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Abstract
Background/Aims: The efficacy and safety of posterior subthalamic area (PSA) and 
ventral intermediate nucleus (VIM) deep brain stimulation (DBS) in the treatment of 
essential tremor (ET) have not been compared in large-scale studies. We conducted a 
secondary analysis to identify the superior target of ET-DBS treatment.
Methods: PubMed, Embase, Cochrane Library, and Google Scholar were searched 
for relevant studies before September 2021. The tremor-suppression efficacy and 
rate of stimulation-related complications (SRCR) after PSA-DBS and VIM-DBS treat-
ing ET were quantitatively compared. Secondary outcomes, including tremor subitem 
scores and quality of life results, were also analyzed. Subgroup analyses were further 
conducted to stratify by follow-up (FU) periods and stimulation lateralities. This study 
was registered in Open Science Framework (DOI: 10.17605/OSF.IO/7VJQ8).
Results: A total of 23 studies including 122 PSA-DBS patients and 326 VIM-DBS pa-
tients were analyzed. The average follow-up time was 12.81 and 14.66 months, re-
spectively. For the percentage improvement of total tremor rating scale (TRS) scores, 
PSA-DBS was significantly higher, when compared to VIM-DBS in the sensitivity anal-
ysis (p = 0.030) and main analysis (p = 0.043). The SRCR after VIM-DBS was higher 
than that of PSA-DBS (p = 0.022), and bilateral PSA-DBS was significantly superior to 
both bilateral and unilateral VIM-DBS (p = 0.001).
Conclusions: This study provided level IIIa evidence that PSA-DBS was more effec-
tive and safer for ET than VIM-DBS in 12–24 months, although both PSA-DBS and 
VIM-DBS were effective in suppressing tremor in ET patients. Further prospective 
large-scale randomized clinical trials are warranted in the future.
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1  |  INTRODUC TION

Essential tremor (ET) is one of the most common movement disor-
ders, with a prevalence of 0.9% worldwide and up to 5% in patients 
>65 years of age.1,2 The pathophysiological mechanism remains 
uncertain, although several possible hypotheses have been pro-
posed.3,4 For drug-resistant ET patients, deep brain stimulation 
(DBS) has been reported as a very useful surgical treatment. The 
thalamic ventral intermediate nucleus (VIM) is the most used tar-
get for ET-DBS treatment, and VIM-DBS is widely recognized to 
significantly improve ET symptoms.5,6 However, the VIM target is 
difficult to visualize by conventional magnetic resonance imaging 
(MRI), adding extra resistances to target positioning. Although the 
patients' initial responses are usually encouraging, long-term re-
sponses significantly decline. Furthermore, VIM-DBS easily results 
in stimulation-related complications (SRCs), such as dysarthria, gait 
ataxia, paresthesia, nausea, weakness, and other side effects.5–7

To solve these problems, the posterior subthalamic area (PSA), 
including the caudal zona incerta, Forel field H, and the prelemniscal 
radiation, was proposed as an effective and alternative stimulation 
target.8–10 Several studies proposed that PSA-DBS might have better 
efficacy in controlling tremor symptoms and cause fewer SRCs,8–11 
and the implantation difficulty of PSA was much lower. Interestingly, 
it was even reported that PSA-DBS was still effective in patients 
with failed VIM-DBS.8 Although several reports compared the PSA 
and VIM stimulation for ET, the opinions were diverse and the out-
comes were unconvincing, due to the retrospective design and the 
limited number of patients.12–16 Therefore, there is still controversy 
regarding the superior stimulation target for ET-DBS treatment.

Here, VIM-DBS and PSA-DBS were compared with regard to the 
improvements in clinical symptoms and stimulation-related compli-
cations based on published reports. The primary objective of our 
study was to identify the superior target of deep brain stimulation 
for essential tremor.

2  |  MATERIAL S AND METHODS

2.1  |  Search strategy

The following databases were searched following the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guideline17: PubMed, Embase, Cochrane Movement 
Disorders Group Trials Register, and Cochrane Central Register 
of Controlled Trials. Google Scholar was also searched for cited 
articles in references. The final search was in September 2021. 
The following keywords were used: “essential tremor,” “deep 
brain stimulation,” “ventral intermediate nucleus,” “posterior sub-
thalamic area,” “caudal zona incerta,” “tremor scores,” “activities 
of daily living,” “complications,” and “side effects.” The titles, ab-
stracts, full texts, and references were independently read and as-
sessed by two investigators (FHY and BYT). Disagreements were 
settled through negotiations under the direction of ZJG. This study 

has already been registered in Open Science Framework (DOI: 
10.17605/OSF.IO/7VJQ8).

