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Orsolya Hegedűs1, Dávid Juriga2, Evelin Sipos2, Constantinos Voniatis2, Ákos Juhász2,3,
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Abstract

Cell-based tissue reconstruction is an important field of regenerative medicine. Stem and

progenitor cells derived from tooth-associated tissues have strong regeneration potential.

However, their in vivo application requires the development of novel scaffolds that will pro-

vide a suitable three-dimensional (3D) environment allowing not only the survival of the cells

but eliciting their proliferation and differentiation. Our aim was to study the viability and differ-

entiation capacity of periodontal ligament cells (PDLCs) cultured on recently developed bio-

compatible and biodegradable poly(aspartamide) (PASP)-based hydrogels. Viability and

behavior of PDLCs were investigated on PASP-based hydrogels possessing different

chemical, physical and mechanical properties. Based on our previous results, the effect

of thiol group density in the polymer matrix on cell viability, morphology and differentiation

ability is in the focus of our article. The chemical composition and 3D structures of the hydro-

gels were determined by FT Raman spectroscopy and Scanning Electron Microscopy. Mor-

phology of the cells was examined by phase contrast microscopy. To visualize cell growth

and migration patterns through the hydrogels, two-photon microscopy were utilized. Cell via-

bility analysis was performed according to a standardized protocol using WST-1 reagent.

PDLCs were able to attach and grow on PASP-based hydrogels. An increase in gel stiffness

enhanced adhesion and proliferation of the cells. However, the highest population of viable

cells was observed on the PASP gels containing free thiol groups. The presence of thiol

groups does not only enhance viability but also facilitates the osteogenic direction of the dif-

ferentiating cells. These cell-gel structures seem to be highly promising for cell-based tissue

reconstruction purposes in the field of regenerative medicine.
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Introduction

Stem cells (SC) and stem cell-like progenitor cells have unequivocally great regenerative poten-

tial that presumably could revolutionize regenerative medicine. These cells can be obtained

from either embryonal or postnatal tissues. However, the application of embryonal stem cells

in the clinical practice is still a highly debatable point due to the ethical and technical issues

involved [1]. Therefore, postnatal and adult stem cells are currently in the focus of research in

the field of regenerative medicine[2].

The first postnatal stem cells with multipotent differentiation capacity were discovered in

the bone marrow in 1966 [3]. Since then, such cells have been successfully obtained from vari-

ous tissues, even from tooth-associated ones [4]. Tooth-derived stem and progenitor cells can

be easily isolated from patients via a minimally invasive procedure. In addition, their prolifera-

tion and differentiation potential is comparable to bone marrow stem cells [4]. Dental stem

and progenitor cells can be obtained from different tissues of the teeth, including that from the

most noninvasively accessible one: the periodontal ligament. Cultures of periodontal ligament

(PDL) cells have been demonstrated to contain stem cell-like cells and undergo osteogenic,

chondrogenic and adipogenic differentiation in vitro while exhibiting the ability for periodon-

tal fiber and bone regeneration in vivo [5–8]. In previous studies of our research group, their

capability for neurogenic differentiation [9] as well as their immunomodulatory effects were

also described [10]. These advantageous features further support the importance of PDL-

derived cell cultures in future applications in regenerative medicine or dentistry. Nevertheless,

tissue regeneration therapies require appropriate biocompatible and biodegradable scaffold

materials which are able to provide optimal conditions for the cells during and after transplan-

tation [11]. One of the main focus points of tissue engineering strategies is to develop artificial

scaffolds closely resembling the physiological environment of the cells, namely the extracellular

matrix (ECM). Apart from supporting cell survival, an ideal scaffold must also facilitate cell

adhesion, proliferation and migration. Furthermore, scaffolds should be designed with similar

physical, chemical and biological properties to the ECM, allowing not only effective implanta-

tion but delivery of growth factors, nutrients and oxygen as well [11]. As different cell types

favor different conditions for their growth and/or differentiation, the above-mentioned prop-

erties should be customized according to the requirements of each cell type[12].

Building of naturally existing functionalities into the scaffolds which can covalently bind

the often occurrent functional groups of membrane proteins like amino (NH2) or thiol groups

(SH) is a widely used approach in regenerative medicine. Reduced thiols on the surface of the

mammalian cell play an important role in protection against oxidating agents and also take

part in cell signaling [13]. Since thiol groups are able to form disulphide bonds in vivo, thiol

functionalized polymers can be crosslinked or bound to cell surface proteins under physiologi-

cal conditions [14, 15]. Free SH groups of cysteine on scaffolds can be used for binding thiol-

reactive small or large molecules to install wide range of functions as cysteine is frequently

present in regulatory, catalytic or binding site of various natural proteins [16, 17]. Besides,

thiol groups also have positive effect on cell behavoiur via enhancing the surface potential of

the scaffolds and providing additional adhesion sites for the cells [18]. Moreover, significance

of the thiol groups in adhesion of urinary bladder mucosa [19] and marine mussels [20] was

also demonstrated.

