
fnins-13-01238 November 25, 2019 Time: 18:13 # 1

REVIEW
published: 26 November 2019

doi: 10.3389/fnins.2019.01238

Edited by:
Arumugam R. Jayakumar,

Miami VA Healthcare System,
United States

Reviewed by:
Omar El Hiba,

Université Chouaib Doukkali, Morocco
Anis Ahmad,

University of Miami Health System,
United States

*Correspondence:
Feng Xu

fengxu.dr@gmail.com
Yongtao Zheng

yongtao1234@126.com

Specialty section:
This article was submitted to

Neurodegeneration,
a section of the journal

Frontiers in Neuroscience

Received: 10 September 2019
Accepted: 01 November 2019
Published: 26 November 2019

Citation:
Liu Z, Ajimu K, Yalikun N, Zheng Y

and Xu F (2019) Potential Therapeutic
Strategies for Intracranial Aneurysms

Targeting Aneurysm Pathogenesis.
Front. Neurosci. 13:1238.

doi: 10.3389/fnins.2019.01238

Potential Therapeutic Strategies for
Intracranial Aneurysms Targeting
Aneurysm Pathogenesis
Zhao Liu1, Kuerban Ajimu2, Naibijiang Yalikun3, Yongtao Zheng4* and Feng Xu4,5*

1 Department of Neurosurgery, Jingjiang People’s Hospital, Taizhou, China, 2 Department of Neurosurgery, First People’s
Hospital of Kashgar, Kashgar, China, 3 Department of Neurosurgery, Hotan District People’s Hospital, Hotan, China,
4 Department of Neurosurgery, Shanghai Medical College, Huashan Hospital Fudan University, Shanghai, China,
5 Department of Neurosurgery, Kashgar Prefecture Second People’s Hospital, Kashgar, China

Subarachnoid hemorrhage resulting from intracranial aneurysms (IAs) is associated with
high rates of morbidity and mortality. Although trigger mechanisms in the pathogenesis
of IAs have not been fully elucidated, accumulating evidence has demonstrated that
inflammation acts as a critical contributor to aneurysm pathogenesis. IAs is initiated by
disruption and dysfunction of endothelial cells (ECs) caused by abnormal wall shear
stress (WSS). Subsequently, vascular inflammation can trigger a series of biochemical
reactions resulting in vascular smooth muscle cell (VSMC) apoptosis and migration,
accompanied by inflammatory cell infiltration, secretion of various cytokines, and
inflammatory factors. These changes result in degradation of vascular wall, leading to the
progression and eventual rupture of IAs. Increasing our knowledge of the pathogenesis
of these lesions will offer physicians new options for prevention and treatment. In this
study, we review aneurysmal pathogenesis to seek for safe, effective, and non-invasive
therapeutic strategies.
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INTRODUCTION

Saccular intracranial aneurysms (IAs) are the most common cause of subarachnoid hemorrhage
(SAH), which resulted in a high mortality and morbidity (Lawton and Vates, 2017). Approximately
3–5% of all IAs actually rupture, resulted in devastating SAH (Feigin V. L. et al., 2005).
Mortality risks are between 30 and 45% for aneurysmal SAH, and up to 20% of survivors will
be permanently disabled (Nieuwkamp et al., 2009). Although surgical clipping and endovascular
therapy, including coiling alone and stent-assisting coiling, have been the main therapeutic
methods for IAs, potentially serious complications related to those invasive procedures should
not be neglected. Understanding the mechanisms underlying formation, progression, and
rupture of IAs may help us to look for potential therapeutic strategy, especially safe and
effective non-invasive therapies. Although the animal models were widely used to investigate
the mechanism of aneurysm pathogenesis, those aneurysm samples were induced but not
spontaneously formed. In addition, it is difficult to collect enough tissue for biochemical
assays from human IAs; therefore, our understanding of the specific mechanism of IAs
remains incompletely defined. Previous studies have demonstrated wall shear stress (WSS)-
driven inflammation response of endothelial cells (ECs) was the initial step in the formation
of IAs (Sho et al., 2002; Jamous et al., 2007). Subsequently, inflammatory cell infiltration,
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vascular smooth muscle cells (VSMCs) apoptosis and migration
(Figure 1), and extracellular matrix (ECM) protein degradation
promoted the progression and rupture of IAs (Hashimoto
et al., 2006; Chalouhi et al., 2012; Signorelli et al., 2018).
Therefore, agonists or inhibitors targeting different molecules
involved in aneurysm formation and rupture may be potential
therapeutic agents. In this review, we try to take aim at profiling
the pathogenesis mechanism in formation and progression of
IAs on the facet of cytology, which has positive impacts on
deconstructing and deducing the potential therapeutic targets of
IAs (Table 1).

