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The nematode exoskeleton, com-
monly called the cuticle, is a highly 

structured extracellular matrix mainly 
composed of collagen. Secreted colla-
gen molecules from the underlying epi-
dermal cells are cross-linked via their 
tyrosyl residues. Reactive oxygen species 
(ROS) are required for the cross-linking 
reaction to produce tyrosyl radicals. The 
conserved ROS generator enzyme in C. 
elegans, BLI-3/CeDUOX1, a homolog of 
dual oxidases (DUOXs), is responsible 
for production of hydrogen peroxide. 
The ROS generation system must be 
properly controlled since ROS are highly 
reactive molecules that irreversibly 
inhibit the functions of cellular compo-
nents such as nucleic acids and proteins. 
We recently reported that the ROS gen-
eration system directed by BLI-3 requires 
the tetraspanin protein, TSP-15. Herein 
we outline the process of cuticle develop-
ment with a focus on the molecular roles 
of TSP-15 in the BLI-3 system. We also 
propose the co-occurrence of tetraspanin 
and ROS generators by convergent 
evolution.

Collagen Biosynthetic Pathway  
in Cuticle Development

Nematode cuticle possesses both tough-
ness and flexibility, which protects inter-
nal tissues from adverse environments, 
maintains body morphology and mechan-
ically supports locomotion via attachment 
to body wall muscle. Cuticle is predomi-
nantly composed of collagens encoded by 
over 170 genes in the C. elegans genome. 
Collagens are synthesized in underlying 
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epidermal cells, the hypodermis and seam 
cells, covering almost the entire body. The 
collagen biosynthetic pathway is a multi-
step processes involving modification, 
folding, cleavage and secretion directed 
by a number of enzymes and molecular 
chaperons.1 The importance of the co- 
and post-translational processing of col-
lagen proteins has been supported by a 
comprehensive study of their mutants.2 
Gain- or reduction/loss of function of the 
genes relevant to collagen processing are 
often associated with body morphological 
defects represented as dumpy (Dpy), roller 
(Rol), squat (Sqt), blister (Bli) and molt-
ing defect (Mlt). In the final events of pro-
cessing, collagen triple helices are secreted 
from the epidermis and are extracellularly 
cross-linked. Each collagen helix is cova-
lently cross-linked via tyrosine residues 
resulting in the formation of dityrosine 
and trityrosine, which are unusual non-
reducible bonds in vertebrates (see below). 
In C. elegans, tyrosine cross-linking of 
collagens is established by ROS-mediated 
catalysis driven by the BLI-3/CeDUOX1 
system.3-5 BLI-3 is a homolog of vertebrate 
dual oxidases that are members of the 
NADPH oxidase (NOX) family compris-
ing NOX1–5 and DUOX1–2. These pro-
teins are ROS generators that deliberately 
produce ROS for cellular signaling and 
anti-microbial responses.6-9

Identity and Difference  
of the Cross-Linking Process  

in Mammalian and Nematode Skin

Both nematode and mammalian 
skin layers share common structural 
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extracellular loops (LEL) and conserved 
cysteine residues in the LEL contributing 
to the formation of disulfide bonds.31,32 It 
is known that tetraspanins laterally asso-
ciate with each other as well as numer-
ous membrane “partner” proteins such 
as adhesion molecules, growth factor 
receptors, membrane-bound proteases, 
immunoglobulin superfamily proteins. 
Tetraspanins also interact with intracel-
lular signaling/cytoskeletal proteins and 
lipids, resulting in the formation of a 
highly ordered lipid-protein unit referred 
to as a tetraspanin-enriched microdo-
main (TEM/TERM) or “tetraspanin 
web.” TEM is a distinct class of mem-
brane microdomain and a new type of 
signaling platform involved in cell-cell 
communication.33-36 Association with 
tetraspanins may properly tune func-
tions of partner proteins. However, this 
modulation and facilitation process is not 
consistent – it may differ from partner to 
partner. The most likely role of TEM is 
in spatial assembly and clustering of spe-
cific molecules that contribute to acceler-
ating the reaction cascade and enabling 
additional interactions and linkage with 
other key molecules and substrates. If 
the partner proteins are relevant to cell 
adhesion, antigen presentation or matrix 
degradation, it is convincible that the 
compartmentalization of these respon-
sible molecules at specialized membrane 
microdomains will efficiently support 
their function in adhesion strengthening, 
cell-cell communication at immune syn-
apses or ECM degradation in tumor inva-
sion. It may also facilitate accessibility to 
substrates, while segregation of partner 
proteins to the microdomain may prevent 
non-specific reactions.37 We currently do 
not have enough information to provide 
mechanistic insights into the TSP-15 role 
in the BLI-3 system, however, we have 
several hypotheses. First, association with 
TSP-15 or targeting to TEM may support 
the subsequent recruitment of unknown 
factors, or it may facilitate other forms of 
post-translational modification on BLI-3 
that is essential for BLI-3 activation. Or 
more directly, as reported for other NOX 
isozymes and their subunits, it might 
induce a conformational change in BLI-3 
to activate it. Conversely, interaction 
with TSP-15 or engagement to TEM may 

activity of the catalytic core of NOX1-3 
is regulated by the recruitment of regula-
tory subunits to the plasma membrane.9,24 
NOX5 and DUOX1-2 contains EF-hand 
motifs in the cytoplasmic region and cal-
cium (Ca2+) stimulation is essential for 
activation. In addition, DUOXs require 
interaction with their maturation factor, 
DUOXAs, for H

2
O

2
 production.25 Dual 

oxidase maturation factors (DUOXA1/2) 
dimerize with DUOXs to target DUOXs 
to the cell surface.26-28