2.2  |  Eligibility criteria and quality assessment

The inclusion criteria for included articles were: (1) the study re-
ported PSA-DBS and VIM-DBS treatments for ET, (2) the study used 
objective scales including the Essential Tremor Rating Scale (ETRS) 
and/or the Fahn-Tolosa-Marin Tremor Rating Scale (FTM-TRS) scores 
to report clinical outcomes, (3) the studies recorded the number of 
SRCs, (4) the study reported DBS targets, age at surgery, disease 
duration, total TRS scores both at baseline and the last follow-up or 
postoperative percentage improvement, and (5) the follow-up dura-
tion was longer than 3 months.

The exclusion criteria for eligible studies were: (1) indications 
for surgery other than ET, (2) a target other than PSA or VIM, (3) 
re-implantation after failed DBS, (4) reports that included data that 
could not be extracted, (5) conference articles, (6) editorials, (7) re-
views, (8) duplicate publications, (9) non-English articles, and (10) 
low-quality studies.

The quality of included studies was assessed by the Meta-
analysis of Observational Studies in Epidemiology (MOOSE) 
(Appendix S1).18,19 A study was recognized as low quality when its 
MOOSE score was ≤3 points.

2.3  |  Data extraction

The data were extracted using a standardized template. The fol-
lowing items were collected: (1) characters of each article (number 
of ET patients, year of publication, journal of publication, and type 
of research); (2) baseline characteristics of the patients (sex, age 
at surgery, and disease duration); (3) surgical parameters, includ-
ing stimulation targets (PSA or VIM), laterality of DBS (unilateral, 
bilateral, or both), and programming parameters; and (4) clinical 
outcomes evaluated when the patients were under individual 
medication treatments with the “on” state stimulation (ETRS or 
FTM-TRS scores, follow-up duration, stimulation-related compli-
cations, and other scale scores at baseline and the last follow-up). 
Because we wanted to compare the differences between PSA and 
VIM stimulation targets, adverse events related to DBS surgery 
and devices were excluded, and only stimulation-related compli-
cations were included in the statistical analyses. Discrepancies 
were resolved by consultations between the authors (FHY and 
BYT).

2.4  |  Statistical analysis

Due to the heterogeneity of the TRS scales, no direct compari-
son could be made by the mean difference between the PSA-DBS 
and VIM-DBS groups. Hence, the effect size was determined by 
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calculating the percentage improvements in tremor rating scale 
scores.20,21 The percentage improvement was calculated as [(the 
presurgical score - the postsurgical score)/the presurgical score 
× 100%]. The standard deviation (SD) was calculated as [(the SD 
of the presurgical score)2 + (the SD of the postsurgical score)2 – 
2 × 0.6 × (the SD of the presurgical score) × (the SD of the postsurgi-
cal score)].21

The Standard Cochrane Q and I2 statistics were used to assess 
the heterogeneity. If p < 0.10 or I2 > 50%, the data were pooled by 
a random effect analysis model using a generic-inverse variance. 
Otherwise, a fixed-effect model was used. The mean ± standard 
error was used as a form of pooled data. Comparisons of patient 
baseline characteristics between the PSA and VIM groups were 
determined using Student's t-tests. Comparisons of the main out-
comes of the two groups, including the surgical effects and the rate 
of stimulation-related complications (SRCR), were also performed 
using Student's t-test. A value of p < 0.05 indicated a statistically 
significant difference. To estimate the study variance, a simple lin-
ear meta-regression based on the method of the moment model 
was performed, and p < 0.05 was considered a significant correla-
tion. Comprehensive Meta-Analysis 3.0 (Biostat, Englewood, NJ, 
USA) was used to perform the statistical analyses. The data were 
managed using the MOOSE Group and the Cochrane Handbook for 
Systematic Reviews of Interventions.19