PREVALENCE OF INTRACRANIAL
ANEURYSMS

According to various data, the prevalence of IAs in the general
population ranges from 0.2% to 9.0% (Komotar et al., 2008;
Chalouhi et al., 2011). Multiple IAs refer to the presence of two or
more aneurysms of the intracranial arteries, which represent 7–
15% of all the IAs (Kaminogo et al., 2003). IAs are more frequent
in patients aged 35 to 60 years (Toth and Cerejo, 2018). In general,
females are prone to be affected.

A generalization of the results of numerous studies
demonstrates an average observed 1-year risk of aneurysm
rupture of 1.4% and a 5-year risk of 3.4%, which is fatal in
about 50% of the cases (Greving et al., 2014). A systematic
review reported that the risks of aneurysm rupture per 100
patient-years were 0, 3.5, and 5.7% in patients aged 20–39, 40–59,
and 60–79 years, respectively. At the same time, the risk of
aneurysm rupture per 100 patient-years in female (2.6%, 95% CI,
1.8–3.6%) is higher than that of male (1.3%, 95% CI, 0.7–2.1%)
(Rinkel et al., 1998).

RISK FACTORS FOR ANEURYSM
FORMATION AND RUPTURE

Identifying reliable indicators of risk for aneurysm formation
and rupture can vastly improve clinical management of IAs. In
the past few decades, researchers have identified several genetic
factors, morphology parameters, and clinical conditions related
to the growth and rupture of IAs. Significant evidence of linkage
to IAs was found on chromosomes 13q and 8p22.2 (Santiago-
Sim et al., 2009; Kim et al., 2011). In addition, the variants on
chromosomes 8q and 9p are associated with IAs, which can be
enhanced by cigarette smoking (Deka et al., 2010). Furthermore,
the familiar occurrence suggested that genetic factors may be
involved in the development of IAs.

The most ubiquitous parameter to evaluate the risk of
aneurysm rupture is size. Although data from International
Subarachnoid Aneurysm Trial (ISUIA) demonstrated that
aneurysms less than 7 mm have a very low risk of rupture
(Wiebers et al., 2003), several studies have shown that a large
percentage of ruptured aneurysms are, in fact, smaller than 7 or
even 5 mm (Froelich et al., 2016; Zheng et al., 2019). Aneurysm
location is also an important factor in the risk of rupture. In a

consecutive series of 1993 patients with saccular ruptured IAs, the
three most common locations of ruptured IAs were the middle
cerebral artery, anterior communicating artery, and middle
cerebral artery (Korja et al., 2017). Additional morphology
parameters including aspect ratio, size ratio, area ratio, and flow
patterns were proposed to evaluate the risk of aneurysm rupture.
However, most of these data were obtained from a single center,
which cannot fully explain the factors affecting aneurysm rupture.
Clinical factors related to IAs rupture include an old age, female,
smoking, and aneurysm multiplicity (Feigin V. et al., 2005). There
is some evidence that hypercholesterolemia and antithrombotic
drugs may be protective with regard to IA formation and rupture
(García-Rodríguez et al., 2013; Vlak et al., 2013).

