
1Automated analysis of cryo-EM volume ensembles

Automated model-free analysis of cryo-EM 
volume ensembles with SIREn

Laurel F. Kinman1,*,✉, Maria V. Carreira1,*, Barrett M. Powell1, and Joseph H. Davis1,2,✉

1Department of Biology, 2Program in Computational and Systems Biology
Massachusetts Institute of Technology

Cambridge, MA

*Equal contributions

✉ Correspondence: lkinman@mit.edu, jhdavis@mit.edu

ABSTRACT
Cryogenic electron microscopy (cryo-EM) has the potential to capture snapshots of proteins in motion and 
generate hypotheses linking conformational states to biological function. This potential has been increasingly 
realized by the advent of machine learning models that allow 100s-1,000s of 3D density maps to be generated 
from a single dataset. How to identify distinct structural states within these volume ensembles and quantify 
their relative occupancies remain open questions. Here, we present an approach to inferring variable regions 
directly from a volume ensemble based on the statistical co-occupancy of voxels, as well as a 3D-convolutional 
neural network that predicts binarization thresholds for volumes in an unbiased and automated manner. We 
show that these tools recapitulate known heterogeneity in a variety of simulated and real cryo-EM datasets, 
and highlight how integrating these tools with existing data processing pipelines enables improved particle 
curation and the construction of quantitative conformational landscapes.
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INTRODUCTION
The proteins and protein complexes that carry out 
cellular functions are inherently dynamic, occupying 
high-dimensional conformational landscapes where 
different free energy minima correspond to different 
structural and functional states. These landscapes can 
be altered by environmental signals, drug treatments, 
and more. Methods to resolve lowly-populated but 
biologically-informative states within the landscapes, and 
to quantitatively compare conformational landscapes 
across different conditions, are therefore instrumental to 
understanding the function and regulation of this essential 
cellular machinery. Cryogenic electron microscopy (cryo-
EM) is, in principle, a powerful tool to accomplish just 
this, as standard single-particle analysis (SPA) approaches 
image individual protein molecules. Assigning each 
particle image to a structural state affords the potential to 
build highly detailed, semi-quantitative maps of protein’s 
structural landscapes, and to ask and answer hypothesis-
driven questions about how those landscapes change as a 
function of experimental condition.  

In reality, the power of cryo-EM to analyze these 
conformational landscapes has been limited. The particle 
images captured during cryo-EM data collection have 
extremely low signal-to-noise ratios as a result of the low-
dose imaging conditions used to minimize electron beam-
induced sample damage (Sigworth 2016). Thus, 103-106 
particle images representing potentially highly disparate 
structural states must be averaged to produce high-
resolution three-dimensional reconstructions (Sigworth 
2016). Traditional approaches to classifying particles 
into different structural states have proven widely useful 
(Scheres et al. 2006; Scheres 2012; Zhang et al. 2019; 
Nakane and Scheres 2021) but rely on the assumption that 
particles can be grouped into k discrete classes, where k is 
a relatively small number that users do not know a priori, 
and where different values of k or different initial volumes 
can have substantial impacts on the outputs of these 
algorithms (Rabuck-Gibbons et al. 2022).

Recently, however, several approaches have emerged 
that leverage the generative power of machine learning 
(ML) to tackle this problem and begin realizing the single-
molecule potential of heterogeneous cryo-EM (Zhong et 
al. 2021; Chen and Ludtke 2021; Punjani and Fleet 2023; 
Powell and Davis 2024). In particular, approaches like 
cryoDRGN (Zhong et al. 2021), tomoDRGN (Powell and 
Davis 2024), and e2gmm (Chen and Ludtke 2021) use 
autoencoder or autoencoder-like architectures to map 
images of individual particles into a learned latent space 
that acts as a lower-dimensional representation of the 
structural heterogeneity in the particle images. Decoding 
these latent encodings subsequently enables generation 
of large heterogeneous ensembles of 3D volumes. These 
approaches have been used to resolve dynamics of radial 
spoke proteins important for ciliary motility (Gui et al. 
2021), to identify diverse structural states of ribosomes 

(Powell and Davis 2024; Sun et al. 2023; Kinman et al. 
2022; Leesch et al. 2023), to understand catalysis in a non-
ribosomal peptide synthetase (Wang et al. 2022), and to 
quantify subtle structural changes in AAA+ proteases 
(Ghanbarpour et al. 2023a; Ghanbarpour et al. 2023b; 
Ghanbarpour et al. 2024). However, questions remain 
about how to systematically analyze the heterogeneity 
present in the resulting volume ensembles in order to both 
identify biologically-interesting modes of variability, and 
compare this variability quantitatively across ensembles or 
datasets derived from different experimental conditions.