The average follow-up time of PSA-DBS and VIM-DBS was 
12.81 and 14.66 months, respectively. Therefore, we set a limita-
tion of follow-up (FU) time (12–24 months) to characterize middle-
term efficacies as the main analysis. Sensitivity analyses of clinical 
efficacy were conducted by considering all studies without limita-
tion of FU time. Because all FU periods in the PSA-DBS group were 
≥12 months, a time limitation (≥12 months) was also set to deter-
mine the medium and long efficacy. The main and sensitivity anal-
yses were also conducted with other assessment scales, including 
sub-tremor scores of TRS, sub-rest scores of TRS, sub-upper ex-
tremities scores of TRS, sub-functional disability of TRS, activities 
of daily life (ADL), short form-36 (SF-36), and quality of life (QoL) 
in the essential tremor questionnaire (QUEST). Subgroup analyses 
were further conducted to stratify follow-up periods and stimula-
tion lateralities.

Since most of the stimulation-related complications (SRCs) 
would be alleviated or disappeared after adjusting the stimula-
tion parameters, SRCs were not reported in some centers. So, the 
main analyses of SRCs were conducted without including studies 
that reported ‘0’ SRCs. For sensitivity analyses, all studies that 
reported the event number of SRCs were considered (Figure S1). 
Some common SRCs, including dysarthria and ataxia, were further 
independently analyzed. The rate of SRCs (SRCR) was calculated 
as [(the number of patients who occurred dysarthria) + (the num-
ber of patients who occurred ataxia) + … + (the number of patients 
who occurred one type of SRCs)/the total number of patients 
× 100%]. For example, if 6 of 10 patients occurred dysarthria and 5 
of them occurred headache after stimulation, the SRCR would be 
(6 + 5)/10 × 100% = 110%.

3  |  RESULTS

3.1  |  Searching the results and quality assessments

According to the keyword search, 4456 articles were identified, 
with a total of 1138 duplicate articles removed. The titles and ab-
stracts were then filtered, excluding 2361 articles. The reasons for 
exclusion were that they were non-ET projects, nonclinical studies, 
or low-quality articles (conference articles, letters, or editorials). 
According to the inclusion and exclusion criteria, the remaining 968 
articles were further screened by reading the full texts. The refer-
ences to these articles were also screened. Finally, 32 studies were 
used for MOOSE quality assessment, with 22 studies involving ef-
ficacy analysis and 24 studies involving SRC analysis. The entire 
screening process is illustrated in Figure 1.

3.2  |  Study characteristics

No randomized controlled trial study was processed to determine the 
efficacy of ET-DBS treatment. The detailed characteristics of included 
studies are shown in Table 1. For sensitivity analysis, eight studies were 
included in the PSA-DBS group13,22–28 and fourteen studies were in-
cluded in the VIM-DBS group.5,6,13,29–39 Due to the short term of fol-
low-up, three studies in the VIM-DBS group were excluded from the 
main analysis. The nineteen studies were published between 2004 and 
2021. The improvement percentages ranged from 45.90% to 82.54% 
in the PSA-DBS group and 36.6% to 75.8% in the VIM-DBS group.

3.3  |  Baseline characteristics and stimulation 
parameters of PSA-DBS and VIM-DBS

The comparison results of baseline characteristics and stimula-
tion parameters between PSA-DBS and VIM-DBS are summarized 
in Table  2. There was no significant difference between the PSA-
DBS and VIM-DBS groups of the baseline characteristics, including 
age at surgery (64.69 ± 1.71 vs. 65.96 ± 1.09 years, p  =  0.47), dis-
ease duration (20.66 ± 6.02 vs. 23.37 ± 3.99 months, p = 0.56), and 
length of follow-up (12.81 ± 0.61 vs. 14.66 ± 2.06 months, p = 0.28). 
No statistical difference was found in frequency (152.21 ± 7.59 
vs. 132.78 ± 8.13 Hz, p  =  0.15), pulse width (78.47 ± 6.24 vs. 
79.40 ± 5.45 μs, p = 0.99), or amplitude (2.20 ± 0.14 vs. 2.36 ± 0.11 V, 
p = 0.45). There was no significant difference in presurgical total TRS 
scores (52.53 ± 2.83 vs. 53.55 ± 2.12, p = 0.80), and the same statis-
tical consequences were present in the baseline characteristics and 
stimulation parameters of the main analysis.