Hydrogels undoubtedly belong to the most promising scaffolds for regenerative therapies

since they have physicochemical properties similar to natural tissues [21]. In addition, their

chemical composition, structure and mechanical properties can be tailored in a broad range

by various modifications in order to meet specific prerequisites according to the intended

applications [11, 22, 23]. Hydrogels are unique materials whose intrinsic properties allow them
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to behave as both liquid (nutrient can diffuse through them) and solid materials (maintaining

their own structures while deformable to external forces as soft materials). Moreover, some of

these intelligent materials are also able to respond to the changes in such physiologically rele-

vant parameters of the environment, such as temperature, pH or presence of certain bioactive

molecules [24–26]. Furthermore, in hydrogels fabricated for biomedical applications, cell

migration through their well-defined porous structure has also been demonstrated [27, 28].

Currently used hydrogel scaffolds are based on either natural polymers such as polysaccha-

rides (e.g. dextran, cellulose) or synthetic ones such as poly(esther)s, poly(urethane), poly

(esther amide)s and poly(ether)s [29, 30]. Since the ECM contains large amounts of proteins

(e.g. collagen, fibronectin), it is most possible that poly(amino acid) based materials are suit-

able for application in stem cell therapy due to their chemically similar structures [31, 32].

However, poly(amino acid) synthesis is rather expensive and technically difficult thus the

investigation of poly(amino acid) based chemically cross-linked hydrogels as scaffolds is lim-

ited [18, 33–37].

The aim of this study is to develop novel poly(aspartamide) based hydrogels that are suit-

able as scaffolds for in vitro cell culturing of tooth-derived cells. The applied hydrogel types

were chosen according to our previous studies where an osteosarcoma cell line (MG-63) was

cultured on poly(aspartamide) gels with different crosslinkers. One of the crosslinkers (diami-

nobutane) is stable under physiological conditions while the other one (cystamine) is biologi-

cally active and provide dynamic behavior and free thiol groups in the polymer matrices.

Based on our results, free thiol groups in the gel seem to facilitate the adhesion and prolifera-

tion of osteoblast-like cells [34]. In this paper, the effect of physical and chemical properties of

these gels on adhesion, proliferation and osteogenic differentiation of PDLCs was comprehen-

sively investigated with a particular emphasis on the amount of thiol groups incorporated into

the gels.

Materials and methods

Materials

L-aspartic acid (Sigma-Aldrich, UK), 1,4-diaminobutane (DAB) (Sigma-Aldrich, �99%), cys-

teamine (CYSE) (Sigma-Aldrich, UK), cystamine (CYS) (Sigma-Aldrich, UK), dimethylforma-

mide (DMF) (VWR International, USA), dimethylsulfoxide (DMSO) (Sigma-Aldrich), o-

phosphoric acid (VWR), imidazole (ACS reagent,�99%, Sigma-Aldrich), citric-acid�H2O

(ACS reagent,�99.9%, VWR), sodium chloride (99–100.5%, Sigma-Aldrich), phosphate

buffer saline (PBS) (Tablet, Sigma), D,L-dithiotreitol (DTT) (Sigma), 5,5 dithio bis-(2-nitro-

benzoic acid) (Sigma,�98%, USA), L-cystein (Sigma,�97%, USA), Humidified incubator

(Nuaire, USA), 100 mm tissue culture dishes (Orange Scientific, Belgium), 48 well plates

(Sigma-Aldrich, USA), low cell binding 96 well plates (Nunc, Denmark), Eagle’s Medium Alfa

minimal essential medium (αMEM) (Gibco, USA), fetal bovine serum (FBS, Gibco, USA), L-

glutamine (Gibco, USA), penicillin and streptomycin (Gibco, USA), L-ascorbic acid 2-phos-

phate (Sigma-Aldrich, USA), beta-glycerophosphate (Sigma-Aldrich, USA), dexamethasone

(Sigma-Aldrich, USA), WST-1 [2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-

2H-tetrazolium] (Roche, Switzerland), Vybrant DiD (Molecular Probes, USA), 2-Amino-

2-Methyl-1-Propanol buffer (Sigma-Aldrich, USA), Alkaline Phosphatase Yellow (pNPP) Liq-

uid Substrate System (Sigma-Aldrich, USA).

Preparation of poly(succinimide)

Poly(succinimide) (PSI) was synthesized by thermal polycondensation of L-aspartic acid in the

presence of o-phosphoric acid at high temperature under vacuum. 20 g L-aspartic acid and 20
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g o-phosphoric acid were mixed in a 1 L glass flask then transferred to a rotary evaporator.

The reaction mixture was heated to 180 ˚C while the pressure was progressively reduced to

finally reach 5 mbar. After the reaction sequence, the polymer was dissolved in DMF. This step

was followed by obtaining the precipitation and washing it with water until reaching neutral

pH. The polymer was subsequently dried at 40 ˚C for 2 days. The yield of the reaction was

between 95 and 99% and the viscosity-average molecular mass (Mη) was 28.5 ± 3 kDa. The

determination of the molar mass and the synthesis were described in detail in our previous

publications [34, 35].