INFLAMMATION AND INTRACRANIAL
ANEURYSM

Under abnormal WSS, nuclear factor-κB (NF-κB) in cerebral
arterial walls upregulates expression of downstream genes,
such as monocyte chemoattractant protein 1 (MCP-1) and
vascular cell adhesion molecule 1 (VCAM-1) gene, which
lead to macrophage infiltration and endothelial dysfunction.
Macrophages, via secretion of inflammatory cytokines and
enzymes, recruit more inflammatory cells and induce SMC to
undergo phenotypic modulation and apoptosis. Subsequently,
the inflammatory response in vessel wall leads to disruption
of internal elastic lamina, ECM degradation, and aneurysm
formation. Persistent hemodynamic stress and inflammatory
response lead to the progression and rupture of IA when the wall
integrity is disrupted (Figure 2).

Endothelial Cells
Intracranial aneurysms are vascular lesions characterized by
the excessive degradation of ECM and chronic inflammation
in the wall of arteries. Increasing evidence has shown that
immunologic effect involved in aneurysm formation and
rupture is related to ECs, VSMCs, and leukocytes. ECs can
prevent luminal thrombosis though the barrier function between
the vessel wall and the bloodstream. IAs are initiated by
disruption and dysfunction of ECs caused by high WSS (Meng
et al., 2007, 2014; Metaxa et al., 2010). Once abnormal WSS
triggers prostaglandin E2–E receptor 2 (PGE2–EP2) signaling
in endothelium, inflammatory pathway is amplified by NF-
κB (Aoki et al., 2011). Therefore, the pathway of PGE2–EP2–
NF-κB signaling maintains and continuously strengthens the
inflammatory response, contributing to aneurysm formation.

NF-κB, a family of transcriptional factors, can activate the
expression of some proinflammatory genes, such as MCP-1 and
VCAM-1 genes, which lead to macrophage recruitment into
the arterial wall and ECM degradation. Therefore, the effect of
abnormal WSS on aneurysm formation is through the activation
of acute and chronic inflammation in ECs, which results in
endothelial dysfunction and weakening of endothelial integrity.
ECs become elongated and realign with directional blood flow.
The density or migration of ECs may change in response to
the changes in the development of actin stress fibers. Both
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FIGURE 1 | Intracranial aneurysm (IA) was initiated by disruption and dysfunction of endothelial cells (ECs) caused by abnormal physiological wall shear stress.
Subsequently, vascular smooth muscle cells apoptosis and migration, accompanied by inflammatory cell infiltration, resulted in degradation of vascular wall, leading
to the progression and eventual rupture of IAs.

morphological and functional changes in ECs under abnormal
hemodynamic stress alter the gene expression profile of ECs.
Wang et al. (2009) demonstrated that extensive EC apoptosis
is accompanied by reduction or absence of endothelial nitric
oxide synthase (eNOS) expression. Decreased eNOS affects the
biological activity of NO, a regulator of maintaining the stability
of vascular tone, regulating the stability of blood pressure, and
affecting the relaxation of smooth muscle. In addition, the
damage of ECs induces the expression of inducible nitric oxide
synthase (iNOS) in VSMCs and produces a large amount of nitric
oxide free radicals, causing further damage to the vessel wall.
Animal experiments have confirmed that iNOS is an important
factor in the development of aneurysms. In iNOS gene knockout
mice, the incidence of IAs is lower, and the apoptotic status of
SMCs in aneurysms is reduced (Sadamasa et al., 2003).

Monocyte chemoattractant protein 1 secreted by ECs is
another important step in aneurysm formation. It is generally
believed that NF-κB upregulates the expression of MCP-1 in