3.4  |  Outcomes of DBS efficacy

The improvement of total TRS scores was used as the pri-
mary evaluation indicator. Statistical differences were found 
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between the PSA-DBS and VIM-DBS groups in the sensitiv-
ity analysis with no follow-up time limitation (64.89 ± 3.14% vs. 
56.23 ± 2.44%, p = 0.030) and main analysis with a time limitation 
of 12–24 months (66.11 ± 4.09% vs. 55.56 ± 3.24%, p  =  0.043). 
Significant differences were also found during further analysis 
of medium and long efficacy (64.89 ± 3.14% vs. 54.44 ± 2.75%, 
p = 0.012). The forest plots and comparison outcomes are shown 
in Figures 2 and S2. We also analyzed the comparison outcomes of 
the sub-action, rest, midline, and extremity tremor scores of TRS, 
sub-functional disability of TRS, activities of daily life (ADL), short 
form-36 (SF-36), and QoL in the essential tremor questionnaire 
(QUEST). For the percentage improvement of total TRS scores, 
the bilateral PSA-DBS was significantly higher with no FU-time 
limitation (p  =  0.066) and significantly higher with an FU-time 
limitation (12–36 months, p = 0.001), when compared to the bilat-
eral VIM-DBS. The bilateral PSA-DBS was also significantly higher 
than the unilateral VIM-DBS (p = 0.001). However, no statistical 
difference was found between the bilateral and unilateral VIM-
DBS (p = 0.192). These statistical consequences were of limited 
value due to insufficient data, especially for subgroups stratified 
by follow-up periods, where only one study of PSA-DBS was fol-
lowed for more than 3 years.

3.5  |  Outcomes of stimulation-related 
complications

The summary of SRCs was also an important evaluation indicator. 
A total of 439 SRCs were reported in 479 ET patients treated with 
PSA-DBS and VIM-DBS6,9,13,22,25,26,37–49 (Table  3). The occurrence 
of SRCR of VIM-DBS was statistically higher than that of PSA-DBS 
(106.3 ± 12.4 vs. 48.2 ± 22.1%, p = 0.022). The occurrence of SRCs 
ranged from 20.0% to 116.7% in the PSA-DBS group and 30.8% to 
285.0% in the VIM-DBS group, and there was no significant dif-
ference in the occurrence of dysarthria between the two groups 
(29.2 ± 10.6% vs. 25.5 ± 6.1%, p = 0.147). The occurrence of dysar-
thria ranged from 16.0% to 66.7% in the PSA-DBS group and 10.0% 
to 84.6% in the VIM-DBS group. The forest plots and comparison 
outcomes are shown in Figure 3. No significant difference was found 
in the occurrence of ataxia (Figure S3).

4  |  DISCUSSION

Drug treatment has long been the main therapy for ET, but only 50% 
of ET patients are sensitive to pharmacological treatment.50 Due 

F I G U R E  1  Preferred Reporting Items 
for Systematic Reviews and Meta-
Analyses 2020 flow diagram of studies 
included in the main and complication 
analyses (http://www.prism​a-state​ment.
org/PRISM​AStat​ement/​FlowD​iagram)

http://www.prisma-statement.org/PRISMAStatement/FlowDiagram
http://www.prisma-statement.org/PRISMAStatement/FlowDiagram
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to nonablative, adjustable, and reversible characteristics, DBS be-
came an alternative and effective treatment for drug-resistant ET 
patients. PSA and VIM are the two most common stimulation targets 
of ET-DBS treatment.

In recent years, several reviews studying ET-DBS treatments 
have been published,2,10,20 which characterized the efficacy and 
safety of ET-DBS treatments. However, none of the literature re-
ports compared the differences between PSA-DBS and VIM-DBS.

Our study conducted deeper analyses of the effects of ET-DBS 
treatment to obtain level IIIa evidence that PSA-DBS was more ef-
fective and safer for ET than VIM-DBS in 12–24 months, although 
both PSA-DBS and VIM-DBS were effective in suppressing tremor 
in ET patients.