Synthesis of different poly(aspartamide) hydrogels

Preparation of poly(succinimide) gels with different cross-linkers and cross-linking

ratio. Two different diamines, namely 1,4-diaminobutane (DAB) and cystamine (CYS) were

used to prepare PSI based gels. The samples were synthesized according to the same process

and with an identical chemical constitution as described in our previous study [34]. The

amount of the applied chemicals can be found in S1 Table. When cross-linking was intro-

duced, the concentration of the PSI in the reaction mixture (cp) was 15 wt % in each sample.

The degree of crosslinks (Dcr) was calculated from the molar ratio of the cross-linkers (ncr) to

the monomer units (nm) according to the following formula:

Dcr ¼
ncr

nm
ð1Þ

Apart from the two gel types where either DAB (PSI-DABDcr) or CYS (PSI-CYSDcr) were

used as a crosslinker, a third gel type was also synthesized with a 1:1 molar ratio of DAB and

CYS (PSI-CYS-DABDcr). All these hydrogels were assembled with different cross-linking

degrees (Dcr = 1/10, 1/20, and 1/40). The chemical and mechanical characterizations as well as

the biodegradability studies of these gels were performed and published in our previous work

[34].

Preparation of poly(succinimide) gels with different thiol contents. To prepare PSI gels

with different thiol concentrations, PSI was modified with different amounts of cysteamine

(CYSE). In these experiments, DAB was used as the cross-linker with constant cross-linking

ratio (Dcr = 1/20). DAB and CYSE were dissolved in dimethyl-sulfoxide (DMSO) then thor-

oughly mixed with a 25 wt% PSI/DMSO solution. Therefore the modification and the cross-

linking reaction occurred simultaneously. The mixture was subsequently transferred to a 0.75

mm thick glass frame. The constitution of the reaction mixture can be seen in S2 Table. After

24 hours, the gels were removed from the mold and were eventually immersed in DMSO to

wash the non-reacted molecules. The cross-linking reaction can be seen on S1 Fig Step 1. The

samples were classified by the molar ratio of the CYSE (nCYSE) to the monomer units (nm), in

the same way as described in the previous section. The thiol content (DSH) can be calculated

with the following equation:

DSH ¼
nCYSE

nm
ð2Þ

The gels were prepared with different DSH (DSH = (1/2), (1/5), (1/10), (1/20), (1/40) and

(1/80)). When gelation was introduced, the cp was 15wt % in each sample.

Synthesis of the poly(aspartamide) hydrogels. The poly(aspartamide) (PASP) gels were

prepared from PSI gels by mild alkaline hydrolysis. The gels were immersed in an imidazole-

based pH = 8 buffer (I = 0.25 M, c = 0.1 M) to open the succinimide rings but avoid the cleav-

age of their disulphide bonds as well as the amide bonds between the cysteamine and the
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polymer chain. The buffer was changed daily for 4 consecutive days to progressively remove

the DMSO and every unreacted molecule. The reaction can be seen in S1 Fig Step 2.

Cleavage of the disulphide bonds in the hydrogels. In order to generate free thiol groups

in the PASP based hydrogels, gel samples (PASP-CYSE(X)-DAB1/20, PASP-CYS-DAB1/10 and

PASP-CYS-DAB1/20) were immersed in 0.1 M dithiotreitol (DTT)/pH = 8 buffer solution. The

reaction can be seen in S1 Fig Step 3. Due to the disulphide cleavage, the degree of crosslinks

doubled so the Dcr of the 1/10 samples became 1/20 (CYS-DAB1/10 turned to CYSE-DAB1/20)

and that of the 1/20 samples became 1/40 (CYS-DAB1/20 turned to CYSE-DAB1/40). During

gelation, the thiol groups in CYSE could be oxidized to disulphide bridges, therefore these

samples were treated with DTT as well. The DTT solution was changed twice during the fol-

lowing 2 days to cleave every disulphide bond in the hydrogels. After the reduction of the

disulphide bridges, the gels were washed several times with phosphate buffer saline (PBS,

pH = 7.4, I = 0.15 M), the solution which was used during the cell experiments.

Determination of the thiol group concentration

Spectrophotometry was utilized to assess the presence and quantity of thiol group concentra-

tions in different hydrogels. The measurements were carried out before and after the DTT

treatment of the PASP CYSE(X)-DAB hydrogels. Before the determination, the samples were

washed with ultra-pure water to remove the unbound chemicals, such as buffer compounds or

excess amount of DTT, from the gel matrices. After thorough washing, the gels were freeze-

dried to avoid the formation of disulphide bridges. The exact amount of thiol groups in the gel

samples was determined with Ellmann’s reagent according to the method published by Gyar-

mati et al. [38]. Dried gel samples weighing 10 mg were dropped into 1.8mL reagent buffer

and 20–20 μL Ellman’s reagent solution was added to the mixtures. After a 4-hour-long incu-

bation, light absorbance was measured at 455 nm using an Agilent 8453 spectrophotometer.

For calibration, L-cystein was used between 0 0.004 mmol range (S2 Fig).