We have previously shown the power of atomic-model-
based approaches to quantitatively characterize the 
conformational landscape of the assembling bacterial 
ribosome (Davis et al. 2016; Kinman et al. 2022; Sun et al. 
2023); however, such approaches are limited in several 
key respects. First, they require an atomic model to be 
fit within each map in an ensemble, so datasets where 
there is no existing atomic model, or where the volumes 
are so heterogeneous that an atomic model could not 
be well fit into all volumes, cannot be analyzed using 
this approach. Furthermore, model-based approaches 
assume that a feature is either present in its modeled 
location, or absent; as such, they are challenged by 
conformational heterogeneity, where they often report 
a “partial” native occupancy. In such instances, we have 
previously shown that complementary approaches such 
as principal component analysis of the volume ensembles 
are valuable in characterizing large-scale conformational 
changes (Sun et al. 2023). Lastly, model-based approaches 
are fundamentally hypothesis-driven, as they require 
users to supply a mask indicating where within the three-
dimensional volume they expect to detect heterogeneity. 
While this approach can be powerful, particularly when 
paired with orthogonal biochemical or genetic evidence 
that drives the structural hypothesis, it prevents the user 
from detecting heterogeneity in unexpected regions of the 
structure.

To address these limitations, and to aid users in detecting 
heterogeneity within volume ensembles without requiring 
a model, we have developed SIREn (Subunit Inference 
from Real-space Ensembles). Our SIREn tool is not to be 
confused with methods for 3D reconstruction based on 
sinusoidal representation networks (SIRENs) (Sitzmann 
et al. 2020) recently reported by the Carazo and Sorzano 
groups (Herreros et al. 2024). SIREn leverages the co-
variance of voxel occupancies across volumes within the 
ensemble to detect structural subunits without the aid of 
an atomic model. SIREn thus identifies putative structural 
subunits by measuring how voxels are co-occupied across 
the ensemble, and by extracting groups of voxels that 
are highly co-occupied. We show that SIREn successfully 
extracts blocks corresponding to compositional and 
conformational heterogeneity we encoded in simulated 
datasets (i.e., ground truth), as well as in several well-
studied, highly heterogeneous real datasets from both 
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SPA pipelines and in situ tomographic data. Furthermore, 
we showcase the development of a 3D-convolutional 
neural network (3D-CNN) to predict contour levels across 
volume ensembles, and we demonstrate the integration of 
SIREn with our previously developed MAVEn tool (Sun et 
al. 2023) to both curate particle stacks for high-resolution 
refinement, and quantify the abundance of conformational 
states of interest.

RESULTS
SIREn algorithm design.
Recent advances in ML-enabled heterogeneous 
reconstruction methods permit hundreds-to-thousands 
of density maps to be generated from a single cryo-EM 
or cryogenic electron tomography (cryo-ET) dataset. We 
hypothesized that we could leverage the statistical power 
of these large volume ensembles to directly infer regions 
within the volume that vary across the ensemble, which 
we refer to as structural blocks. Specifically, we asserted 
that voxels belonging to the same structural block should 
be positively and negatively co-occupied (both occupied 
or both unoccupied within a given volume, respectively) 
more often than expected by chance, whereas voxels 
belonging to distinct structural blocks were expected to 
be co-occupied at a rate predicted by their overall rates of 
occupancy across the ensemble. Diverse structural states 
of a protein complex could then be defined by isolating 
sets of particles with similar patterns of occupancy across 
these fundamental building blocks (Figure 1A).

To detect these blocks, we employed a two-step approach. 
In step one, we queried pairs of voxels for frequency of 
positive and negative co-occupancy across an ensemble 
of binarized volumes, and used a bootstrapping method to 
determine whether the measured co-occupancy was likely 

to be significant (Figure 1B). We then constructed a graph 
with nodes corresponding to voxels, and edges connecting 
voxels related by the bootstrapped significance measured 
above, and subsequently clustered the graph using a label 
propagation approach (Cordasco and Gargano 2010) to 
produce “seed blocks”. In the second step, the seed blocks 
were expanded using a similar bootstrapping method: 
if a given voxel exhibited significant co-occupancy to a 
minimum fraction of the seed voxels in a block, we added it 
to the block. In this manner, we queried each voxel against 
each seed block to produce the final structural blocks (see 
Methods).