4.1  |  The efficacy between PSA-DBS and VIM-DBS

Overall, ET patients treated with PSA-DBS and VIM-DBS both 
showed statistically significant improvements, and PSA-DBS was 
superior to VIM-DBS in terms of the total TRS scores. The clini-
cal outcomes of PSA-DBS and VIM-DBS for ET patients have only 
been directly compared in six studies.12–16,24 Although all of them 
concluded that PSA-DBS and VIM-DBS were both effective in the 
treatment of ET patients, the conclusions were still diverse. Barbe, 
Holslag, and Sandvik et al.12,13,16 all suggested that PSA was pos-
sibly a superior target in deep brain stimulation for essential tremor. 
Blomstedt and Degeneffe et al.14,24 found no statistical difference in 
the reduction of total TRS scores between PSA-DBS and VIM-DBS. 
Eisinger et al.15 reported that VIM-DBS provided better long-term 
outcomes in terms of sub-tremor scores. Our analysis supported 
the above opinion that PSA was the superior target. Compared with 
VIM-DBS, total TRS scores were more improved after PSA-DBS. 
Several potential reasons contributed to this result.

According to current theories, the generation of ET is attributed 
to multiple central oscillators across the cerebello-thalamo-cortical 
circuit (CTCC) dynamically attracted to each other to induce ET 
symptoms.51,52 In theory, interfering with any node of this circuit 
could suppress tremor oscillations. This may be due to the inhibition 
of cerebellum-cortex connections by local DBS, or to more complex 
mechanisms such as multifocal alterations in efficient and functional 
connectivity throughout neural networks.53,54 Tremor improvement 
has been reported to be significantly correlated with primary senso-
rimotor regions, supplementary motor areas (SMAs), and premotor 
cortex in ET.55,56 VIM is in the center of the CTCC, which connects 
the primary motor cortex (M1) and the dentate nucleus of the con-
tralateral cerebellum across the dental-red-thalamic tract (DRTT), 
projecting to the tremor-related motor areas. Therefore, it has been 
considered an effective target for lesioning surgery and neuromod-
ulation to suppress tremor symptoms.

However, in recent years, increasing interest has focused on 
PSA-DBS for tremor control. VIM-DBS was reported to achieve its 
best effects in the subthalamus region, which was adjacent to PSA. 
A positive correlation between tremor inhibition and stimulation of St
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DRTT was shown by many imaging studies.38,57–59 PSA was proposed 
to be more closely related to DRTT. Anatomically, the fibers originate 
from the dentate nucleus of the cerebellum and climb across the su-
perior cerebellar peduncle into the caudal mesencephalon. Most of 
them then crisscross to attain the red nucleus and thalamus of the 
contralateral hemisphere. Smaller, noncrossing DRTT processes reach 
the red nucleus and thalamus of the ipsilateral hemisphere. The ris-
ing DRTT fibers need to transit the small and the narrow PSA, then 
spread and end in the thalamus. The proximity of DRTT fibers in PSA 
makes it a good target for DBS. Al-Fatly et al. concluded that these 
targets might be the same fibers, which were transmitted to the thala-
mus along with the red nucleus and passed through the PSA and zona 
incerta during this process.59 An optimal DBS spot was proposed 
to be located outside the ventrolateral thalamus, inside the internal 
capsule, directly below the VIM and sensory nuclei of the thalamus, 
invading their inferior borders.60 Overall, the superior location of PSA 
may contribute to the better results of tremor suppression.

It has also been suggested that conventional MRI is unable to ad-
equately visualize the VIM region. Though several specific (typically 
proton density) MRI sequences or tractography were reported to be 
able to visualize the VIM, they are not routinely used in most cen-
ters.61 Atlas-defined coordinates have therefore been heavily used 
to indirectly localize the stimulation target. VIM is between ventro-
oralis posterior (VOP) and ventral caudal (VC), with a front and back 
diameter of only 3–4 mm, which is very small and narrow. If the loca-
tion is inaccurate, it may not be in the VIM nucleus, especially if the Y 
value is uncertain, causing poor therapeutic results.11 PSA has con-
nected anteriorly to the posterior edge of the STN, posteriorly to the 
anterolateral edge of red nucleus, and laterally to the posterior limb 
of the inner capsule.9 Compared with the VIM nucleus, the difficulty 
in locating the PSA is much lower. Therefore, the therapeutic effect 
of PSA-DBS is more controllable, while VIM-DBS may fail to achieve 
the best therapeutic effects due to inaccurate target positioning.

