/from level ground are shaded gray. Double limb support occurs when both feet are in contact with the
ground simultaneously (ON to cTO or ON to cOFF and cON to OFF).

Using the second set of models (optimized subject-specific
network structure), RMSE was computed over each trial to
characterize maximal model performance across participants.
To evaluate the impact of EMG signals on model performance,
the instantaneous RMSE over time of NARX model predictions
(time-varying EMG) were compared against errors of NARX
models having constant EMG inputs. Constant EMG inputs,
x = x, for each participant, were calculated as the average EMG
signal over time for each test trial and ambulation condition
to provide the same average signal power while omitting the
time-varying information. To facilitate analysis across test trials
and participants of instantaneous RMSE, individual trials were
interpolated to a common length for each ambulation condition
(LW: 145, AS: 430, DS: 400 samples).

Two types of critical performance points, clearance intervals
(Loverro et al., 2013) and stance critical points (Protopapadaki
et al., 2007; Sinitski et al., 2012), were assessed for each
ambulation condition to verify that the NARX model predictions
where within the variability of the measured targets. Staircase
leg dynamics in this study was matched to the steps from
Loverro’s et al. 7-step staircase, and clearance intervals were
selected corresponding to the locations of minimum foot
and toe clearance, i.e., points with the highest tripping risk.
Intervals were defined by the range of timings (mean± standard
deviation, i.e., 30 total points) of the minimum clearance

angle. Single stance critical points (i.e., nineteen points) were
extracted at crucial kinematic (TO, maximum dorsiflexion,
maximum plantarflexion) and kinetic events (maximum
plantarflexion moment) for prosthetic design. For each
critical point, samples were tested for normality using the
Shapiro-Wilk test. For normally distributed samples, a
paired-samples t-test was used to determine if inter-subject
NARX predictions were statistically different from that target.
Sign test was performed for non-normally and asymmetric
distributed critical points. Statistical analyses were performed
using SPSS 22 (SPSS Inc., Chicago, IL, United States) with
a significance level of p < 0.05. The Benjamini-Hochberg
(B-H) procedure was used to adjust p values with a false
discovery rate of 0.05 to correct for multiple comparisons
(Benjamini and Hochberg, 1995).

RESULTS

Experimentally measured ankle dorsiflexor and plantarflexor
EMGs, ankle angles and ankle moments used to train and
test the NARX models of a typical participant (S04) are
illustrated in Figure 3. EMG activity was variable across
trials, occasionally exhibiting co-activation; however, activation
patterns were consistent with the reported literature for all
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ambulation conditions for all participants (Selk Ghafari et al.,
2009; Benedetti et al., 2012; Han et al., 2015). Ankle angle
was consistent across trials with the greatest ankle range of
motion occurring for stair descent, while ankle moment exhibited
more variability.

The performance of the NARX model was comparable across
a wide range of sampling windows, and the number of hidden
units; however, it was dependent on the size of the prediction
interval (Figure 4). As prediction interval increased, RMSE had
a significant linear increase for ankle angle and moment across
ambulation conditions (ANOVA p < < < 0.001, R2 > 0.98).
Model error for predicting ankle angle and moment was largely
unaffected by the size of the sampling window across ambulation
conditions (ANOVA p > 0.009, R2 = [0.65, 0.85]) with error
saturating after 33 ms (ANOVA p > 0.033, R2 = [0.81, 0.94]).
The number of hidden units used in the network showed a

small negative correlation with ankle angle and moment RMSE
across ambulation conditions (ANOVA p > 0.008, R2 = [0.54,
0.71]) that was significant for ankle angle RMSE during level
walking and stair ascent (ANOVA p < 0.001, R2 = 0.88).
After 8 hidden units, RMSE saturated for ankle angle and
moment across ambulation conditions (ANOVA p > 0.003,
R2 = [0.61, 0.96]). There were minimal differences in angle and
moment error among ambulation conditions (Figure 4B). When
collapsed across model parameters, RMSE angle, averaged across
participants and ambulation conditions, ranged from 0.73◦ to
1.16◦ for a 33 ms prediction interval, 1.18◦ to 2.01◦ for a 58 ms
prediction interval and 2.60◦ to 4.49◦ for a 142 ms prediction
interval with 1% training error goal. Similarly, RMSE moment
ranged from 0.025 to 0.052 Nm/kg, 0.040 to 0.094 Nm/kg,
and 0.099 to 0.215 Nm/kg, for 33, 58, and 142 ms prediction
intervals, respectively.

