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Abstract: We report the fabrication and optical characterization of Yb3+-doped waveguide amplifiers
(YDWA) on the thin film lithium niobate fabricated by photolithography assisted chemo-mechanical
etching. The fabricated Yb3+-doped lithium niobate waveguides demonstrates low propagation
loss of 0.13 dB/cm at 1030 nm and 0.1 dB/cm at 1060 nm. The internal net gain of 5 dB at 1030 nm
and 8 dB at 1060 nm are measured on a 4.0 cm long waveguide pumped by 976 nm laser diodes,
indicating the gain per unit length of 1.25 dB/cm at 1030 nm and 2 dB/cm at 1060 nm, respectively.
The integrated Yb3+-doped lithium niobate waveguide amplifiers will benefit the development of a
powerful gain platform and are expected to contribute to the high-density integration of thin film
lithium niobate based photonic chip.

Keywords: lithium niobate; Yb3+-doped waveguide amplifier; low propagation loss; internal net gain

1. Introduction

Featuring high-efficiency and broad-gain bandwidth, the ytterbium ion (Yb3+)-doped
laser and fiber amplifiers operating near the 1 micrometer (µm) wavelength have been
extraordinarily successful in industrial processing of materials, as such devices can be
operated with extremely high output power [1,2]. In addition to bulk solids and fiber, the
Yb3+-doped integrated waveguide lasers and amplifiers have become a new technology for
on-chip applications. On-chip Yb3+-doped waveguide lasers and amplifiers have been pre-
viously demonstrated on various substrates including glasses, tantalum pentoxide (Ta2O5),
aluminum oxide (Al2O3), yttrium-aluminum-garnet (YAG), calcium fluoride (CaF2), potas-
sium yttrium tungstate (KY(WO4)2), and yttrium lithium fluoride (LiYF4) [3–14]. However,
these material platforms cannot simultaneously support ultralow propagation loss, highly-
efficient optical nonlinearities and ultrafast electro-optical modulation. Lithium niobate
(LN) provides an attractive option as an alternative host material for rare earth ions, be-
sides their broad optical transparency window, low optical loss, high refractive index,
high nonlinear coefficient, and large electro-optical effect [15]. It has been demonstrated
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integrated in high-power lasers on a TFLN platform [16,17]. The on-chip Yb3+-doped
waveguides have already been demonstrated on weakly guiding ion-diffused waveguides
in Yb3+-doped bulk LN [18–20]. These waveguides feature weak optical confinement and
large bending radius due to the low index contrast. Therefore, they are unsuitable for dense
integration and also challenging to realize high-gain waveguide amplifiers. In the last two
decades, the rapid developments of the wafer-scale, high-quality, thin film lithium niobate
on insulator (TFLNOI) and micro- and nano-fabrication techniques have realized on-chip
integrated TFLNOI photonic devices with unprecedented performance [21,22]. The on-chip
microlasers and amplifiers based on the Er3+-doped TFLNOI were demonstrated recently,
showing great promise for high-performance scalable light sources based on integrated
photonics [23–30]. The on-chip Yb3+-doped microlasers based on microresonator have
also been demonstrated on the TFLNOI recently [31,32]. Yet to date, on-chip Yb3+-doped
amplifiers have not been demonstrated on TFLNOI.

Here, for the first time we demonstrate the on-chip Yb3+-doped lithium niobate waveg-
uide amplifiers fabricated by photolithography-assisted chemo-mechanical etching. The
fabricated Yb3+-doped lithium niobate waveguides demonstrate low propagation losses
of 0.13 dB/cm at 1030 nm and 0.1 dB/cm at 1060 nm based on the cut-back measure-
ments of different lengths of waveguides. The internal net gains of 5 dB at 1030 nm and
8 dB at 1060 nm are demonstrated on a 4.0 cm long waveguide pumped by 976 nm laser
diodes which indicates the gain per unit length are 1.25 dB/cm at 1030 nm and 2 dB/cm at
1060 nm. The integrated Yb3+-doped lithium niobate waveguide amplifiers will benefit the
development of a powerful gain platform and are expected to contribute to the high-density
integration of TFLNOI-based photonic chip.

2. Materials and Methods

The on-chip integrated Yb3+-doped LN waveguides are fabricated on a 600-nm-
thickness Z-cut TFLNOI (NANOLN, Jinan Jingzheng Electronics Co., Ltd., Jinan Province,
China) with Yb3+ concentration of 0.5 mol% using photolithography-assisted chemo-
mechanical etching. The structure of ytterbium-doped lithium niobate wafer is as follows:
from top to bottom is a 500 nm thick Cr layer, 600 nm thick ytterbium-doped LN layer, 2 µm
silicon dioxide layer, and 0.5 mm thick silica layer. The process flow is as follows: First, a
femtosecond laser was used to ablate the Cr layer to process the waveguide pattern of Cr
mask. Second, chemical mechanical polishing was used to etch the LNOI layer to transfer
the waveguide pattern of the Cr mask to the LN film, then the Cr mask was removed above
the waveguide by chemical wet etching and chemical mechanical polishing was performed
again. Finally, the waveguide after cleaning was ready for testing. More details of the LN
waveguides fabrication can be found in our previous work [33]. The refractive index of LN
is ~2.2 and the refractive index of SiO2 substrate is ~1.45.