The efficacy of bilateral PSA-DBS was significantly better than 
that of bilateral and unilateral VIM-DBS. Notably, no statistical dif-
ference was found between bilateral and unilateral VIM-DBS. Many 
studies have also come to similar conclusions that the bilateral and 
unilateral VIM-DBS were equally effective for ET.62,63 Nevertheless, 
we must cautiously consider the results of this subgroup analysis. 
Only a limited number of articles have reported unilateral and bi-
lateral stimulations on all included ET patients, and many of them 
involved mixed targets.

Regarding long-term efficacy, PSA and VIM stimulation both 
significantly decreased with longer follow-up periods. This may be 
due to the increased tolerance of patients to stimulation, and the 
progressing process of ET.31,64 Disease progression was also rec-
ognized as an important reason for the loss of efficacy.65 Anthofer 
et al. reported that patients with long distant contact with DRTT 
fibers were more prone to suffer from DBS tolerance.66 PSA-DBS 
may have a better long-term efficacy due to its closer location to the 
DRTT fibers when compared to VIM-DBS.67

According to multiple reports, VIM-DBS improves the QoL in ET 
patients. However, only five studies reported the QoL of PSA-DBS 
using three different types of assessment scales, including SF-36, 
ADL, and QUEST.13,22,24,27,28 It is of limited value to use such diverse 
data to make a comparison with VIM-DBS. But according to their 
reports, both PSA-DBS and VIM-DBS could improve the QoL for ET 
patients. No significant difference was observed in terms of the per-
centage improvement in ADL.14

4.2  |  The stimulation-related complications 
between PSA-DBS and VIM-DBS

Although many studies have mentioned adverse effects, they were 
limited to complications related to surgery and equipment, which 

PSA-DBS VIM-DBS p-value

Age of surgery 64.69 ± 1.71 (116) 65.96 ± 1.09 (308) 0.47

Disease duration (years) 20.66 ± 6.02 (83) 23.37 ± 3.99 (248) 0.56

Follow-up duration (months) 12.81 ± 0.61 (122) 14.66 ± 2.06 (326) 0.28

Frequency (Hz) 152.21 ± 7.59 (87) 132.78 ± 8.13 (150) 0.15

Pulse widths (μs) 78.47 ± 6.24 (87) 79.40 ± 5.45 (186) 0.99

Amplitude (V) 2.20 ± 0.14 (87) 2.36 ± 0.11 (186) 0.45

Preoperation total TRS 52.53 ± 2.83 (122) 53.55 ± 2.12 (326) 0.80

Improvement rate of total TRS

Sensitivity analysis (no time limitation) 64.89 ± 3.14 (122) 56.23 ± 2.44 (326) 0.030

Sensitivity analysisb(≥12 M) 64.89 ± 3.14 (122) 54.44 ± 2.75 (271) 0.012

Main analysis (12 M-24 M) 66.11 ± 4.09 (104) 55.56 ± 3.24 (261) 0.043

SRCR (%) 48.2 ± 22.1 (89) 106.3 ± 12.4 (516) 0.022

Rate of dysarthria (%) 29.2 ± 10.6 (86) 25.5 ± 6.1 (485) 0.147

Abbreviations: DBS, deep brain stimulation; PSA, posterior subthalamic area; SRCR, rate of 
stimulation-related complications; TRS, tremor rating scale; VIM, ventral intermediate nucleus.
a“Mean ± standard error (number of observations)” is used to represent the data.
bThe sensitivity analysis with a limitation of the follow-up time (≥12 months).
p-values of comparisons with significant differences are highlighted in bold.