ECs by binding to two sites on the MCP-1 gene. In addition,
activation of MCP-1 is also affected by many other factors,
such as various cytokines and shear stress. The expression of
MCP-1 can cause macrophages and monocytes to infiltrate into
the vascular wall. Also, the infiltrating cells can secrete MCP-
1, leading to a self-amplification loop in the inflammatory
environment, which causes the degradation of SMCs and ECM,
further promoting the development of aneurysms. In the MCP-
1 knockout mice, the expression of matrix metalloproteins and
the incidence of aneurysm formation decreased significantly
(Aoki et al., 2009). Loss of intact endothelium and inflammation
infiltrating is the feature of aneurysm formation. Thus, targeting
the endothelial barrier to prevent macrophage infiltration may
be an effective and reasonable therapeutic strategy for IAs
in the clinic in the future. It has been demonstrated that
hepatocyte growth factor (HGF) concentrations were higher in
IA sample and blood from patients with IAs, which protects
against vascular inflammation (Peña-Silva et al., 2015). As
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TABLE 1 | Targeted therapies for intracranial aneurysms (IAs).

Pathway Major targets Mediators

Endothelial dysfunction PGE2-EP2 signaling COX-2 inhibition Aspirin

NF-κB NF-κB p50 subunit

MCP-1 MCP-1 inhibitor

eNOS, iNOS

VCAM-1 HGF

YAP

Phenotypic modulation and
Apoptotic of VSMCs

TNF-α Infliximab

KLF4 KLF4 inhibition

MMPs MMP inhibitor

VCAM-1 HGF

PPARs family Pioglitazone

IL-1β

microRNAs MiR-370-3p, MiR-29b,
MiR-9

Macrophages infiltration MMPs MMP inhibitor

MCP-1 MCP-1 inhibitor

PGE2 and EP2 S1P1 receptor agonist, EP2
antagonist

Lymphocytes and Mast
cells

IL-1,3,4,6,8,13

MMP2 and MMP9 MMP inhibitor

CD4+ T cell imbalance

TNF-β and TNF-α Mast cell degranulation
inhibitor

HGF decreased the expression level of VCAM-1 and E-selectin
in ECs, HGF signaling is a potential therapeutic strategy for
IAs. Yes-associated protein (YAP) plays an important role in
angiogenesis and vascular barrier maturation by regulating actin
cytoskeleton remodeling and the metabolic activity of ECs. In
animal experiments, endothelial-specific deletion of Yap/Taz led
to aneurysm-like tip ECs and disrupted barrier integrity, which
contributed to subsequent intracranial hemorrhage (Kim et al.,
2017). Therefore, YAP in ECs may be a potential therapeutic site
for neovascular diseases.

Vascular Smooth Muscle Cells
Vascular smooth muscle cells, mainly concentrated in the media
layer, produce ECM, which is the main component of the vessel
wall. During the formation of IAs, VSMCs undergo proliferation
and migration, apoptosis, and degeneration, accompanied by
inflammatory cell infiltration and secretion of various cytokines
and inflammatory factors. Structural and pathological changes in
VSMCs play a key role in the progression and rupture of IAs. In
response to ECs injury, VSMCs proliferate and migrate into the
intimal layer, leading to myointimal hyperplasia. Subsequently,
contractile (differentiated) VSMCs dedifferentiated into
synthetic (dedifferentiated) VSMCs. Differentiated VSMCs
are characterized by high levels of contractile gene expression
and low ECM synthesis, whose physiological function is to
regulate blood pressure and blood flow distribution (Nakajima
et al., 2000; Kilic et al., 2005). The main marker of contractile

VSMCs is alpha-smooth muscle actin, calponin, smooth muscle-
myosin heavy chain, calmodulin, binding proteins, VSMC
actin, etc. Dedifferentiated VSMCs have opposite functions to
differentiated VSMCs, whose marker is osteopontin, epidermal
growth factor (EGF), EGF family, epiregulin, etc. (Owens
et al., 2004). Morphologically, spindle-like VSMCs change into
spider-like cells and are sparsely arranged in aneurysm wall.
The mechanism of phenotypic modulation of VSMCs in the
pathogenesis of IAs is still poorly understood.