As shown in Figure 1a, the fabricated Yb3+-doped waveguide with the length of 4 cm
is folded in a spiral layout for dense integration. Figure 1b shows the optical photograph of
the Yb3+-doped TFLNOI chip with different lengths of waveguides. Figure 1c shows the
scanning electron microscope (SEM) image of the cross section of the fabricated Yb3+-doped
LN waveguide with a top-width of ~1.1 µm and a bottom-width of ~4.9 µm. The LN waveg-
uide is coated with a thin layer of gold film for the sake of clear imaging in the SEM process,
thus both the top surface and sidewall appear a little bit rough. The selection of the waveg-
uide width is to make it as narrow as possible, in order that the single-mode transmission is
mainly used in the waveguide. Figure 2a shows the energy level diagram of Yb3+, which is
the basis of achieving the amplification at different signal light wavelengths [34]. Figure 2b,c
shows situ quantitative elements analysis of fabricated Yb3+-doped wafer measured by
energy dispersive spectrometer (EDS) (Zeiss Gemini SEM450, Carl Zeiss AG, Oberkochen,
Germany). As shown in Figure 2b, ytterbium element is detected. The map analysis by
EDS in Figure 2c corroborates the uniform micro-scale distribution of ytterbium element
in waveguide samples. This provides a favorable factor for the waveguide amplifier to
achieve uniform amplification over the entire transmission length.
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laser diode (CM97-1000-76PM, II-VI Laser Inc., ), while single frequency laser diodes at 
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ization states of both the pump and signal laser beam are set to the TE modes by using in-
line fiber polarization controllers (FPC561, Thorlabs Inc., Newton, NJ, USA) to achieve the 
best amplification performance. The pump and signal laser beam are combined and sep-
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Figure 2. (a) The energy level diagram of Yb3+. (b) The in situ quantitative elements analysis of
the fabricated YDWA measured by energy dispersive spectrometer (EDS). (c) The map of ytterbium
element analysis in waveguide samples by of EDS.

The experimental setup to characterize optical amplification performance of YDWA is
illustrated in Figure 3a. Here, a pump laser at 976 nm is provided by a single frequency
laser diode (CM97-1000-76PM, II-VI Laser Inc., Singapore), while single frequency laser
diodes at wavelength 1030 nm and 1060 nm (II-VI Laser Inc.) are used as the signal light.
The polarization states of both the pump and signal laser beam are set to the TE modes by
using in-line fiber polarization controllers (FPC561, Thorlabs Inc., Newton, NJ, USA) to
achieve the best amplification performance. The pump and signal laser beam are combined
and separated by the fiber-based wavelength division multiplexers (WDM) at the input
port of the on-chip integrated Yb3+-doped waveguide with lensed fibers. The insets of
Figure 3a display the Yb3+-doped waveguide butt-coupled by lensed fibers. The waveguide
facets are polished with cerium oxide powder with a diameter of 1 µm, and the waveguide
facets have the same surface smoothness, thus the coupling loss of the different waveguides
is basically the same. Both the output light signals are analyzed by a spectrometer (NOVA,
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Shanghai Ideaoptics Corp., Ltd, Shanghai, China). The powers of the input and output
pump and signal laser are measured by a power meter (PM100D, Thorlabs Inc.). The output
of the waveguide is also a zoomed in imaging by an objective onto an infrared camera
(InGaAs Camera C12741-03, Hamamatsu Photonics Co., Ltd., Shizuoka, Japan) for the
observation output mode profiles, and the captured infrared images are further processed
by MATLAB for clear display. As shown in Figure 3b–d, both the pump laser and signal
laser are in the fundamental mode of the Yb3+-doped waveguide.
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Figure 3. (a) The experimental setup to characterize optical amplification of YDWA. Insets show
the photograph of the YDWA (left) and the coupling lensed fiber (right). The infrared images of
the output port of the fabricated Yb3+-doped waveguide with wavelength (b) 976 nm laser beam,
(c) 1030 nm laser beam, and (d) 1060 nm laser beam. (LD: laser diodes; PC: polarization controllers;
UV-Vis: ultraviolet-visible spectrometer.)