TA B L E  2  Pooled value of 
demographicsa
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were of a diverse nature due to the medical level of different cent-
ers. SRCs are side effects directly related to or introduced by DBS, 
which are more important in judging the safety of different stimula-
tion targets. These adverse reactions may or may not disappear with 
the adjustment of parameters, so any adverse events that emerge 
should be included in this analysis. In our analysis, the pooled per-
centages of SRCR after PSA-DBS were significantly lower than that 
after VIM-DBS. Holslag and Barbe et al. also reported a similar con-
clusion.13,16 Different anatomical locations have been recognized as 
the key factors contributing to different SRCR.38,57–59

Dysarthria and gait ataxia have been reported as two of the 
most common SRCs in DBS. The occurrences of dysarthria and gait 
ataxia were diverse in different studies, but we found that they were 
common and similar in both PSA-DBS and VIM-DBS.10,16 It has been 
proposed that dysarthria and gait ataxia are caused by stimulation 
of the same cerebellar fiber connections throughout the cerebello-
thalamo-cortical circuit in both PSA-DBS and VIM-DBS, including 
afferent or efferent axons of the red nucleus and other adjacent 
tracts, which contributed to similar occurrence percentages.68–70

4.3  |  The stimulation parameters between PSA-
DBS and VIM-DBS

With different programming parameters, the efficacy and SRCs of 
PSA-DBS and VIM-DBS will also be different. Therefore, all included 
reports in the literature have a uniform inclusion criterion, includ-
ing data from the “ON state” and normal follow-up periods, which 
ensured that the parameters are the timely parameters coordinated 
by the physicians and patients after considering individual efficacies 
and tolerabilities.

Stimulation parameters, including voltage, pulse width, and fre-
quency are interdependent and should be considered together.71 
There were no statistical differences in these stimulation param-
eters, which was the premise of our comparisons and analyses. 
Interestingly, ET-DBS treatment was generally recognized to have 
a better therapeutic effect at high frequency, so the frequencies of 
PSA-DBS and VIM-DBS were both high.71,72

To improve tremor symptoms, many patients were even willing 
to tolerate mild SRCs, such as mild dysarthria and gait ataxia.72–74 

F I G U R E  2  Differences of total tremor score improvement (%) between PSA and VIM deep brain stimulation. (A) The forest plot of 
sensitivity analysis with no time limitations of the follow-up periods. (B) The forest plot of main analysis with the follow-up period limited to 
12–24 months. (C) The p-value of main analysis (p = 0.043, 12 − 24 M, C-1) and sensitivity analysis (p = 0.030, no time limitation, C-2). PSA—
posterior subthalamic area; VIM—ventral intermediate nucleus; DBS—deep brain stimulation
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TA B L E  3  Summary of stimulation-related complicationsa

Study name N Stimulation-related complications Dysarthria Ataxia n

Studies including patients treated with PSA-DBS

Plaha P, 201120 15 Bilateral dysarthria and a hypophonic (3) 0 0 3

Blomstedt P, 
201037

28 Dysarthria (8), clumsiness in the contralateral hand and leg (1), 
blurred vision and dizziness (1)

3 0 10

Barbe MT, 20189 6 Dysarthria (4), gait ataxia (3) 8 0 7

Andreas N, 201923 11 Mild dysarthria (4), paresthesia (1) 4 3 5

Sun XY, 202024 7 Mild dysarthria (4), mild balance disorder (2) 4 0 6

Studies including patients treated with VIM-DBS

Hubble JP, 199638 10 Paresthesia (10), dysarthria (1), headache (2), face-arm pain (1), 
right-sided weakness (3), face weakness (1), decreased range 
of motion left shoulder (1)

1 0 19

Koller WC, 199939 20 Mild paresthesia (24), mild headache (9), mild dysarthria (7), mild 
paresis (6), attention/cognitive deficits (2), gait disorder (2), 
facial weakness (2), dystonia (1), hypophonia (1), nausea (1), 
mild depression (1), dizziness (1)

7 2 57

Koller WC, 200140 25 Paresthesia (21), headache (15), paresis (6), dysarthria (4), nausea 
(4), disequilibrium (3), facial weakness (3), gait disorder (2), 
dystonia (2), mild attention/cognitive deficit (2), dizziness 
(2), hypophonia (1), anxiety (1), depression (1), syncope (1), 
vomiting (1), shocking sensation (1), drooling (1)

4 2 71

Ondo W, 200141 13 Paresthesia (3), headache (5), dysarthria (7), neck pain (2),mouth 
pain (1),increased saliva (1), balance and gait difficult (10)

7 10 29

Pahwa R, 200126 17 Headache (9), paresthesia (10), dysarthria (1), disequilibrium (1), 
dizziness (2)