Given that we do not expect the underlying volume 
data to be independent and identically distributed, we 
emphasize that we employed this bootstrapping method 
not as a rigorous statistical test but rather as a heuristic 
for estimating the strength of the evidence that the 
occupancies of two voxels were related. In practice, we 
additionally modified these calculations to include a 
“locality scaling factor” for positive co-occupancy that 
depended on the physical distance between the two voxels 
(Supplemental Figure 1A, see Methods). The inclusion of 
this scaling factor reflected the intuition that physically 
neighboring voxels are more likely to be constituents of 
the same block, and thus less stringent statistical evidence 
should be demanded to cluster those voxels. In contrast, 
distal voxels, which could represent tightly coupled 
allosteric structural changes, should require substantially 
stronger statistical evidence to be assigned to the same 
block. Notably, our two-step approach to infer structural 
blocks permitted voxels to be added to more than one 
structural block, an important feature given that we 
expected conformational motions to result in several 
distinct but overlapping blocks.
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Figure 1. Inferring structural heterogeneity with SIREn.
(A) Flowchart depicting application of SIREn to infer variable regions (structural blocks) directly from a heterogeneous volume 
ensemble, and downstream application of SIREn blocks to query occupancy of features of interest using MAVEn. (B) Schematic overview 
of the SIREn algorithm. Illustrative heatmap depicting binarized volumes as rows within the depicted array, with each voxel determined 
to be occupied or unoccupied within a given volume based on a binarization threshold provided for each map. Voxels are queried for 
co-occupancy, and a graph is constructed with edges connecting voxels determined to be significantly co-occupied. Clustering and 
expansion of the graph (see Methods) produces the final SIREn-identified blocks (pink and yellow, right).
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Figure 2. 3D-convolutional neural network (3D-CNN) enables accurate prediction of binarization thresholds at scale.
(A) Depiction of the 3D-CNN inputs (green box), model architecture (blue box – 3D-CNN; peach box - MLP), and outputs (red box). Gray 
arrows indicate information used to calculate the training loss from the fraction enclosed volume (FEV) at input (ti) or predicted (pi) 
binarization thresholds (see Methods). (B) Scatter plots comparing EMDB ground truth labels and 3D-CNN-predicted thresholds (top), 
or thresholds predicted by the 99th percentile of the data (bottom) for training (left), validation (middle), and test (right) sets. Slopes 
(m) and Pearson correlation coefficients (r2) are noted over each plot; the identity line is shown as a dashed black line on each plot. 
Exemplar maps EMD-29562 (Wang et al. 2023; blue) and EMD-25375 (Fry et al. 2022; green) (right) are shown at EMDB-deposited (top), 
3D-CNN predicted (middle), and 99th percentile (bottom) binarization thresholds.

A 3D-convolutional neural network enables unbiased 
prediction of contour levels across volume ensembles.
SIREn takes as input a large (100s-1,000s) ensemble 
of volumes aligned to a single reference frame. These 
volumes must be binarized at a provided threshold 
value, which is equivalent to setting a contour level. 
Defining appropriate binarization thresholds for such a 
large number of volumes is a challenging task: statistical 
approaches, such as binarizing at the 99th percentile of 
the volume data as is standard in ChimeraX (Meng et al. 
2023), often produce poor binarization thresholds for 
any given volume, and manual assignment of thresholds 
represents both a throughput challenge and a potential 

source of bias. To address these challenges, we noted that 
the Electron Microscopy Data Bank (EMDB) (Turner et al. 
2024) represents a large, well-curated training dataset 
containing diverse structural density maps alongside their 
annotated binarization thresholds. We hypothesized that 
a 3D-convolutional neural network (3D-CNN) trained on 
these volumes and annotations could predict appropriate 
thresholds for unseen maps, and we therefore retrieved, 
curated, and pre-processed ~4,000 such maps to train such 
a 3D-CNN (see Methods).

We next constructed a 3D-CNN consisting of five 
convolutional layers upstream of a multi-layer perceptron 
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(MLP), adapted from a previously implemented 
architecture (Lee et al. 2022). This model was designed to 
output a single binarization threshold for each input map 
(Figure 2A, see Methods). The trained network successfully 
returned thresholds highly correlated with the expert-
curated labels deposited in the EMDB in both the training 
set and the withheld validation and test sets. Notably, it 
outperformed the often-used 99th percentile standard 
using metrics of Pearson correlation coefficient and 
proximity to a one-to-one relationship between predicted 
and annotated thresholds (Figure 2B, Supplemental 
Figure 2A-B). Individual exemplar maps visualized at 
the threshold predicted by the 3D-CNN reinforced that 
the predicted labels are consistent with the ground 
truth and outperform statistical approaches (Figure 2B). 
Interestingly, in the withheld test and validation sets, we 
found that the 3D-CNN predicted thresholds effectively 
distinguished between protein and micellar density for 
maps of membrane proteins (Supplemental Figure 2C), 
consistent with the network predicting thresholds that 
emphasize the shapes observed in protein, DNA, and RNA 
macromolecular complexes common in the EMDB.