Determination of the chemical structure of the hydrogels by FT-Raman

spectroscopy

Raman spectra of the hydrogel samples were obtained at an ambient temperature using a Lab-

Ram HR visible micro-Raman spectrometer (produced by HORIBA Jobin Yvon, France)

equipped with a confocal microscope (50x magnifying objective lens was used), in back-scat-

tering geometry in the spectral range 200–4000 cm−1. A He-Ne laser (λ = 632.81 nm) was used

for excitation. The applied laser power was 120 mW. The Raman signal was collected with a

CCD-detector (1024 x 256 pixels) placed after a diffraction grating (1600 grooves/mm) with a

final spectral resolution of 2 cm−1. Spectra were obtained from 1000 scan with an exposure

time of 60 s for each orientation of the grating which provided the spectra with a good signal

to noise ratio.

Scanning electron microscopic (SEM) analysis of the hydrogels

To examine the 3D structure and determine the porosity of the hydrogels, SEM analysis was

carried out. After the DTT treatment, hydrogels were thoroughly washed with ultrapure water

and subsequently freeze dried. Microscopic pictures were taken using a ZEISS EVO 40 XVP

scanning electron microscope equipped with an Oxford INCA X-ray spectrometer (EDS). The

applied accelerating voltage was 20 kV. The samples were fixed on a special conductive sticker

with tweezers. Before examination, samples were sputter coated with palladium in a thickness

of 20–30 nm with a 2SPI Sputter Coating System. The average pore size of the samples was

determined by the Fiji (ImageJ) image analysis program with 20 parallel measurements.

Poly(aspartamide) based hydrogels facilitate tooth-derived progenitor cell proliferation and differentiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0226363 December 19, 2019 5 / 20

https://doi.org/10.1371/journal.pone.0226363


Isolation and cultivation of tooth-derived cells

Cells were obtained from the connective tissue adjacent to human wisdom teeth. The teeth

were surgically removed from healthy young adults in the Department of Dentoalveolar Sur-

gery (Semmelweis University, Budapest, Hungary). We have obtained written consent from

each patient. This study was approved by the Semmelweis University Regional and Institu-

tional Committee of Science and Research Ethics. The number of the ethical permission is:

17458/2012/EKU.

Periodontal ligament cells were then isolated according to our already established protocol

[9] and maintained in a humidified incubator under standard culture conditions (37 ˚C, 5%

CO2, 100% humidity). PDLCs were cultured in alpha modification of Eagle’s Minimal Essen-

tial Medium Alfa (αMEM) and supplemented with 10% fetal bovine serum, 2 mM L-gluta-

mine, 100 units/ml penicillin and 100 mg/ml streptomycin.

Cell viability assay using WST-1 reagent

To measure cell viability, gel discs with a diameter of 3 mm were prepared and placed in low

cell binding 96 well plates (Nunc, Denmark). 20 000 PDLCs in 200 μl culture medium were

seeded on each gel disc. After culturing for 1, 3, 7 and 14 days, cell viability was assessed utiliz-

ing the WST-1 cell proliferation reagent according to our previously published protocol [34]

using a microplate reader (Model 3550, Bio-Rad Laboratories, Japan) at 450 nm with the refer-

ence wavelength of 650 nm. Gel discs without cells were used as negative controls.

Phase contrast and two photon microscopic studies

For the phase contrast microscopic investigation, gel discs with a diameter of 5 mm were pre-

pared and placed in 48 well plates. Then 40 000 PDLCs in 400 μl culture medium were seeded

on each gel disc. After 1, 3, 7 and 14 days, cell morphology was observed under a phase con-

trast microscope (Nikon Eclipse TS100, Nikon, Japan). Microphotographs were taken by a

high performance CCD camera (COHU, USA) applying Scion image software. In order to

make the cells visible under a two photon excitation microscope (Femto2d, Femtonics, Hun-

gary), PDLCs were labeled with a vital dye, Vybrant DiD (Molecular Probes, USA) before seed-

ing them on the gel discs. After 1, 3, 7 and 14 days, the samples were washed in PBS (37 ˚C)

and fixed with 4% paraformaldehyde solution at room temperature (RT) for 2 hours. After

that, the fixed samples were washed twice then stored in PBS at 4 ˚C until the examination. To

excite the fluorescent dye, a Spectra Physics Deep See laser was used at 800 nm wavelength.

Images were taken under a 10 x objective by the MES4.4v program. The contrast and bright-

ness of the images were adjusted by the Fiji (ImageJ) image analysis program.

Measurement of alkaline phosphatase (ALP) activity

For detecting the expected osteogenic differentiation of the cells growing on the different gel

types, ALP enzyme activity was assessed on the 3rd, 7th and 14th day after the osteogenic induc-

tion. The composition of the osteogenic medium was previously described [9]. To measure the

ALP activity of the PDLC cultures, the cells were first lysed in a 2-amino-2-methyl-1-propanol

buffer then to, the Alkaline Phosphatase Yellow (pNPP) Liquid Substrate System was utilized

according to our previously published protocol [9]. Control samples were maintained in nor-

mal growth medium throughout the whole experiment. Gel discs without cells were used as

negative control. Changes in the color were detected by measuring absorbance at 405 nm

applying a microplate reader (Model 3550, Bio-Rad Laboratories, Japan).
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Statistical analysis

To determine cell viability and ALP activity, PDLC cultures derived from at least 3 different

patients were used. In case of each tooth sample, 5 parallel measurements were performed for

each experimental group, so the arithmetic mean values displayed on the diagrams were calcu-

lated from 15–25 independent experimental data. Statistical evaluation of the data was carried

out by STATISTICA 10 software applying the Kruskal-Wallis non-parametric ANOVA fol-

lowed by a median test. A difference was considered as statistically significant if p< 0.05.