During the process of aneurysm formation, tumor necrosis
factor-alpha (TNF-α) may play a pivotal role in the phenotypic
regulation of SMCs. Specifically, TNF-α inhibited the contractile
phenotype of SMCs as well as induced proinflammatory/matrix
remodeling genes, such as matrix metalloproteinases (MMPs),
VCAM-1, MCP-1, and interleukin 1β (IL-1β) (Jayaraman et al.,
2005, 2008). The effect of TNF-α on phenotypic modulation
of VSMCs is associated with increased expression of kruppel-
like transcription factor 4 (KLF4), a known regulator of
VSMC differentiation. Inhibition of KLF4 expression abrogated
the expression of sputum-induced inflammatory genes and
inhibited contractile genes (Ali et al., 2013). A series of
in vitro and in vivo studies demonstrated the major members
of peroxisome proliferator-activated receptor (PPAR) family,
PPARγ and PPARβ/δ, are characterized by modulation of the
vascular cell proliferation and vascular inflammation (Shimada
et al., 2015). In cultured cerebral VSMCs, PPARβ/δ partially
inhibited the phenotypic switch of brain VSMC by activating
PI3K/AKT pathway, which regulates vascular remodeling in
cerebral aneurysms. A study by the Hasan group found that
inhibition of PPARγ function in VSMCs increased incidence
and rupture rate of cerebral aneurysms, which upregulated the
gene expression of TNF-α, MCP-1, Cxcl1, MMP-3, and MMP-
9 (Shimada et al., 2015). The main role of MMPs is to degrade
collagen proteins, elastin, and non-collagen glycoproteins and
to participate in the remodeling of ECM. Under normal static
conditions, the expression of MMPs is very limited, which are
present as inactive zymogens. In pathological states, MMPs are
secreted by VSMCs in response to inflammatory response factors,
such as NF-κB, TNF-α, IL-1β, and free radicals. Through the
mechanisms of “zinc-cysteine theory,” MMPs are activated and
exert biological effects in the formation and rupture of IAs. In
general, phenotypic regulation of VSMCs in the aneurysm wall
is closely related to the remodeling of aneurysm walls and the
mechanism of aneurysm rupture.

The balance between apoptosis and production of VSMCs
is fundamental to development and remodeling of normal
vessel wall; however, excessive apoptosis leads to vascular-
related diseases, such as IAs. Previous studies have demonstrated
apoptosis of medial SMCs in the formation of saccular cerebral
aneurysms (Kondo et al., 1998; Guo et al., 2007). Furthermore,
loss and apoptosis of SMCs play an important role not only in
the development of IAs but also in the rupture of aneurysm
(Sakaki et al., 1997). In the pathogenesis of IAs, two major
causes of VSMCs apoptosis are hemodynamic stimulation and
inflammation. In vitro experiments demonstrated that elevated
mechanical stress can induce apoptosis of cultured VSMCs
within the media (Sedding et al., 2008). Cyclic tensile force can
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FIGURE 2 | Mechanistic flow chart of IA pathobiology. Abnormal wall sheer stress on the endothelial cells (ECs) causes release of inflammatory mediators that recruit
inflammatory cells into the damaged vessel walls. Smooth muscle cells undergo phenotypic modulation and apoptosis, which lead to breakdown of the surrounding
extracellular matrix. These events lead to weakening of the arterial wall, aneurysm formation, and rupture. NF-κB indicates nuclear factor-κB; VCAM-1, vascular cell
adhesion molecule 1; MCP-1, monocyte chemoattractant protein 1; iNOS, inducible nitric oxide synthase; IL, interleukin; TNF-α, tumor necrosis factor α; MMP,
matrix metalloproteinase; PGE2–EP2, prostaglandin E2–E receptor 2; VSMCs, vascular smooth muscle cells; ECM, extracellular matrix; IA, intracranial aneurysm.