SIREn robustly detects compositional heterogeneity in 
simulated SPA datasets.
To assess whether SIREn could detect structural 
heterogeneity within a volume ensemble, and to probe 
the limits of this detection, we next constructed a series 
of simulated cryo-EM single particle analysis datasets 
consisting of the bacterial large ribosomal subunit 
(50S) with some or all of the protein uL2 removed (see 
Methods). Particle images of the 50S subunit with uL2 
intact (uL2Δ0) were then titrated at various frequencies 
into particle stacks containing different uL2 deletions (i.e., 
uL2Δ0.25, uL2Δ0.50, uL2Δ0.75, uL2Δ1.0) to yield a total of twelve 
simulated particle stacks with varying heterogeneity. 
We also generated five homogeneous particle stacks, 
corresponding to each of the five constructs employed in 
building the heterogeneous particle stacks (Figure 3A, see 
Methods).

We trained a series of cryoDRGN models on the resulting 
datasets and generated a volume ensemble consisting of 
500 maps at box size 64 for each dataset. These volume 
ensembles were used as the inputs for SIREn. As expected, 
SIREn did not identify a uL2 block in the homogeneous 
volume ensembles, where particles were derived from 
a single atomic model. SIREn successfully identified a 
full or partial uL2 block in all heterogeneous ensembles 
consisting of 25% or 50% uL2-intact particles (Figure 3A), 
but failed to do so when analyzing volume ensembles 
resulting from particle stacks with 75% uL2-intact particles. 
We attribute the asymmetry of this detection – that a 
block was detected at 25% uL2-intact particles but not 
75% uL2-intact particles – to the fact that the SIREn 
algorithm requires more stringent evidence for positive 
co-occupancy than negative co-occupancy, making it 
challenging to detect blocks for highly-occupied features.

Satisfyingly, in those cases where SIREn did identify a block, 
the size of the block scaled with the proportion of uL2 
deleted (Figure 3A, Supplemental Figure 3A), suggesting 
that SIREn successfully identified the correct spatial extent 
of the heterogeneity in the volumes. Notably, SIREn was 
able to detect a block even when only 25% of the uL2 
protein was deleted. This perturbation corresponds to ~8 
kDa (73 amino acids), relative to the total 50S ribosomal 
mass of ~1.3 MDa, suggesting that, despite downsampling 
to box size 64, with the resolution Nyquist-limited at 6.9 Å, 
SIREn can detect relatively subtle structural changes.

We hypothesized that we could use the structural blocks 
inferred by SIREn to estimate the frequency of uL2-intact 
particles in each volume ensemble. To do so, we used 
the detected structural blocks directly as input masks 
in MAVEn, a software we have previously developed for 
quantifying the occupancy of structural subunits across 
large volume ensembles (Kinman et al. 2022; Sun et al. 
2023). We fit the resulting occupancy distributions of the 
uL2 structural block in each volume ensemble to a two-
component Gaussian mixture model, and assigned each 
volume to either a low- or high- uL2 occupancy class 
(Figure 3C, Supplemental Figure 3B, see Methods). We 
compared the number of particles assigned to the high 
uL2 occupancy class to the known frequency of uL2-
intact particles in each simulated dataset, finding close 
correspondence between these values (Figure 3D), which 
indicated that our pipeline can accurately quantify the 
number of particles in a given conformational state.