1 1 23

Lee JYK, 200542 18 Hand tingling (3) 0 0 3

Kuncel AM, 200643 14 Dysarthria (9), posturing (7), jaw deviation (3), eye closure (2), 
voice effected (2)

9 7 23

Blomstedt P, 
201037

21 Aphasia (8), clumsy (1) 0 0 9

Borretzen MN, 
201444

46 Dysarthria (17), headache (9), paresthesia (6), abnormal taste 
(8), dizziness (5), discomfort tongue (4), reduced balance or 
coordination (4)

17 4 53

Silva D, 201645 23 Paresis (2), dysarthria (6), transient cognitive alter (1), facial 
numbness (1)

6 0 10

Klein J, 201735 26 Dysarthria (15), gait/balance (11), paresthesia (8), dysphagia (2), 
increased headaches (1), dizziness (1), cramps (1)

15 11 39

Wharen RE, 201746 112 Speech disturbances (12), gait/postural disorder (5), cognitive 
changes (8), dysphagia (2), tinnitus (1), shocking or Jolting 
sensation (3), discomfort (17), headache (8), paresis (1), 
dystonia (2), dysarthria (1), hemiparesis (1)

1 5 61

Barbe MT, 20189 13 Right hemiparesis (1), dysarthria (11), aphasia (1), nausea (1) 11 0 4

Chen T, 201847 56 Mental status change (9), speech disturbance (7), balance or gait 
disturbance (6), speech and balance disturbances (5)

0 6 27

Akram H, 201836 5 Mild slurring and slowing of speech (1), tingling (1), discomfort in 
the right side of the face, right arm, and part of the right leg 
(1), mild balance deterioration (1), feeling of exhaustion (1), 
mild and transient paresthesia (1)

0 1 6

Tsuboi T, 20207 97 Dysarthria (27), gait/postural disorders (19), dysphagia (6), 
paresthesia (2), limb ataxia (3), double vision (1)

27 19 58

Abbreviations: DBS, deep brain stimulation; N, number of patients; n, number of stimulation-related complications; PSA, posterior subthalamic area; 
VIM, ventral intermediate nucleus.
a Despite their different names, some studies in the stimulation-related complications summary reported the same group of patients as those in the 
total tremor score improvement summary.
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With the increasing understanding of DBS programming, adaptive 
and/or sensing closed-loop DBS, delivering stimulation only when 
necessary to reduce SRCs and prolong clinical efficacy, is considered 
as a promising ET-DBS treatment, when compared with conventional 
continuous DBS.75,76 While conventional DBS electrode contacts 
stimulate the ring-shaped area around the electrode, directional 
electrodes achieve stimulation in different directions by dividing the 
ring electrode into segmented electrodes. Based on these clinical 
characteristics, including local field potential (LFP), a larger treat-
ment window and more precise stimulation can be achieved.77,78

5  |  LIMITATIONS

5.1  |  Our study had several limitations

First, most included studies were one-arm studies that did not 
contain the controlled trial design. However, more ET patient sam-
ples were included in this way, which improved the universality 
and statistical validity of our results. Furthermore, one-arm meta-
analysis is also regarded as a reliable method to provide level IIIa 
evidence.20,21,79,80

Second, because most of the follow-up times in PSA-DBS were 
in 12–24 months, and our outcomes mainly reflected medium–long-
term results, more studies are needed to better compare short-term 
and long-term efficacies.

Finally, non-English studies were excluded, which reduced the 
number of relevant studies included in our analyses.

6  |  CONCLUSIONS

Our study demonstrated favorable outcomes in terms of clinical 
efficacy and safety. Although PSA-DBS and VIM-DBS were both 

effective for ET, the efficacy of PSA-DBS in tremor suppress-
ing was superior, and PSA-DBS caused fewer stimulation-related 
complications. Hence, this study provided level IIIa evidence that 
PSA-DBS was more effective and safer for ET than VIM-DBS in 
12–24 months.

Considering the diverse and insufficient data of QoL, a gold stan-
dard assessment scale is required for future comparison. Outcomes 
of longer-term follow-ups or bilateral DBS should be emphasized and 
collected. Further prospective large-scale randomized clinical trials 
are warranted in the future. Collectively, we believe that past, pres-
ent, and future studies should enable clinicians to better understand 
the ET-DBS treatment and make the optimal choices.
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