We preciously reported that a tet-
raspanin protein TSP-15 is required for 
cuticle development for functioning as 
an external barrier.29 We recently clarified 
that TSP-15 functions in collagen cross-
linking as a component of the DUOX sys-
tem.5 Similar to mammalian DUOXs, the 
BLI-3 system also requires a maturation 
factor and cooperates with a neighboring 
heme peroxidase, which corresponds to 
DOXA-1 and MLT-7 in C. elegans, respec-
tively.4,30 bli-3, doxa-1 and mlt-7 mutants 
displayed the same cuticle deficiency as a 
tsp-15 mutant. Cuticle disorganization in 
the tsp-15 mutant is due to impaired tyro-
sine cross-linking during cuticle devel-
opment. In addition, the tsp-15 mutant 
was restored by exogenous expression of 
both bli-3 and doxa-1, implying that these 
three genes are part of the same genetic 
pathway. We also showed requirement 
of TSP-15 for BLI-3 activity by heterolo-
gous reconstitution of BLI-3, TSP-15 and 
DOXA-1 in mammalian cells. Finally, we 
showed that TSP-15 forms protein com-
plexes with BLI-3 and DOXA-1 in vitro 
and in vivo.

Speculation of the Molecular Role 
of Tetraspanin in the BLI-3 System

Despite our contributions to the field, 
the molecular role of TSP-15 in H

2
O

2
 

generation by the BLI-3 system remains 
elusive. By immunoblot assay, TSP-15 
did not alter the protein expression level 
of BLI-3 at the cell surface, leading us to 
question what molecular switch occurs 
within the BLI-3 system upon associa-
tion with TSP-15. The tetraspanin family 
comprises a large group of integral mem-
brane proteins with common secondary 
and tertiary structures, including four 
transmembrane regions, small and large 

characteristics, but mammalian skin is a 
more complex structure. It is composed 
of multilayered live and dead keratino-
cytes that constitute a cornified layer that 
faces the external side.10 Cross-linking of 
proteins such as involucrin and loricrin in 
the cornified layer is also essential for the 
function of mammalian skin as an external 
barrier. Transglutaminases (TGases) play 
a primary role in the cross-linking process, 
which catalyzes the formation of non-
reducible covalent bonds between lysine 
and glutamate.11 Although tyrosine cross-
linkages are found in other structural pro-
teins at low frequency and are known as 
biomarkers of oxidative stress and aging, 
little is known about their physiological 
role in mammals.12 Hydroxyl lysine and 
lysine between collagen helices are cross-
linked by lysyl oxidase in vertebrates. 
Lysyl oxidase-mediated cross-linkages 
were not found in the C. elegans cuticle, 
but they do contribute to cross-linking of 
type IV collagen in the basement mem-
brane.13,14 Interestingly, both TGases- and 
ROS-mediated cross-linking is observed 
in the formation of the fertilization enve-
lope in sea urchin egg.15

Tetraspanin is a New Component 
of the BLI-3/CeDUOX1-ROS- 

Generating System

Historically, ROS have been considered 
deleterious by-products produced by aero-
bic metabolism or by exogenous stresses 
such as UV light and radiation, which 
inflict oxidative damage to organisms. The 
physiological role of ROS was originally 
believed to provide an “oxidative burst” 
that kills invading microbes in phago-
cytes. H

2
O

2
 produced by DUOXs also 

has an essential role in non-phagocytic 
anti-microbial defense in mucosal epithe-
lia such as the airway and gastrointestinal 
tract in a wide-range of animals, includ-
ing mammals, fish and insects.16,17 The 
critical role of H

2
O

2
 produced by BLI-3/

CeDUOX1 in C. elegans innate immu-
nity was also demonstrated.18-21 Besides 
host defense, ROS act as an intracellular 
redox signaling molecule by modulating 
target proteins via modification of their 
free thiol groups.22,23 In both cases, the 
ROS production must be strictly regulated 
so that it does not damage the host. The 
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replace/exclude an inhibitory factor pre-
venting non-specific activation of BLI-3. 
Further analysis will be required to define 
the molecular role of TSP-15.

Conservation of Tyrosine  
Cross-Linking Machinery in Other 

Developmental Processes  
in Different Species

Although it is still not known whether 
tetraspanin is also crucial for the mam-
malian DUOX pathway, conservation of 
involvement of tetraspanin in the ROS 
generation system is, at least in part, con-
firmed by genetic studies of pathogenic 
fungi. During the infection process of 
the rice pathogenic fungus Magnaporthe 
grisea, the attached conidium differenti-
ates to appressorium, a specialized struc-
ture for infection. Then the appressorium 
develops a penetration peg and perforates 
the cell wall of the host tissues. It was 
independently demonstrated that the 
mutant of M. grisea tetraspanin (MgPLS1) 
and the ROS generator (MgNOX2) was 
non-pathogenic owing to impairment of 
penetration peg formation.38,39 The patho-
genicity of other parasitic fungi with an 
appressoria-mediated penetration strat-
egy in different clades was also depen-
dent on PLS1 and NOX2.40,41 Both PLS1 
and NOX2 were identified in other types 
of fungi with non-pathogenic lifestyles 
lacking appressorium. Furthermore, the 
consistency of the mutant phenotype was 
also observed in different developmental 
processes in these saprophytic fungi. In 
Podospora anserina and Neurospora crassa, 
both of their corresponding mutants of 
PLS1 and NOX2 showed the same defects 
in the process of germination from the 
ascospore.42,43 Although the molecular 
mechanisms of requirement of PLS1 and 
NOX2 in these processes are still uncer-
tain, the recurrent involvement of tet-
raspanin and ROS generators in the same 
cellular processes in a wide range of spe-
cies makes it possible that convergent evo-
lution is responsible for the co-occurrence 
of this molecular machinery.44,45
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