SIREn identifies conformational heterogeneity in a 
simulated tomographic dataset.
To determine whether SIREn could similarly detect 
conformational heterogeneity within a volume ensemble 
generated using cryo-ET, we used an existing simulated 
tomographic dataset (Powell and Davis 2024) of yeast ATP 
synthase in diverse rotational states (Guo and Rubinstein 
2022). Briefly, Powell and Davis simulated 20,000 tilt-
series image sets from density maps generated using 
400 different atomic models representing a continuous 
conformational trajectory, and used these tilt series to 
train a tomoDRGN model (Powell and Davis 2024). We 
sampled 500 density maps from the latent space of the 
trained tomoDRGN model, and supplied these volumes as 
the input ensemble to SIREn. SIREn detected five blocks 
that highlighted the coupled rotations of the stalk and 
the nucleotide binding site (Figure 3E). To isolate particles 
representing different rotational states, we coupled our 
3D-CNN-predicted binarization thresholds with MAVEn 
(Sun et al. 2023) to generate a volume for every particle 
in the input dataset, and queried that volume ‘on-the-
fly’ for occupancy of each of the SIREn-annotated blocks 
(Supplemental Figure 4A). Notably, incorporating our 
3D-CNN-predicted binarization thresholds allowed us to 
control for per-volume scaling effects, and ensured that 
block occupancies scaled between 0 and 1 (see Methods). 
Based on the resulting occupancy measurements, we were 
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Figure 3. SIREn recapitulates ground truth compositional and conformational heterogeneity in simulated datasets.
(A) Atomic models (left) of the E. coli large ribosomal subunit (50S) with full (L2Δ1) or partial (L2Δ0, L2Δ0.25, L2Δ0.50, L2Δ0.75) deletion of uL2, 
with uL2 highlighted in various colors. A schematic overview (right) of the generated homogeneous and heterogeneous simulated 
particle stacks, titrating both the proportion of uL2 deleted and the fraction of particles with uL2 intact, is shown (right). Particle images 
are outlined with colors matching the 50S deletion model panel. (B) Heatmaps (top) depicting whether a uL2 block was detected by 
SIREn in each dataset. The detected uL2 blocks (bottom) are shown in purple for the four datasets containing 50% uL2-intact (L2Δ0) 
particles, and 50% particles bearing successively larger deletions of uL2 (L2Δ0.25 – L2Δ1). Blocks are overlaid on an exemplar density 
map from the ensemble (transparent surface). (C) Representative distributions of per-volume uL2 block occupancies in datasets with 
25% (top) or 50% (bottom) uL2 intact, with the remainder of the particles having no uL2 (uL2Δ1). Dashed lines indicate the fit two-
component Gaussian mixture model (GMM) used to distinguish low-occupancy particles (black) from high-occupancy particles (purple, 
see Methods). (D) Fraction of uL2-intact particles in each dataset where a uL2 block was detected, as determined by the GMM fitting 
approach (see Methods). Asterisks indicate the datasets highlighted in C. The ground truth frequency is shown as a horizontal dashed 
line in the barplots. (E) Workflow to analyze a simulated cryo-ET dataset of yeast ATP synthase, with atomic models traversing the 
simulated conformational change colored yellow-to-red (left), and locations of 500 maps sampled from latent space, projected using 
principal component analysis. Detected SIREn blocks are shown in shades of orange and red (middle). A representative map from 
the ensemble (translucent surface) with overlaid SIREn-detected block (orange) is shown to illustrate occupancy-querying approach 
with MAVEn. (F) Confusion matrix comparing the inferred class assignments and ground truth rotational state for each particle in the 
simulated particle stack (left). Reconstructed volumes corresponding to each class are shown (right). Volumes are colored to match 
blocks in E.
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able to assign each particle to one of the five rotational 
states identified by SIREn (Figure 3F, Supplemental 
Figure 4B, see Methods). Finally, we compared our inferred 
particle class assignments to the known (i.e., ground truth) 
rotational state of each particle, finding that our combined 
SIREn-MAVEn pipeline accurately identified the rotational 
state of each particle at this 5-class level of discretization 
(Figure 3F).

To assess if such inferred particle classes could improve 
the consensus refinement and resolve different structural 
states across the range of motion sampled by ATP synthase 
in this dataset, we performed reconstructions in RELION 
(Zivanov et al. 2018) on each of the inferred particle classes. 
As expected, these reconstructions were higher quality 
than the consensus reconstruction and resolved distinct 
rotational states of the complex (Figure 3F).

SIREn identifies known assembly states of the bacterial 
large ribosomal subunit.
Given that SIREn successfully identified known 
heterogeneity in simulated datasets, we were interested 
in benchmarking its performance on a well-annotated 
real cryo-EM dataset – specifically a dataset of the 
assembling 50S ribosome, isolated from a bL17-depletion 
strain (EMPIAR-10076)  (Davis et al. 2016). This dataset 
has previously been characterized by both extensive 3D 
classification (Davis et al. 2016; Rabuck-Gibbons et al. 2022), 
model-based analysis of cryoDRGN-generated volume 
ensembles (Kinman et al. 2022), and other reconstruction 
methods aimed at visualizing structural heterogeneity 
(Chen and Ludtke 2021; Punjani and Fleet 2021; Gilles and 
Singer 2024). Each of these methods revealed four primary 
structural states and a series of additional sub-states.