Results and discussion

In the past few years, several studies attempting to create an ideal scaffold for tooth-derived

stem cells were published [39, 40]. Notwithstanding, only a few research papers appeared in

the literature on PASP-based hydrogels, moreover most of them mainly focused on drug deliv-

ery [41–44]. These PASP-based hydrogels seem to be excellent candidates to culture cells,

since they can mimic the chemical and mechanical properties of the ECM as it was demon-

strated in our previous work using a tumor cell line [34]. However, the aim of our current

study was to find the ideal gel composition that would provide suitable conditions for cultur-

ing and differentiating periodontal ligament-derived cells in order to be subsequently used for

in vivo preclinical tests and eventually for developing regenerative therapies.

Chemical and and physical characterization of the PASP-CYSEX-DAB1/20

hydrogel

The chemical structure of PASP-CYSE(X)-DAB hydrogels (S1 Fig) was investigated by FT-RA-

MAN spectroscopy while the physical structure and the porosity of the hydrogels were assessed

by SEM and two photon microscopies (Fig 1). The only changing parameter in the hydrogels

is the free thiol content, thus we are using only the CYSE(X) to indicate the differences between

the hydrogel samples.

On the RAMAN spectra of the hydrogels (Fig 1a), the characteristic peaks of the succini-

mide and aspartamide can be found on each spectrum at 2930 cm-1 (-CH groups) and between

1200–1500 cm-1 (-CH2 and -C-C- groups), respectively. The peaks at 1662 and 1780 cm-1 indi-

cate the vibration of the −C = O groups in the aspartic acid. The peak at 643 cm-1 is connected

to the C-S bond in the cysteamine. The intensity of this peak is decreasing as the amount of

cysteamine applied during the synthesis is increasing, then finally completely disappears in

case of the CYSE(1/80) samples. At 509 cm-1 S-S bonds appear with the increasing thiol content,

although the samples were treated with DTT. This re-formation of disulphide bridges can be

the result of thiol group oxidation during the drying of the gels. The characteristic peaks of the

thiol groups can be seen at 2561 cm-1. The decreasing intensity of the thiol peaks further sug-

gests the oxidation of the thiol groups during the drying process. To quantify the amount of

the thiol groups, the Ellman’s reagent was utilized. As the results summarized in Table 1 show,

there are no free thiol groups in the gel matrices before the DTT treatment. Therefore, all of

the thiol groups in the cysteamine were oxidized into disulphide bridges. After DTT treatment

and drying, the amount of the thiol groups increased, although lower values were attained

than the ones theoretically expected and calculated due to the oxidization of the thiol groups

during the drying process. At higher concentration of thiol groups, more thiol groups can be

oxidized back to disulphide bonds which leads to the small difference of the measured values

in the case of CYSE(1/2), CYSE(1/5) and CYSE(1/10) samples, however the differences in swollen

state are significantly higher.
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On the SEM images (Fig 1b), the average pore size of the gels is found to be around 70–

80 μm (Table 2), which is remarkably higher than the size of the PDLCs (which is around 30–

40 μm). Poly(lactic-co-glycolic acid) (PLGA) gels with this pore size range proved to be suit-

able carriers for nucleus pulposus cells according to Kim and his coworkers [45]. It can be also

observed (Fig 1c) that the pore size of the dried, solid gel matrices is almost independent from

the chemical constitution of the hydrogels (Table 2). Regarding the two photon microscopy,

PASP based polymer scaffolds have an auto-fluorescent activity [34] therefore there was no

need to stain the gel samples before their investigation. The two photon images further empha-

size that the physical appearances of the different hydrogel samples are similar (Fig 1c).

The microscopic structure of the hydrogel undoubtedly affects cell proliferation. If the pore

size of the hydrogels is higher, the cells are able to not only attach to the outer surface of the

gel discs but also migrate inside the scaffold forming three dimensional structures. Thus,

Fig 1. FT-RAMAN spectra of the dried hydrogels (a), SEM (b) and two photon images (c) of the freeze dried hydrogel matrices.

https://doi.org/10.1371/journal.pone.0226363.g001

Table 1. Amounts of the thiol groups in a 10 mg dried gel sample before and after DTT treatment and by theoretical calculation.

CYSE (1/2) CYSE (1/5) CYSE (1/10) CYSE (1/20) CYSE (1/40) CYSE (1/80)

Before DTT (μmol) 0.02 ± 0.02 0.04± 0.03 0.04± 0.02 0.03± 0.01 0.05± 0.02 0.02± 0.01

After DTT (μmol) 1.95± 0.04 1.41± 0.05 1.71± 0.08 0.30± 0.02 0.16± 0.02 0.02± 0.01

Theoretical (μmol) 18.6 7.4 3.7 1.85 0.92 0.46

https://doi.org/10.1371/journal.pone.0226363.t001
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investigating the microscopic structure of the gels is essential. For characterization, two photon

and SEM microscopies were implemented to assess and measure the size of the pores.