upregulate p53 protein expression and increase transcriptional
activity, which resulted in increased apoptosis of VSMCs. At
the same time, mechanical stress increases calpain activity,

which counteracts excessive VSMCs apoptosis though degrading
p53. Reversely, inhibition of calpain activation increases p53
expression, leading to a further increase of apoptotic rate of
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VSMCs (Sedding et al., 2008). Additionally, flow-dependent No
release inhibits the proliferation of VSMCs and may initiate
apoptosis by activation of caspase 3 (Penn et al., 2014; Soldozy
et al., 2019). Inflammation cytokines, such as IL-1β, interferon
γ, and iNOS, also contribute to VSMC apoptosis. Moriwaki
et al. (2006) reported IL-1β was detected in vascular media at an
early stage of IA formation in an animal model. Compared with
wild-type mice, the number of apoptotic cells was significantly
reduced and caspase-1 expression increased in IL-1β−/− mice.
Similarly, Sadamasa et al. (2003) reported that the number of
apoptotic VSMCs as well as the size of experimental IAs in
the iNOS+/+group, compared with the iNOS−/− group, were
significantly greater. Inflammatory responses leading to VSMC
apoptosis can also be initiated by oxidative stress via the intrinsic
pathway (Laaksamo et al., 2013). Therefore, regulation of iNOS,
IL-1β, or caspase-9 may be a potential therapeutic target in the
prevention of the progression of IAs.

Currently, more and more research focuses on the influence of
microRNAs (miRNAs) on the formation and development of IAs.
MiRNA, a short and single-stranded non-coding RNA, consists
of 22 nucleotides. As a group of non-coding RNAs, miRNAs can
negatively regulate expression of genes by binding to the 3’-UTR
region of target mRNAs, thereby inducing degradation of mRNAs
and inhibiting repression of protein synthesis. Prior studies
have demonstrated that miRNAs can regulate the proliferation,
migration, and apoptosis of VSMCs. Hou et al. (2017) reported
that miRNA-370-3p was involved in the development of IAs
by inhibiting VSMC proliferation via targeting KDR/AKT
signaling. Similarly, aberrant expression of miR-29b and miRNA-
9 contributes to the development and rupture of IAs by
phenotypic modulation and suppressing proliferation of VSMCs
(Luo et al., 2016; Sun et al., 2017). These studies provide
theoretical basis for further investigation of potential clinical
prevention and treatment of IAs via VSMC approach.

Leukocytes
Inflammatory response that follows hemodynamic endothelial
injury is the basic step in the pathogenesis of IAs (Jamous
et al., 2007). The infiltration of macrophages, a subset of
leukocytes, is commonly observed during the progression of
IAs (Chyatte et al., 1999; Kataoka et al., 1999; Frösen et al.,
2004). Inhibiting macrophage recruitment and accumulation in
the IA wall through pharmacological depletion of macrophages
can remarkably decrease the incidence and size of IAs in animal
models (Kanematsu et al., 2011). As two major subtypes of
human macrophages, the M1 and M2 cells present extremely
different functions and sometimes even antagonized each
other. M1 macrophages are proinflammatory cells, whereas M2
macrophages are involved in inflammation resolution and tissue
repair (Mantovani et al., 2005; Hasan et al., 2012). An imbalance
of macrophage M1–M2 polarization is often associated with
inflammatory conditions. M1 macrophages play a key role in
vascular remodeling by releasing MMPs, in particular MMP-
2 and MMP-9 (Aoki et al., 2007a). In addition, inhibited
MMP-2 and MMP-9 expression and decreased macrophage
recruitment in MCP-1 knockout mice accompanied with
a remarkably reduced incidence of IAs and inflammatory