To determine whether SIREn would identify the known 
structural blocks in this dataset, we employed the same 
cryoDRGN model previously trained on this dataset (Zhong 
et al. 2021; Kinman et al. 2022), and sampled 500 volumes 
at box size 64 from the resulting latent space via k-means 
clustering. The inferred SIREn blocks closely corresponded 
to the structural blocks identified by the MAVEn atomic-
model-based approach, with blocks corresponding to 
several features known to have variable occupancy across 
the ensemble, including the central protuberance, base, 
uL1 stalk, bL12 stalk, and H68 (Figure 4A). We calculated 
the normalized occupancy of each block in the input 
volume ensemble, with each volume binarized at the 
threshold predicted by the 3D-CNN, and clustered the 
results, permitting us to identify groups of structurally-
related volumes (Figure 4B). We identified four major 
classes of particles from this clustering, which closely 
match the B-E classes identified by previous analyses (Davis 
et al. 2016); volumes generated at the centroid position in 
latent space of each of the four volume classes confirmed 
that these particles represented the B-E classes  (Figure 
4B). SIREn additionally highlighted interesting intra-class 
heterogeneity within each of these four primary classes, 

including a small number of volumes with occupancy for 
H68 but not the central protuberance (block 15, Figures 
4A-B). This “C4 class” was not observed in the original 
hierarchical classification analysis, and was first identified 
in a previous cryoDRGN analysis that relied on the atomic 
model for interpretation (Zhong et al. 2021).

Interestingly, we observed that the SIREn block 
corresponding to the bL12 stalk also included density 
proximal to the binding site for the ribosome biogenesis 
factor YjgA (block 5, Figure 4A), which was unexpectedly 
first identified via 3D classification in the original analysis 
of this dataset (Davis et al. 2016). To determine whether 
particles with high occupancy of this block represented 
the YjgA-bound state, we performed the same ‘on-the-
fly’ querying approach described above, wherein we 
generated a volume at box size 64 for every particle in 
the input stack, binarized these volumes according to 
their 3D-CNN-predicted thresholds, and measured the 
occupancy of the resulting volumes. We then selected 
~3,700 particles with high occupancy of this block 
and used these particles to perform homogeneous 
reconstruction in cryoSPARC. The resulting reconstruction 
bore strong density for YjgA (Figure 4C).

In addition to the YjgA binding site block, we observed 
another block near H68 that was not well explained 
by the atomic model (block 10, Figure 4A). By similarly 
querying the occupancy of every particle for block 10, and 
selecting ~1,300 particles with high block 10 occupancy, 
we were able to clearly resolve the central protuberance 
in a misdocked conformation (Leidig et al. 2014). Notably, 
the density for the misdocked central protuberance in the 
reconstruction from our SIREn-identified particles is better 
defined than the corresponding density in the originally 
reported C1 class volume, despite our reconstruction 
using substantially fewer particles (Figure 4D). Lastly, our 
approach allowed us to directly compare the relationship 
between occupancy of the properly-docked central 
protuberance (block 15) and the misdocked central 
protuberance (block 10); as expected, occupancy of these 
two features was mutually exclusive (Figure 4D).

Uncovering intra- and inter-molecular heterogeneity of 
the bacterial ribosome in situ with SIREn.
To understand how SIREn performed on real cryo-ET data, 
we applied tomoDRGN and SIREn to analyze Mycoplasma 
pneumoniae ribosomes imaged in situ (EMPIAR-10499) 
(Tegunov et al. 2021). Briefly, a tomoDRGN model 
was previously trained on ribosomes extracted from 
tomograms of chloramphenicol treated M. pneumoniae 
cells, and careful inspection of the tomoDRGN-generated 
volume ensemble revealed extensive heterogeneity within 
the 70S ribosomes, including highly occupied P- and A- 
tRNA sites and minor states with the E-site tRNA occupied 
(Powell and Davis 2024). To compare the structural blocks 
inferred by SIREn to these previous manual annotations, 
we provided SIREn with 500 density maps sampled by 
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8Automated analysis of cryo-EM volume ensembles