3. Results and Discussion

Before characterizing the gain of the Yb3+-doped LN amplifier, the loss of the waveg-
uide amplifier needs to be determined first. We use the cut-back method to measure
the loss of the pump light and the signal light in the waveguide. The propagation loss
of the waveguide as αl includes the absorption loss induced by ground-state Yb3+ ions
and the scattering loss induced by the surface roughness of waveguide. Setting α0 as the
fiber-to-chip coupling losses per facet, and L as the length of Yb3+-doped LN waveguide
amplifier, the transmittance of the waveguide can be expressed as T(L) = −αl L − 2α0. The
waveguide transmittance is the ratio of the power of the pump light (signal light) input
into the lens fiber over the output power from the lens fiber. The loss curves shown in
Figure 4 are fitted by measuring the transmittance of waveguides with different lengths of
0.8 cm, 1 cm, 2 cm, 3 cm, and 4 cm. The number of bends is the same in the waveguides to
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ensure consistent bend loss and the bending radius is 800 nm. Figure 4a–c shows the loss
curves of 976 nm pump light, 1030 nm signal light, and 1060 nm signal light, respectively.
Through linear fitting, it can be deduced that the propagation loss of the pump light at
976 nm is 6.78 dB/cm, while the propagation losses of the signal light are 0.13 dB/cm at
1030 nm and 0.1 dB/cm at 1060 nm, respectively. Obviously, the transmission loss depends
on different wavelengths mainly because Yb3+ ions have different absorption coefficients
for different wavelengths [35]. The coupling loss of the pump light is 20 dB per facet, while
the signal light is 13 dB per facet at 1030 nm and 9 dB per facet at 1060 nm, respectively.
The main reason for the high coupling loss is due to the mismatch between the spot size of
the waveguide and the lensed fiber (~2 µm diameter) and the lensed fiber is multi-mode at
these wavelengths of 976 nm, 1030 nm, and 1060 nm.
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Figure 4. The measured loss curve of the pump light at (a) 976 nm, the signal light at (b) 1030 nm,
and (c) 1060 nm.

Then we measured the internal net gain in a 4.0 cm long Yb3+-doped LN waveguide
amplifier. The internal net gain is measured by the signal-enhancement method. It was
defined by the following equation:

g = 10lg
Pon

Poff
− αlL

where Pon and Poff are the output powers of the signal light with and without the excitation
of the pump light, respectively, and αl is the optical propagation loss per unit length.
Figure 5a,b presents the measured signal spectra at 1030 nm and 1060 nm with the increasing
pump powers, which apparently shows the signal enhancement. The full width at half
maximum of two narrow signal peaks are about 1.5 nm, it follows the linewidth of laser
diode. Figure 5c shows the net gain as a function of the increased pump power with fixed
signal powers at 1030 nm. The waveguide amplifier optical gain increases rapidly at the
small pump powers, and tends to saturate with relatively high pump powers (>13 mW).
The maximum internal net gain of ~5 dB is achieved. Subsequently, the wavelength of
the signal light changed to 1060 nm, the net gain curve is shown in Figure 5d. A similar
signal amplification phenomenon can be seen, the maximum internal net gain of ~8 dB is
achieved with the pump power at 48 mW, which is higher than 1030 nm. The conversion
efficiency is about 5% (signal power increment divided by pump power). The difference
in saturation power between 1030 and 1060 nm is related to the absorption and emission
cross sections of different wavelengths in ytterbium ions.
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Figure 5. Gain characterization of the Yb3+-doped LN waveguides. Measured signal spectra as
a function of increasing pump powers measured at (a) 1030 nm and (b) 1060 nm. Measured net
internal gain as a function of increasing pump powers at different signal wavelength (c) 1030 nm and
(d) 1060 nm.

As shown in Figure 6a,b, when the signal light gain tends to saturated, a significant
second harmonic generation (SHG) (~488 nm) from the pump light at 976 nm appeared.
The exact power of the pump laser of 976 nm is about 14 mW for 1030 nm and 45 mW
for 1060 nm, respectively. It can be seen with the naked eye on the surface of waveguide
amplifiers, as shown in the right inset in Figure 3a. Additionally, the peaks at 508 nm
and 501 nm correspond to the sum frequency generations (SFG) from the pump light and
signal light at 1060 nm and 1030 nm, respectively. The SHG and SFG is harmful to the
gain of waveguide amplifiers. Therefore, in order to achieve high power amplification, the
nonlinear process need to be suppressed.
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4. Conclusions

In conclusion, we have demonstrated the fabrication and optical characterization of
YDWA on the thin film lithium niobate fabricated by photolithography assisted chemo-
mechanical etching. The fabricated Yb3+-doped lithium niobate waveguides demonstrate
low propagation loss of 0.13 dB/cm at 1030 nm and 0.1 dB/cm at 1060 nm. The internal
net gain of 5 dB at 1030 nm and 8 dB at 1060 nm are demonstrated on a 4.0 cm long
waveguide pumped by 976 nm laser diodes which indicates that the gain per unit lengths
are 1.25 dB/cm at 1030 nm and 2 dB/cm at 1060 nm. Further optimizations concerning the
Yb3+ ions doping concentration to increase the absorption for pump light, using a mode
size converter to improve the coupling efficiency and the waveguide geometric design to
allow for high-power amplifications, are anticipated to increase the waveguide gain to even
higher values, showing the potential of the on-chip applications for photonic integrated
circuit (PIC).
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