response (Aoki et al., 2009; Kanematsu et al., 2011). Aoki et al.
(2017) proposed that PGE2–EP2–NF-κB signaling cascade in
macrophages was a potential therapeutic target for IAs. NF-
κB activation can be detected in infiltrating macrophages in IA
lesions (Aoki et al., 2007b). Specific inhibition of E2(PGE2)–
EP2–NF-κB signaling in macrophages can inhibit macrophage
infiltration and expression of proinflammatory factors in the IA
wall during the process of IA formation. Oral administration
of PF-04418948, a selective EP2 antagonist, can reduce the size
of induced IAs, and furthermore, it reduced the thinning and
dilating of vessel walls without significantly affecting systemic
blood pressure (Aoki et al., 2017). Therefore, the potential
therapeutic target of IAs should cover the macrophage and other
elements interrelating the macrophage infiltration or involving
the inflammatory response of the macrophage. Recently,
Yamamoto et al. (2017) proposed that a selective sphingosine-
1-phosphate receptor type 1(S1P1 receptor) agonist, ASP4058,
can be used as a candidate for treating IAs. They identified that
S1P1 was present on the endothelium, which can promote barrier
function of endothelium. In an in vitro experiment, ASP4058
significantly suppressed the migration of macrophages across an
endothelial monolayer and promoted endothelial integrity. They
further confirmed in animal experiments that oral administration
of ASP4058 significantly reduced the size of the IAs though
decreasing the vascular permeability and macrophage infiltration
(Yamamoto et al., 2017).

Although immunohistochemistry of IAs wall and peripheral
blood in IAs patients revealed the presence of lymphocytes
in lesions suggesting involvement of this type of cell in the
pathogenesis, it remains unclear whether lymphocytes directly
participate in progression and rupture of IAs. Lymphocyte-
deficient and wild-type mice were used to examine the
contribution of lymphocytes in a model of IA. Lymphocyte-
deficient group showed fewer IA formations and ruptures than
did the wild-type group. Although macrophage infiltration
showed no differences in two groups, there were significant
differences in IL-6, MMP-2, MMP-9, and smooth muscle myosin
heavy chain between the groups. Therefore, we suspect that
lymphocytes participate in the formation of aneurysms by
degrading and remodeling the aneurysm wall (Sawyer et al.,
2016). However, Miyata et al. (2017) reported that although T
cells are detectable in the wall of IAs, they failed to affect the
degenerative changes of arterial walls, macrophage infiltration,
and the formation and progression of IAs. Furthermore, the
studies on the peripheral blood of the IAs patients demonstrated
the abnormal proportion of CD4+ T cells and a succession
of accompanying tremendous unbalanced features, such as the
expression disorders of T helper-1, T helper-17, and the T helper-
2 and regulatory T activities, which was adjusted by the increase
of IFN-g, TNF-a, and IL-17 production and the decrease of IL-
10 production from total CD4+ T cells (Zhang et al., 2016). The
imbalance of CD4+ T cell subset might exacerbate the disease
through a positive feedback loop, leading to a higher state of
inflammation in IAs. Therefore, we need more clinical and basic
experiments to explore the role of lymphocytes in the formation
and rupture of aneurysms. In addition, we need to subdivide
lymphocytes to explore the mechanism of their effects on IAs.

Frontiers in Neuroscience | www.frontiersin.org 6 November 2019 | Volume 13 | Article 1238

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01238 November 25, 2019 Time: 18:13 # 7

Liu et al. Therapeutic Strategies for Targeting Aneurysm Pathogenesis

Mast cells are important proinflammatory cells involved in
various vascular diseases through the release of prostaglandins
and leukotrienes. Then, a variety of proinflammatory cytokines
were secreted slowly after mast cells were activated, including
TNF-α, IL-1, IL-3, IL-4, IL-6, IL-8, IL-13, and transforming
growth factor-beta (TGF-β). In Eliisa’s study, the samples were
resected intraoperatively from 16 unruptured and 20 ruptured
saccular IAs. Mast cells were found in 9 of 36 aneurysms, and
all those aneurysms showed a damaged luminal endothelium
(Ollikainen et al., 2014). The presence of mast cells was
associated with a larger of CD3+ T lymphocytes and CD68+
macrophage. Thus, mast cells might be involved in the regulation
of inflammatory responses in the wall of IAs, together with other
inflammatory cells. By releasing the serine proteases, such as
chymases and tryptases, which leads to the activation of MMP-
2 and MMP-9, mast cells degrade pericellular matrices, which
may result in VSMC apoptosis and detachment of ECs. Moreover,
mast cells are also powerful angiogenic cells, which may promote
the formation of neovessels in the aneurysm wall. In particular,
iron deposits were found in aneurysm wall containing mast cells
and neovessels, indicating newly formed endothelium damaged
by microhemorrhages. High neovessel density and inflammatory
cells infiltration also showed evidence of degeneration of IAs
wall. Due to the important role of mast cells in the formation
of aneurysms, inhibitors of mast cells may be a novel potential
therapeutic strategy for IAs. Inhibitors of mast cell degranulation
can effectively decrease the size of IAs in animal experiments,
through the inhibition of chronic inflammation and macrophage
infiltration, and decreasing the expression of MMPs and IL-1β

(Ishibashi et al., 2010).