FIGURE 4 | (A) RSME between predicted and experimentally measured ankle angle and ankle moment as a function of NARX model prediction interval, sampling
window, and number of hidden units, averaged across participants. (B) RMSE ankle angle and moment collapsed across model parameters (i.e., averaged across
two of the three dimensions). Shaded regions denote ± 1 standard deviation. RMSE is shown for the first set of NARX models trained with error goal bounded to
1-percent of the moment variance of all recorded trials.
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FIGURE 5 | Time series of NARX model prediction of ankle angle and ankle moment for level ground walking, and stair ambulation of a typical participant (S04) using
optimal model parameters (τ: 58 ms, D: 83 ms, N: 6). NARX model predictions are shown for the k-fold novel test trials with the best accuracy across ambulation
conditions and model outputs. Critical performance points used to test for statistically significant differences between the model prediction and experimentally
measured targets are denoted by yellow blocks (clearance intervals), and green lines (stance points). No significant differences were found across participants (B-H
adjusted p > 0.05). Shading and line markers are defined the same as in Figure 3.

Joint ankle angle and ankle moment model predictions
closely matched the experimentally measured targets in all
ambulation conditions and staircase transitions as shown
in Figure 5. The figure shows the comparison of model
predictions and targets of a typical participant using optimal
model parameters (τ: 58 ms, D: 83 ms, N: 6). Table 1 lists
the mean and standard deviations of the correlations (R2)
and errors (RMSE) of the NARX model prediction of ankle
angle and moment across participants for all ambulation
conditions. The results show high levels of accuracy in
all ambulation conditions and model outputs. R2 ranged
between 0.989 and 0.999. All peak cross-correlations
occurred at zero time lag. Stair descent had the lowest
RMSE and the highest correlations for both ankle angle
(RMSE = 0.55 ± 0.13◦, R2 = 0.999 ± 0.001) and moment
(RMSE = 0.025 ± 0.007 Nm/kg, R2 = 0.999 ± 0.001). The
maximum error occurred in the prediction of ankle angle during
level ground walking (RMSE = 0.84± 0.23◦, R2 = 0.989± 0.005)
and in the prediction of ankle moment during stair ascent
(RMSE = 0.036 ± 0.009 Nm/kg, R2 = 0.997 ± 0.001). Using
the Benjamini-Hochberg multiple comparisons procedure, no
significant difference across participants was found between
targets and NARX model predictions in any of the critical
performance points (B-H adjusted p > 0.065). Detailed statistical
scores, and mean and standard deviation of ankle angle and
moment predictions and targets of all critical points are listed in
Supplementary Table 1.

Comparison of the instantaneous RMSE over time for
the NARX models using the participant’s time-varying EMG
as inputs against models using average EMG showed larger
errors and increased variability for the constant-EMG NARX
predictions across all ambulation conditions and staircase
transitions for both ankle angle and ankle moment (Figure 6
and Table 2). The patterns of EMG contribution were
consistent among ambulation conditions and model outputs.
Removal of the time-varying EMG input had the largest
impact during double limb support for both ankle angle and
moment. Additionally, the error increased around maximum
plantarflexion and going into maximum plantarflexion moment
for constant-EMG predictions. The use of time-varying EMG
inputs decreased peak errors of ankle angle and moment
by approximately 50 and 60% to values less than 1.11◦ and
0.077 Nm/kg, respectively, across ambulation conditions.

DISCUSSION

An approach was presented for continuous predictive mapping
of lower limb state that incorporated user intent, vis-à-vis surface
EMG of the lower limb, to predict future ankle joint kinematics
and kinetics simultaneously across ambulation conditions,
including transitions between terrains. The single-network,
feedforward NARX model had the ability to characterize normal
gait patterns of ankle angle and ankle moment with predictions
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that fell within the experimentally measured variability of the
kinematic and kinetic targets across trials and participants.