Cell culturing on differently crosslinked poly(aspartamide) hydrogels

The mechanical and chemical properties (degradability, porosity, stiffness, binding points) of

hydrogels have a significant impact on cell adhesion, viability and proliferation [27]. Among

the aforementioned properties, stiffness is crucial. During adhesion, the cells receive mechani-

cal feedbacks from their environment through mechanotransduction and respond by altering

their cytoskeleton and morphology [46].

Mechanical properties of hydrogels can be easily tailored by the modification of the mono-

mer unit/cross-linker ratio or by substituting the crosslinking agent. The exact parameters of

these hydrogels were presented previously: the elastic moduli of the stiffer hydrogels (1/20) are

between 55.3 and 66 kPa while the moduli of the softer gels (1/40) are between 7.2–10.5 kPa

[34]. Our results are in accordance with the outcomes described by Engler and coworkers [46].

When the aim is neurogenic differentiation, the use of soft gels (0.1 to 1 kPa) is recommended,

whereas in the case of myogenic direction, higher stiffness (8 to 17 kPa) is the optimal, finally

for osteogenic differentiation, rigid matrices (25–40 kPa) are most suitable.

At first we focused on the mechanical properties of the different hydrogels. In Fig 2a, cell

viability results are presented after 1 and 3 days on 8 different PASP-based gel types. After 24

hours, the highest cell viability values can be observed on DAB1/20 and CYSE-DAB1/20 gel

discs. The cell viability index of CYSE-DAB1/20 is significantly higher than that of the other gel

types suggesting that a stiffer gel surface and the presence of free thiol groups can facilitate the

adhesion of PDLCs. Stiffness of the microenvironment does not only affect cell adhesion, but

migration and differentiation as well. Khatiwala and coworkers demonstrated similar results

regarding stiffer surfaces, where MC3T3-E1 preosteoblasts exhibited increased proliferation,

motility and mineral deposition compared to softer scaffolds [47]. It seems that scaffold stiff-

ness strongly influences the cell lineage direction, although during the initial differentiation

period alteration of the lineage with soluble induction factors is still possible. Our results

regarding increased adhesion and proliferation of PDL cells on stiffer hydrogel surfaces corre-

spond with the aforementioned studies on preosteoblast cells [47].

Similar results are found after 72 hours, when the stiffer DAB-crosslinked and two thiolated

(CYSE-DAB1/20 and CYSE-DAB1/40) hydrogels evince the highest cell viability values. All

other gel types show significantly lower viability values than the CYSE-DAB1/20. According to

these findings, the second step was to focus on the effect of the thiol groups. The presence of

free thiol groups has a positive influence not only on cell adhesion but on survival and prolifer-

ation of PDL-derived cells as well. In addition, these observations are confirmed by the results

of the phase-contrast microscopic studies (S3 Fig). However, on certain gel types (CYS1/20 and

CYSE-DAB1/20), significantly lower cell viability was found at day 3 compared to day 1. To

clarify the reason behind this decrease and further analyze the long-term biocompatibility of

the gels, 14 day-long experiments were also carried out.

The three hydrogel types that exhibited the highest cell viability during the first experimen-

tal series were chosen for a second, 14-day-long series of experiments. The results of this assay

can be seen in Fig 2b. On day 1, the highest cell viability index was measured on the stiffer,

Table 2. Arithmetic mean ± standard deviation of pore size of dried hydrogels determined from SEM microscopic images.

CYSE (1/2) CYSE (1/5) CYSE (1/10) CYSE (1/20) CYSE (1/40) CYSE (1/80)

Poresize 66±9 μm 78±14 μm 78±18 μm 74±13 μm 73±15 μm 76±17 μm

https://doi.org/10.1371/journal.pone.0226363.t002
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Fig 2. Cell viability on different PASP hydrogels on day 1 and 3 (a), long term viability on PASP-DAB1/20,

CYSE-DAB1/20 and CYSE-DAB1/40 gels (b) and phase-contrast microscopic images of PDLCs in long term

experiments at different time points (c). The viability value measured on CYSE-DAB1/20 gels on day 1 was considered

100%. Data are given as an arithmetic means ± SEM (standard error of the mean). �p< 0.05 compared to CYSE-DAB1/20

at the appropriate time point. +p< 0.05 compared to the next day. Each photomicrograph was taken at the same

magnification.

https://doi.org/10.1371/journal.pone.0226363.g002
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thiol containing gel. Between days 1 and 3, a tendency of descending viability was observed on

all 3 gel types. However, a significantly increased viability was observed by day 7 compared to

day 3 on each gel type. This rising tendency continues until day 14 at the DAB1/20 gel but no

further changes can be observed after day 7 in case of the thiol containing gels. By day 14, the

viability of PDL cells reaches similar level on all of the 3 gel types. Therefore, the favorable

effect of thiol content is more prominent in the phase of adhesion (day 1) and during the pro-

liferation at lower cell density (day 3–7). The descending tendency between days 1 and 3 can

be explained by the fact that the PDLC cultures represent a mixed population, and probably

only the adhesion of a subpopulation is selectively promoted by the mechanical properties of

the gels [47]. Subsequently, proliferation of this subpopulation enhanced but growth of the

other cells is not supported by the mechanotransductional signals [48]. The aforementioned

results indicate that these 3 types of PASP based gels remain stable and biocompatible in the

long term as well.