Figure 4: SIREn identifies variable features in real cryo-EM datasets. 
(A) Blocks inferred by SIREn (right) from the EMPIAR-10076 dataset of assembling bacterial ribosomes (Davis et al. 2016), compared to 
blocks annotated (left) by a model-based approach in a previous analysis (Kinman et al. 2022) of this dataset. (B) Heatmap depicting 
occupancy of inferred blocks (columns of heatmap) in each of the 500 maps used as inputs to SIREn (rows of heatmap). Columns are 
colored to match (A). Rows were clustered to generate four major classes, from which density maps were generated (see Methods)and 
annotated following Davis et al. 2016. The arrow marks volumes with high occupancy for block 7, which corresponds to helix 68, but low 
occupancy for block 15, which corresponds to the central protuberance. (C) Results from querying the full particle stack for occupancy 
of block 5 (see Methods), depicted as a histogram. Dashed line indicates the threshold used to select particles for homogeneous 
refinement. Density map resulting from a refinement performed with SIREn-curated particles compared to the D4 assembly class map 
(right) reported by Davis et al. 2016. Dashed white line surrounds YjgA. (D) Results from querying the full particle stack for occupancy 
of block 10, depicted as a histogram (left) with dashed line indicating threshold used to select particles for homogeneous refinement. 
Density map resulting from refinement performed on SIREn-curated particles compared to the published C1 assembly class map (right) 
reported by Davis et al. 2016. (E) A density map depicting the joint distribution of block 10 (misdocked CP) and block 15 (properly 
docked CP) occupancies obtained by the ‘on-the-fly’ querying of the volume ensemble (see Methods).  

k-means clustering of the latent space from the tomoDRGN 
model. This automated SIREn analysis corroborated 
conformational and compositional heterogeneity in 
the ribosome previously identified by expert-guided 
inspection (Figure 5A). Specifically, blocks highlighting 
heterogeneity in the uL1 (block 19) and bL12 (block 6) 
stalks were detected, as well as a block near the tRNA A-site 
(block 20). To more deeply interrogate these sites, we again 
turned to our ‘on-the-fly’ querying approach (see Methods) 
to select particles with high occupancy of each of these 
blocks (Figure 5A, right). We performed reconstructions 

using the high-occupancy particles for each block in 
RELION and compared the resulting maps with either 
maps reconstructed using low-occupancy particles or a 
consensus reconstruction using the entire particle stack. 
The resulting maps clearly resolved differential occupancy 
of each of these features (Figure 5A).

The unique potential of performing cryo-ET on intact cells 
or milled lamellae is that it confers the power to not only 
resolve structures in situ but also investigate the spatial 
and cellular context of these structures. As a result, we 
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9Automated analysis of cryo-EM volume ensembles

were interested in determining whether SIREn could be 
applied to understand intermolecular heterogeneity in 
the cellular milieu surrounding ribosomal particles. To 
test this, we sampled 500 maps from the latent space of 
a tomoDRGN model trained on particles extracted with a 
larger real-space box (~74 nm, as opposed to ~36 nm for 
the particles used to train the previous model) (Powell and 
Davis 2024). After running SIREn on this volume ensemble, 
we observed two blocks that we hypothesized represented 
5’ and 3’ disomes (blocks 11 and 1, Figure 5B), as well as a 
block that likely corresponded to membrane density (block 
6, Figure 5B). We again defined an empirical threshold 

to isolate particles with high occupancy of each block 
and used RELION to perform a reconstruction with these 
particles (Zivanov et al. 2018) (Figure 5E, see Methods). 
We identified extensive overlap between our SIREn-based 
automated annotations and those generated manually 
(Powell and Davis 2024), with SIREn notably capturing a 
larger number of both disomes and membrane-associated 
ribosomes. We verified that the additional particles we 
annotated are likely to represent true disomes in two ways: 
first, we calculated the distance of each annotated particle 
to its nearest neighbor, and compared the distribution 
of nearest-neighbor distances in SIREn- and manually- 