The autoregressive model presented here continuously models
the nonlinear dynamic relationships between muscle activation
and ankle dynamics to predict ankle kinematics and kinetics
across ambulation conditions and terrain transitions. In contrast,
EMG-driven FSMs to control active powered lower limb
prostheses typically allow the amputee to select a discrete
locomotion mode (Liu et al., 2017b; Spanias et al., 2018) or to
control a single parameter (e.g., motor toque gain) during a
discrete period of the gait cycle (Au et al., 2008; Kannape and
Herr, 2014), and consequently, limit the amputee’s control over
the prosthesis. Despite proportional myoelectric approaches that
enable continuous prosthetic control throughout the gait cycle
using volitional muscle contractions, the volitional actuation of
the prosthesis can become physically and cognitively demanding
over time (Huang et al., 2016). Here, the NARX model leverages
the user’s natural muscle activation patterns to reduce muscle
fatigue and the cognitive demand on the user to provide a
continuous predictive characterization of gait over time without
the need for explicit identification of gait events or selection of
ambulation modes. Moreover, the training and optimization of
the network structure to maximize individual performance is
relevant for the use in prosthetic applications where amputees
may develop abnormal muscle activity and gait patterns to
maintain stability and compensate for limitations in their
prosthesis (Herr and Grabowski, 2012; Huang and Ferris, 2012;
Seyedali et al., 2012; Silver-Thorn et al., 2012).

TABLE 1 | RMSE and R2 values of NARX model predictions for each ambulation
condition averaged across participants.

Ambulation
condition

Model
output

RMSE σRMSE Units R2 σR2

Level ground
(n = 10)

Angle 0.84 0.23 Degrees 0.989 0.005

Moment 0.026 0.006 Nm/kg 0.998 0.001

Stair ascent
(n = 8)

Angle 0.78 0.14 Degrees 0.995 0.002

Moment 0.036 0.009 Nm/kg 0.997 0.001

Stair descent
(n = 8)

Angle 0.55 0.13 Degrees 0.999 0.001

Moment 0.025 0.007 Nm/kg 0.999 0.001

The autoregressive model structure exploits the cyclic process
of lower limb motion, to anticipate repetitive components of
movement, resulting in a high overall performance (R2 > 0.989)
while reducing the model degrees of freedom needed to predict
limb kinematics and kinetics during gait. The use of time-varying
EMG signals during gait resulted in less error compared to
model predictions without time-varying information (Table 2
and Figure 6). EMG signals provided an important source of
information about limb state that was used to differentiate the
temporal profiles of ankle dynamics. Although EMG signals
contributed to the model prediction of ankle angle and ankle
moment across ambulation conditions, the cyclic nature of
walking and the open-loop structure of the feedforward model
(which used experimentally error-free ankle angle and moment

FIGURE 6 | Instantaneous RMSE between experimentally measured values and NARX model predictions of ankle angle and ankle moment across trials and
participants. Errors are shown for model predictions using the participant’s time-varying EMG as input (red trace) and for model predictions using the average EMG
signal as a constant input (blue trace). Shaded regions denote ± 1 standard deviation. The ankle angle and moment targets averaged across trials and participants
are shown for reference (black trace) and scaled accordingly to the right-side vertical axis. Double limb support intervals and gait event markers are defined the same
as Figure 3.
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past values) limited the strength of the EMG contribution to
the model predictions across ambulation conditions in healthy
young adults. Similar to Farmer et al., while using residual
within-socket EMG of transtibial amputees (Farmer et al., 2014),
EMG signals had the greatest impact on error in regions
where the gait profile was noncyclic, such as transitions to
and from single limb support, staircase transitions, and around
plantarflexion and moment peaks. Contrary to previous studies
in transtibial amputees (Farmer et al., 2014) and able-bodied
participants (Gupta et al., 2020), ankle angle accuracy and overall
level of EMG contribution did not depend on the range of
motion of the ankle, yielding similar levels of error across
ambulation conditions and model types tested. These results
suggest that EMG signals from the lower leg (ankle dorsiflexor
and plantarflexor) can be used to accurately predict noncyclic
variations in amplitude and timing of ankle movement intrinsic
to human walking across different terrains.

