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Ubiquitin-Conjugating Enzyme E2 C (UBE2C) is a gene that encodes protein. Disorders
associated with UBE2C include methotrexate-related lymphatic hyperplasia and
complement component 7 deficiency. The encoded protein is necessary for the
destruction of mitotic cell cyclins and cell cycle progression, and may be involved in
cancer progression. In this paper, on the basis of public databases, we study the
expression differential mechanism of gene expression of UBE2C in various tumors and
the performance of prognosis, clinical features, immunity, methylation, etc.
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INTRODUCTION

UBE2C (Ubiquitin-Conjugating Enzyme E2 C) is a gene that encodes protein. Disorders associated
with UBE2C include methotrexate-related lymphatic hyperplasia and complement component 7
deficiency. The encoded protein is necessary for the destruction of mitotic cell cyclins and cell cycle
progression, and may be involved in cancer progression. Genes play a very critical function in the
impact of cancer on the human body. Genes also regulate life activities by influencing the activities of
biological factors (e.g., lncRNA, DNA methylation, etc.) (Khan et al., 2020; Yuan et al., 2021a; Yuan
et al., 2021b).

In this paper, on the basis of public databases, we study the expression differential mechanism of
gene expression of UBE2C in various tumors and the performance of prognosis, clinical features,
immunity, methylation, etc (Sayers et al., 2019; Yuan and Huang, 2019; Warwick Vesztrocy and
Dessimoz, 2020). Gene UBE2C play a very critical function in the impact of cancer on the human
body. As far as we know, there is currently no pan-cancer analysis of UBE2C.

METHODS AND MATERIALS

In this section, on the basis of public databases, we study the expression differential mechanism of
gene expression of UBE2C in various tumors and the performance of prognosis, clinical features,
immunity, methylation, etc (Peng et al., 2018; Yuan et al., 2018; Consortium, 2019).

Gene Expression Level in Various Tissues
In the part, the GTEx data were used to observe the UBE2C gene expression level in those various
tissues, and we observed the gene expression in 31 tissues. The results are shown in Figure 1.

Tumor Tissues Analysis
We analyzed every cell line of tumor downloaded from the CCLE, and analyzed the 21 tissues
expression level according to the source of the tissue. The results are shown in Figure 2.
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Analysis of Tumor Data and Non-Tumordata
From TCGA
We further obtained from the TCGA database the difference in
the UBE2C gene expression in every tumor sample between
tumor and adjacent tumor. Results are shown in Figure 3.
In the figure, * indicates p less than 0.05, ** indicates p < 0.01,
and *** indicates p < 0.001.

Joint Analysis of GTEx and TCGA Data
Due to the small number of normal samples in TCGA, we found
the data from the GTEx database, and integrated these data with
the data in TCGA tumor tissues to analyze the differences in

expression value of 27 tumors. The results are shown in the
Supplementary Figure S1.

Prognostic Analysis of Gene
Ubiquitin-Conjugating Enzyme E2 C in
Pan-Cancer
We first used the data of gene expression to analyze the difference
between expression and prognosis in thirty-three tumors of TCGA.
Using single-factor survival analysis, the forest plot of the geneUBE2C
we studied in 33 tumors is shown in Figure 4. The prognostic K-M
curve results are shown in Supplementary Figure S2.

FIGURE 1 | The expression level of UBE2C gene in 31 tissues.

FIGURE 2 | Comparison of the expression value level of UBE2C gene in twenty-one tissues.
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We considered the non-tumor death factors that may exist
during patient follow-up, and we analyzed the difference
between gene expression values and prognosis in 33 tumors
in TCGA, and the results are shown in the Supplementary
Figure S2. The corresponding prognostic K-M curve results
are shown in Figure 5.

We further analyzed difference between gene value and
prognosis in 33 TCGA tumors, and the results are shown in
Supplementary Figure S3 and Figure 6, respectively.