POTENTIAL THERAPEUTIC
APPROACHES

In the accumulation of knowledge about the involvement of
inflammatory process in IA formation, progression, and rupture,
the candidate drugs interfere with inflammatory response have
potential importance. One of the promising drugs among
these agents is aspirin through its inhibitory effect on COX-
2 and microsomal prostaglandin E2 synthase-1 (mPGES-1).
In Hasan’s study, the expression of COX-2, mPGES-1, and
inflammatory cells in IA walls from patients who were given
aspirin (81 mg daily) for 3 months decreased significantly (Hasan
et al., 2013). Furthermore, the expression of some inflammatory
molecules involved in IAs pathology, such as MMP-9 and MCP-
1, decreased in mice treated with aspirin or COX-2 inhibitor.
Another anti-inflammatory agent is atorvastatin, which could
be a beneficial therapy to prevent aneurysm rupture. In animal
models, atorvastatin can inhibit the expression of VCAM-1,
E-selectin, and P-selectin; downregulate thrombomodulin and
cholesterol-1; and inhibit the activation of IL-1, IL-6, TNF-α, and
MMP-2. Additionally, atorvastatin can attenuate the progression
in cerebral aneurysms by promoting angiogenesis and vascular
repair (Aoki et al., 2008; Li et al., 2014). Although the exact
mechanism that these hormones act on the inflammatory cascade

was not fully understood, studies have shown that administration
of sex hormones can lower the risk of aneurysm formation
and rupture. Evidence obtained from animal studies suggests
that estrogen suppresses inflammatory signaling through the
inhibition of NF-κB and protects against oxidative stress in CNS,
which could reduce the frequency of aneurysm formation (Bruce-
Keller et al., 2000; Wunderle et al., 2014).

Given the critical role of macrophages in the etiology
of aneurysm formation and rupture, medicine targeting
macrophage are likely to represent novel strategies for IA
treatment. One of the promising drugs among these agents is
PPARγ activation through their potent induction on alternative
M2 phenotype. At the same time, reduced infiltration of M1
macrophage is observed in mice model treated with pioglitazone,
suggesting that PPARγ may be a potential target for preventing IA
rupture (Bouhlel et al., 2007; Shimada et al., 2015). Additionally,
the other candidate drugs include some protease inhibitors
including MMP inhibitors, free radical scavengers, and Ca2+

channel blockers. In recent years, although animal experiments
confirmed drugs is a promising therapy for IAs, a focused and
sustained research effort will be necessary to be applied in
clinical practice.

CONCLUSION

Animal models and clinical studies have shown that vascular
remodeling and inflammatory cascades were the important
mechanism for IA formation, progression, and rupture. In this
process, there are three types of cells that play a crucial role, ECs,
VSMCs, and leukocytes, including macrophages, lymphocytes,
and mast cells. Abnormal WSS leads to EC damage, which
initializes the inflammatory response, in which PGE2–EP2–NF-
κB signal plays a significant role. In response to EC injury,
structural and pathological changes in SMCs play a pivotal
role in the progression and rupture of IAs, accompanied by
inflammatory cell infiltration and secretion of various cytokines
and inflammatory factors. Finally, with the participation of
various types of inflammatory cells, degeneration of the blood
vessel wall contributed to the formation of IAs. Therefore,
a multitude of studies targeting the above cells have been
investigated in animal models with promising results, which may
be safe and effective non-invasive therapeutic strategies.
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