The morphological analysis carried out under a phase contrast microscope (Fig 2c) shows a

relatively small amount of fibroblast-like cells on the gel surfaces on days 1 and 3. After that,

the cell number is increasing on the stiffer gels with time. By the 14th day of culture, cell aggre-

gations were also found on these gels, which suggests a spontaneous osteogenic activity. On

the contrary, fewer cells can be observed on the softer, CYSE-DAB1/40 gel type where no prolif-

eration took place after the 7th day.

To investigate the 3D morphology of the cells and matrix-cell relationship, a two-photon

microscope was utilized. Since PASP-based hydrogels show a characteristic green autofluores-

cence and PDL cells reflect a red color due to the vital pre-staining, the cells can be easily dis-

tinguished from the gel matrix. On day 1, the highest amount of healthy cells was observed

on the CYSE-DAB1/20 gel (Fig 3a). By day 3, a temporary decrease in cell number was found,

whereas a remarkable cell proliferation was observed on all 3 gel types subsequently (Fig 3a).

In Fig 3b, the three-dimensional structure of the gels can be seen after 14 days. These

images and the video supplement clearly demonstrate that the cells were able to penetrate into

the gel matrix.

The microscopic analysis in our study verified that stiffer and thiolated PASP gels are

indeed more suitable for cell culturing, as PDLCs on these gels exhibited healthy, fibroblast-

like morphology and intensive proliferation. The two-photon microscopic pictures demon-

strated that PDLCs are able to grow into the gel matrix. The penetration of the cells into the

gel matrix may provide indirect evidence of the in vitro biodegradability of the PASP hydro-

gels. According to our previous article [34] and Fig 1, there are two possible ways for cells to

migrate in the gel matrix: either to liberate space by degrading the gel structure and/or pene-

trate by crawling over the walls of the pores. Presumably, both processes are going parallel

and take part in vertical cell migration to a similar extent. Our results are in line with the work

published by Matsusaki and coworkers who succeeded in constructing dense 3D tissues from

mouse fibroblast cells cultured on disulfide-crosslinked polyglutamic acid hydrogels. Further-

more, positive effect of thiol groups on cell adhesion and proliferation was also confirmed in

that study [49].

Effects of thiol content on cell behaviour

Morphological analysis and long-term cell viability. The first two experimental series

revealed that the presence of thiol groups in the gel supports adhesion of PDLCs and their pro-

liferation especially in long terms (7–14 days). These results are consistent with a recent publi-

cation by Galli and coworkers demonstrating that enrichment of thiol content in chitosan

scaffolds enhanced proliferation and migration of osteoblast cells [18]. These observations
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could be explained by the hypothesis of several studies conjecturing that charged molecules,

such as thiol groups enhance the surface potential of scaffolds therefore have a positive impact

on cell adhesion and proliferation [50, 51].

The aim of our third series of experiments was to address the question if the density of thiol

groups in the gel matrix has any effect on the adhesion and proliferation of PDLCs. In these

experiments, 6 hydrogel types having the same degree of crosslinks yet with increasing thiol

group density (from (1/80) to (1/2)) were examined. The CYSE(1/20) gel was used as a reference.

Morphological analysis with phase-contrast microscope showed a tendency of healthy, pro-

liferating, fibroblast-like cells in increasing amount with the rising density of thiol-groups in

Fig 3. a) Two photon microscopic images of PDLC cultures in long term experiments at different time points and b) 3 dimensional structure of the cells in

the hydrogels after 14 days. The Z depth of the 3D images indicates 120 μm, while the area is 1.7x1.7 mm.

https://doi.org/10.1371/journal.pone.0226363.g003
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the gels (Fig 4a). The number of healthy cells remarkably increased over time then it reached a

confluent state by day 14 on both CYSE(1/2)-DAB and CYSE(1/5)-DAB samples. However, cell

proliferation to a smaller extent was observed on the other gel types with lower thiol group

densities. These results indicate that the increased density of thiol groups to more than 1/10

has not only a transient but rather a prolonged positive influence on cell growth.

Cell viability results at time points of morphological evaluation on six different gel types are

presented in Fig 4b. After 24 hours, the two gels with the highest thiol group densities showed

the highest cell viability values. On these two gel types, a temporary decrease in viability can be

observed between day 1 and 3 followed by a significant increase until the end of the experi-

ment. Although the initial cell viability is somewhat lower on the four other gel types, continu-

ously ascending viability values are observed throughout the whole experiment. These

measurements confirm that the high density of thiol groups in these gels provides favorable

conditions for the adhesion and proliferation of PDL cells.

Investigation of spontaneous and induced osteogenic differentiation. We demon-

strated that the presence of thiol groups undoubtedly had a positive effect on the adhesion and

proliferation of the PDLCs.