At the same time, we also calculated the difference between gene
expression value and prognosis-free interval in 33 TCGA tumors.
The results are shown in Supplementary Figure S4 and Figure 7.

FIGURE 3 | The expression level of UBE2C gene in TCGA tumor and nontumor.

FIGURE 4 | The relationship between UBE2C gene and overall survival time in days in TCGA tumor and nontumor.
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FIGURE 5 | The relationship between UBE2C gene and disease-specific survival in TCGA tumor and nontumor.

FIGURE 6 | The relationship between UBE2C gene and disease-free interval in TCGA tumor and nontumor.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8933584

Yuan et al. Pan-Cancer Bioinformatics Analysis of UBE2C

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 7 | The relationship between UBE2C gene and prognosis-free interval in TCGA tumor and nontumor.

FIGURE 8 | The most significant expression of the top 3 three tumor immune infiltration levels.
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Correlation Between Genes and Immune
Infiltration Value
Tumor infiltrating lymphocytes (TIL) are an independent predictor
of the status and survival of the sentinel lymph node in cancer (Yuan
et al., 2017; Peng et al., 2018).We studied the association between the
gene expression values and the values of these cells of immune. We
studied the correlation of each tumor (e.g., ACC, BRCA, CODA,
LUAD, etc.), the threemost significantly related tumors are shown in
the Supplementary Figure S5.

Study on Immune Scoring of Gene
Expression
More andmore papers have shown that the tumor immune play a
very critical function in the impact of cancer on the human body.
The R packages named estimate was used to calculate the immune
scores and stromal scores of each tumor sample, and observed
gene values and immunity in thirty-three tumors. The score is like
ImmuneScore, and the association between gene expression value
and matrix score is like StromalScore (Yuan et al., 2016; Liu et al.,
2018; Simion et al., 2019). In the immune score of gene expression
ESTIMATE, the first three tumors that are most significantly
related are shown in the Figure 8.

The Correlation Between Gene Value and
Immune Checkpoint Genes
Under normal circumstances, the immune system can recognize
and eliminate tumor cells through a series of biochemical
reactions. However, tumor cells can adopt different strategies
to suppress the body’s immune system and escape being
eliminated. And prevent tumor cells from killing tumor cells
normally. Each stage of the response has survived. Tumor
immunotherapy can control and eliminate tumors by
restarting and activating tumor immune circulation to restore
the body’s normal anti-tumor immune response (Wei et al., 2016;
Guan et al., 2018). Including monoclonal antibody, therapeutic
antibodies, cancer vaccines, and small molecule inhibitor (Yuan
et al., 2015; Ge et al., 2017). Based on the relevant database, we
collected more than 40 common immune check-related genes,
and then we calculated and analyzed the relationship between the
gene value and the immune checkpoint gene value. We calculated
the immune checkpoint gene value separately and calculated the
relationship with the target gene The correlation of the expressed
value is as follows. In the figure, * indicates a significant relevance
value p less than 0.05, ** indicates a significant relevance value p
less than 0.01, *** indicates a significant relevance value p < 0.001.
The results are shown in Figure 9.

FIGURE 9 | The top 3 tumors that are most significantly related.
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FIGURE 10 | The relationship between gene expression and the number of antigens.

FIGURE 11 | The relationship between gene expression and TMB.
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The Relationship Between Gene Value and
Immune Neoantigens
Tumor neoantigens are neoantigens encoded by mutated genes
of tumor cells. They are mainly generated by gene point
mutations, deletion mutations, gene fusions, etc., which are
new and abnormal proteins that are different from those
expressed by normal cells. The polypeptide fragments
formed by enzymatic hydrolysis of these proteins are
presented to T cells as antigens by DC cells. Based on these
antigens, T cells are transformed into mature activated T cells
that recognize tumor neoantigens. These antigens can increase
the number of these activated T cells. Using the immune
activity of neoantigens, we can design and synthesize
neoantigen vaccines according to the mutations of tumor
cells, and then immunize patients to achieve therapeutic
effects (Zheng et al., 2014; Le et al., 2017). Here we
separately count the amount of neoantigens in every sample
from tumor and analyze the differnece between gene
expression and the amount of antigens is shown in
Supplementary Figure S6.