Unlike other nonlinear regressive neural networks (Zhang
et al., 2012; Ardestani et al., 2014; Chen et al., 2018; Gupta
et al., 2020), the current NARX model included temporal
relationships (prediction interval, τ = m1t) of inputs and
outputs allowing for the prediction of future limb state. A crucial
advantage of prediction (i.e., future estimates) for the control
of active ankle-foot prostheses is the ability to counteract
delays from prosthetic actuation, signal processing (e.g., filtering,
sampling), and sensor response inherent to electromechanical
systems. In this study, the performance of the optimized NARX
models was evaluated using a prediction interval of 58 ms to
account for microcontroller and motor actuation delays (max.
50 ms) inherent to Marquette University’s active powered ankle
prosthesis (Sun and Voglewede, 2012; Sun et al., 2014; Klein
and Voglewede, 2018). Other active ankle-foot designs have
reported time delays of 40 ms for the system delay between
the input and output of a two degrees of freedom cable-
driven prosthesis (Ficanha et al., 2016), and maximum 40 ms
for the pull-in response time of a bypass restriction valve of
an electrohydrostatic-based prosthesis (Yu, 2017). Given the
robust performance over a wide range of prediction intervals,
sampling windows, and number of hidden units (Figure 4),
models containing larger (or smaller) prediction intervals could
be used with comparable results.

Despite variations in ankle moment, walking speed, and
muscle activation patterns, the prediction error remained within
the range of walking variability measured across ambulation
conditions. The use of two antagonist muscles as inputs, mainly
responsible for sagittal ankle motion, resulted in minimal output
oscillations that can occur when redundant information is
present across multiple inputs (Zhang et al., 2012; Ardestani et al.,
2014; Gupta et al., 2020), and simplified the intrinsic (EMG)
(Ardestani et al., 2014; Chen et al., 2018) and extrinsic (e.g., knee
angle, hip angular velocity) (Ardestani et al., 2014; Dey et al.,
2019; Eslamy and Alipour, 2019; Gupta et al., 2020) inputs needed
for implementation in a myoelectric ankle-foot prosthesis.

The NARX model performance complements and extends
other feedforward estimation approaches for continuously
estimating ankle kinematics and kinetics in healthy individuals
(Zhang et al., 2012; Chen et al., 2018; Dey et al., 2019;

TABLE 2 | Temporal average of the instantaneous RMSE calculated across
participants for the NARX models using the participant’s time-varying EMG as
input and the NARX models using the average EMG as a constant input.

Ambulation
condition

Model
output

Units Time-varying EMG Constant EMG

RMSE σRMSE RMSE σRMSE

Level ground
(n = 10)

Angle Degrees 0.67 0.35 0.92 0.51

Moment Nm/kg 0.022 0.010 0.039 0.017

Stair ascent
(n = 8)

Angle Degrees 0.64 0.29 1.02 0.44

Moment Nm/kg 0.028 0.015 0.058 0.022

Stair descent
(n = 8)