Bae and coworkers determined through in vivo experiments that BMP-2 containing thio-

lated chitosan scaffolds induced more ectopic bone formation in mouse osteoblast cells than

the BMP-2 containing collagen gels [52]. We presume that the influence of these thiol groups

is related to the release of hydrogen sulfide, an intracellular gaseous signaling molecule

involved in osteogenic differentiation [53, 54]. To clarify this hypothesis, we performed a par-

allel investigation of spontaneous and induced osteogenic differentiation of the PDLCs on

thiolated PASP based hydrogels.

PDLCs were maintained in either a control or an osteogenic medium for 14 days. Osteo-

genic activity was followed by the measurement of alkaline-phosphatase activity. These

experiments were carried out with the three gels showing the best results in the previous exper-

iments: CYSE(1/2), CYSE(1/5) and CYSE(1/20) while the DAB1/20 gel was applied as a non-thio-

lated control gel.

PDLCs exhibited a healthy, fibroblast-like morphology on every gel type throughout the

observation period. In the osteogenic medium, cell cluster formation could be detected after

14 days (Fig 5a). Fig 5b shows that the osteogenic treatment induced a measurable ALP activity

in the thiol-containing gels with an increasing tendency in values over time. Although ALP

activity at the 3 types of thiol-containing gels was similar on day 3, cell cultures on CYSE(1/2)

gels reached significantly higher ALP activity levels compared to the others by day 14. How-

ever, the cells on the DAB-crosslinked gel exhibited no osteogenic activity throughout the

whole experimental period. The presumable explanation of this observation is that the PDL

cells could not reach high cell density on these gels which is a prerequisite for starting the oste-

ogenic differentiation process [55]. In the control medium, spontaneous osteogenic activity

was detected at all thiol-containing gel types as early as on day 3 which further increased later

on until day 14. Nevertheless, no sign of such activity could be observed in the case of the

DAB-crosslinked gels throughout the whole experiment. The highest spontaneous osteogenic

activity was measured in the case of the highest thiol density (CYSE(1/2)) at each time point.

The range of the ALP activity values measured in case of CYSE(1/2) gels were found to be simi-

lar to the ALP activity of the same cell type cultured on a commercially available peptide

hydrogel called HydroMatrix [56].

The two-photon microscopic analysis (Fig 6a) underlined the above described results

regarding phase contrast microscopic morphology (Fig 4a) and cell viability tests (Fig 4b). The

highest cell density could be observed on the hydrogels with the highest amount of thiol-groups.

By stacking the photos of different heights, a 3D structure of the samples was reconstructed.
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Fig 4. a) Phase-contrast microscopic pictures of PDL cells on PASP hydrogel discs containing different quantity of thiol groups. b) PDLC viability measured 1, 3, 7

and 14 days after seeding. The average viability value measured on the CYSE(1/20) gels on day 1 was considered as 100%. Data are given as an arithmetic

mean ± SEM (standard error of the mean). �p< 0.05 compared to CYSE(1/20) at the appropriate time point. +p< 0.05 compared to the next day values. Each

photomicrograph was taken at the same magnification. The scale bar indicates 100 μm.

https://doi.org/10.1371/journal.pone.0226363.g004
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Fig 5. a) Phase-contrast microscopic pictures of osteogenic inducted and control PDL cells on PASP hydrogel disks containing different quantity of thiol groups.

b) ALP activity of PDL cells cultured in osteogenic or control medium on PASP hydrogel disks after 3, 7 and 14 days. Each photomicrograph was taken at the same

magnification. The scale bar indicates 100 μmData are given as an arithmetic mean ± SEM (standard error of the mean). �p< 0.05 compared to CYSE(1/20) at the

appropriate time point. +p< 0.05 compared to next day values. #p< 0.05 compared to the appropriate control gel values.

https://doi.org/10.1371/journal.pone.0226363.g005
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This stacked 3D image provides evidence that PDLCs are steadily growing and migrating and

spreading not only along the gel surface but inside the gel matrix (Fig 6b).

Therefore, the high amount of thiol groups in the gels supports the survival, adhesion, pro-

liferation, migration and 3D growth of PDLCs.

Conclusion

To the best of our knowledge, we are the first to investigate the behavior of tooth-derived cells

on different thiolated PASP based hydrogels. To briefly summarize our results, poly(aspartic

acid) based hydrogels proved to be considerably biocompatible and biodegradable. Further-

more, these hydrogels did not only support survival but adhesion, proliferation, and migration

of human PDLCs as well, especially when free accessible thiol groups were present. The

increased amount of free thiol groups in the gel matrix resulted in significantly higher cell via-

bility and facilitated spontaneous osteogenic differentiation of PDLCs. Therefore, these thio-

lated PASP-based hydrogels seem to be ideal scaffolds for culturing and differentiating human

Fig 6. a) Two photon microscopic images of control and osteogenic induced PDLC cultures in long-term experiments at different time points and b) 3

dimensional structure of the cells in the hydrogels after 14 days. The Z depth of the 3D images indicates 120μm while the area is 1.7x1.7 mm.

https://doi.org/10.1371/journal.pone.0226363.g006
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tooth-derived cells. However, further preclinical animal experiments are needed before these

hydrogels could be potentially applied in different areas of regenerative therapy.
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Supervision: Dávid Juriga, Abdenaccer Idrissi, Miklós Zrı́nyi, Gábor Varga, Angéla
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