Association Between Gene Value and
Neoantigen
We measure the mutation load of the tumor by counting the
number of somatic mutations in the coding region of the tumor
cell genome on an average of 1 Mb. Sometimes it is also directly
expressed by the total amount of non-synonymous mutations.
The types of mutations mainly contain mononuclear mutations.
A lot of mutations such as SNV and insertion/deletion of small
fragments. TMB is often used to show the amount of mutations
contained in tumor sample cells and is a measurable biomarker
(Ju et al., 2019). Here we separately count the TMB of every tumor
sample, and analyze the association between value of gene
expression and TMB as shown in Figure 10, where we use
Spearman rank correlation coefficient.

The Association Between Gene Value and
Neoantigen
Microsatellite instability refers to any variation in the extent of a
microsatellite caused by the insertion of a repeat unit in a tumor

FIGURE 12 | Gene variation data in 33 tumors.

FIGURE 13 | The association between value of genes and the expression of four methyltransferases.
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FIGURE 14 | The association between value of genes and the expression of four methyltransferases.

FIGURE 15 | Enrichment performance of genes in KEGG and HALLMARK pathways.
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compared with normal tissues, and the appearance of new
microsatellite alleles. We calculated the association between
value of gene expression and microsatellite instability as
shown in the Figure 11. Among them, we use Spearman’s
rank correlation coefficient.

Gene Mutation Patterns in Various Tumor
Samples
We downloaded the variation data of 33 cancers processed by
mutect from TCGA, and calculated the mutations of genes in
these cancers (e.g., ACC, BLCA, BRCA, etc.). The schematic
diagram of the tumors with the most variation is as follows. The
results are shown in Supplementary Figure S7.

The Association Between Gene Expression
Value in Each Tumor Sample and
Expression Value of Repair Genes and
Methyltransferase
DNA methylation is an important form of DNA modification.
DNA methylation can change genetic performance without
altering the DNA sequence. DNA methylation can lead to
changes in DNA conformation, chromatin structure, DNA
stability, and the way in which DNA interacts with proteins,
thereby controlling value of genes. Under the action of DNA
methylation transferase, DNA methylation binds a methyl group
to the covalent bond of the genomic CpG dinucleotide. Then we
can calculate the association between value of genes and the
expression of four methyltransferases, as shown in Figure 12.

GSEAAnalysis of the Expression of Genes in
a Certain Tumor
In order to observe the impact of gene on cancers, we divided the
cancer samples into high expression and low expression groups
according to value of gene expression, and used GSEA to calculate
the enrichment of the KEGG and HALLMARK pathways in the
high value of gene expression combined low expression group.
Results are shown in the Figures 13, 14, 15.

CONCLUSION AND DISCUSSION

In this article, we proposed to perform pan-cancer expression
analysis, pan-cancer prognosis analysis, immune relationship
analysis in tumors, gene and immune neoantigens, TMB, and
microsatellite instability relationship analysis, and study the
mutation patterns of genes in various tumor samples. The
relationship between DNA modification and methyltransferase
expression is analyzed. The KEGG and HALLMARK enrichment
performance of genes are analyzed. Gene UBE2C has a strong
correlation with tumors and needs further verification in future
clinical trials. Recent studies have shown that UBE2C is associated
with many cancers (Zhang et al., 2018; Chiang et al., 2020; Wang
et al., 2021). The data used in the paper comes from public databases
GEO and TCGA. However, this study has several limitations. First,

in vivo and in vitro experiments are required to further validate our
findings. Second, the interaction mechanism between genes is very
complex, we need to further study the relationship between UBE2C
and other genes.
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