Angle Degrees 0.50 0.17 0.82 0.40

Moment Nm/kg 0.023 0.009 0.039 0.018

Eslamy and Alipour, 2019; Gupta et al., 2020; Keleş and
Yucesoy, 2020) and impaired patients (Zhang et al., 2012;
Ardestani et al., 2014; Farmer et al., 2014). Across studies in
health individuals, reported errors (RMSE) and correlations
(R2) of ankle angle varied between 2.44 and 5.29 degrees, and
between 0.74 and 0.94, respectively, during level walking at
different speeds and with various inputs. Specifically, Gupta
et al. reported ankle angle errors, across healthy participants,
during level walking (RMSE = 2.44 ± 0.45◦, r = 0.97), stair
ascent (RMSE = 3.61 ± 1.00◦, r = 0.93), and stair descent
(RMSE = 5.04 ± 1.56◦, r = 0.85) using subject-specific NARX
models trained and tested separately for each condition (Gupta
et al., 2020). In comparison, average angle errors in this study
were a factor of five lower for networks trained across the three
terrains (RMSE < 0.84◦). This may be tied to differences in
the data organization (i.e., concurrent set of sequences) and
the division of trials (i.e., contiguous blocks) used here during
training which minimized discontinuities in the data that would
cause inherent training errors, and ensured that random trials,
instead of random points, were used during training. Ardestani
et al. obtained ankle moment errors up to 8 and 13% using
FFANN and WNN models, respectively, during normal walking
in patients with unilateral knee replacement (Ardestani et al.,
2014). Interestingly, their results were based on a non-specific
inter-subject training paradigm wherein the network was trained
on data from three different patients while performing three
walking conditions, and tested on a fourth participant. In their
study, the purpose was to create a generalized real-time surrogate
inverse dynamic model for gait analysis and was not intended
for use in prosthetic control. Dey et al. used an SVR approach
to continuously estimate ankle angle and moment during level
ground walking (RMSE = 2.17◦ and 0.11 Nm/kg, respectively)
using two extrinsic inputs (hip and knee angle) of a single healthy
participant (Dey et al., 2019). The use of kinematic-only inputs
could provide an alternative for predicting user intent indirectly
but the need for wearable sensors extrinsic to the prosthesis poses
similar challenges to EMG-based systems. Keleş et al. performed
a comprehensive analysis of muscle sites and their combinations
for use as EMG inputs to estimate ankle angle and moment
during walking in healthy participants (Keleş and Yucesoy, 2020).
Using the same ankle plantarflexor and dorsiflexor muscles, they
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reported ankle angle and moment errors (RMSE) of 2.34 ± 0.15
degrees and 0.041 ± 0.006 Nm/kg, in comparison to 0.84 ± 0.23
degrees and 0.026± 0.006 Nm/kg in this study. Correlations were
comparable to those reported here, although performance was
not examined across ambulation conditions.

The robust performance of the feedforward NARX model
across ambulation conditions and terrain transitions suggest
that it could provide intuitive user-driven control of an active
powered ankle-foot prosthesis, however, additional work is
needed. Implementation in a physical system will require a
closed-loop architecture wherein previous values of the predicted
(rather than desired) ankle angle and moment are used to
estimate changes in ankle dynamics. Feedback of the model
predictions is expected to place greater emphasis on the use
of EMG inputs to control for errors in the predicted ankle
dynamics and to signal user intent during transitions and
noncyclic activities (e.g., standing, sitting, obstacle avoidance).
While previous studies have demonstrated the feasibility of
continuously predicting ankle angle (Zhang et al., 2012;
Farmer et al., 2014) and ankle moment (Ardestani et al.,
2014), independently from neurological and neuromuscular
impaired participants, the simultaneous prediction of ankle
angle and moment across ambulation conditions must also be
demonstrated with pathological muscle activity and gait data.
Lastly, the effects on model performance associated with changes
in EMG signal over time caused by variations in sensor placement
and electrode-skin conductivity were not evaluated. Future
work will characterize closed-loop NARX model performance
across ambulation conditions using EMG activity from amputees’
residual lower limb muscles as inputs. Furthermore, for real-
time implementation in a prosthetic design, the model would
be validated with data acquired from commonly used angle and
moment sensors [e.g., encoders, inertial measurement units, force
sensitive resistors, potentiometers, torque, load cells (Au et al.,
2007; Sup et al., 2009; Klein and Voglewede, 2018)] intrinsic to
the prosthesis instead of motion capture and force plate data as
done in this study.

CONCLUSION

This study has demonstrated that a single-network nonlinear
autoregressive model with exogenous EMG inputs can
continuously predict future ankle angle and ankle moment
simultaneously during normal walking across ambulation
conditions (level ground walking, stair ascent/descent)
and transitions between terrains. The natural patterns of
muscle activation used to predict variations in normal gait,
particularly during transitions, suggests that this approach
could be used to create a seamless and intuitive interface for
an active powered ankle-foot prosthesis that incorporates
user intent and does not require conscious user control.
The model’s accuracy, robustness, and predictive capabilities
(i.e., future estimates) suggest that the approach could be
adapted for real-time closed-loop control of a wide variety
of lower limb robotic devices, including actuated orthoses,
and exoskeletons. Further research will characterize the ability

of within-socket residual EMG activity from amputees to
continuously predict limb kinematics and kinetics across a
variety of ambulation conditions.
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