Figure 5: SIREn uncovers heterogeneous features of cellular ribosomes in cryo-ET datasets.
(A) Blocks detected by SIREn in an ensemble of 500 ribosomes resolved by cryo-ET from M. pneumoniae cells (EMPIAR-10499). Insets 
compare the consensus reconstruction using all particles (CR) and particle subsets with either high or low occupancy of the noted 
block. Maps are colored to match the block used to filter the particle stack, and the location of variability is highlighted with a dashed 
line. The number of particles used for each reconstruction is listed in italics, and PDB model 7phb (Xue et al. 2022) is docked in the block 
20 reconstruction (green). Particle occupancies determined by ‘on-the-fly’ querying (see Methods) are shown as cumulative density 
functions (CDF), and thresholds used to identify high-occupancy particles are noted with dashed lines (right). (B) Blocks identified 
by SIREn from a volume ensemble of ribosomes extracted at larger real-space box size. (C) Venn diagrams depicting total number 
of particles labeled as 5’ or 3’ disomes by SIREn (Supplemental Figure 4A, see Methods) and by published manual annotations (top). 
Reconstructions performed with SIREn-annotated 5’ and 3’ disome particles (right); number of particles used in each reconstruction 
listed. Distribution of nearest-neighbor distances in sets of particles annotated by different methods (SIREn, manual, or both; bottom). 
(D) Venn diagram comparing manual and SIREn annotations for membrane-bound ribosomes (top). Reconstructions performed using 
particles from manual (blue) and SIREn (yellow) annotations are shown (bottom). Numbers of particles used for each reconstruction 
listed. Membrane-annotated particles in a representative tomogram are shown (right). Segmented membrane density is shown in 
gray (see Methods), particles are colored as at left. (E) Cumulative density function plots of the per-particle occupancy of disome and 
membrane blocks (see Methods). Thresholds used for particle selection are shown as dashed lines.
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annotated particles, finding both sets had smaller average 
nearest-neighbor distances than unannotated particles 
(Figure 5C). Secondly, we performed reconstructions 
using the particles identified by SIREn as 5’ and 3’ 
disomes, and found that doing so revealed low-resolution 
ribosomal density adjacent to the well-resolved central 
monosome (Figure 5C). Similarly, reconstructions using 
SIREn-identified membrane-associated particles resolved 
membrane density, and we found that the particles SIREn 
annotated as membrane-associated mapped to the 
membrane in source tomograms (Figure 5D).

DISCUSSION
This work contributes two tools to aid in the automated, 
model-free analysis of highly heterogeneous cryo-EM 
volume ensembles: a 3D-CNN that predicts an appropriate 
binarization threshold given an input density map, and a 
bootstrapping and graph clustering approach for inferring 
regions of heterogeneity directly from a volume ensemble. 
These tools fill a key niche in modern cryo-EM processing 
workflows as they help guide interpretation of the large 
number of volumes produced by modern generative 
reconstruction algorithms (Zhong et al. 2021; Chen and 
Ludtke 2021; Punjani and Fleet 2021; Gilles and Singer 
2024), or from deep classification with traditional tools 
(Rabuck-Gibbons et al. 2022). Specifically, we show how 
these tools can help to resolve minor states and quantify 
the frequency of specific conformational or compositional 
features across both SPA and cryo-ET datasets.

Automated prediction of density map binarization 
thresholds with a 3D-CNN.
Choosing accurate binarization thresholds (equivalently, 
contour levels or isosurface levels) for 3D density maps 
is both essential, and challenging to do at scale and in 
an unbiased manner. Choice of binarization threshold 
impacts which features are visible in a volume, and thus 
substantially impacts analysis of maps generated by 
EM data processing pipelines. Historically, binarization 
thresholds have been set to the 99th percentile of the 
data or manually defined, however, the need for more 
automated approaches to predicting binarization 
thresholds has been noted (Beckers et al. 2019; Joseph 
et al. 2020). A previous method to solve this problem by 
Pfab and Si, which used a minimization approach based 
on fraction of voxels above the threshold and the surface 
area-to-volume ratio, highlighted the utility of an unbiased 
method for threshold prediction (Pfab and Si 2019).

Here, we address this challenge by leveraging publicly 
available data on the EMDB (Turner et al. 2024) to train a 
3D-convolutional neural network (3D-CNN) to predict 
contour levels for density maps. To our knowledge, ours is 
the first machine-learning-based approach to predicting 
binarization thresholds for cryo-EM density maps, although 
CNNs have proven useful in other cryo-EM data processing 
tasks (Giri et al. 2023; de Teresa-Trueba et al. 2023; Mu et 
al. 2021). Although we apply the 3D-CNN specifically to 

predict thresholds for SIREn, we anticipate that this tool will 
be broadly useful in visualizing and analyzing 3D density 
maps generated by cryo-EM or cryo-ET. For example, there 
is a need for increased standardization of map thresholds, 
particularly as presented in publications, and all maps 
presented here are displayed at the threshold predicted 
by the 3D-CNN. Moreover, any approaches to volume 
ensemble analysis that entail measuring and comparing 
the occupancy of various subunits, particularly across 
independently collected datasets, will likely benefit from 
the appropriate application of binarization thresholds. 
Indeed, such comparisons otherwise require careful 
intra-dataset normalizations (Sun et al. 2023). To facilitate 
broad adoption of the 3D-CNN, we have developed a 
publicly available script (https://github.com/mariacarreira/
calc_level_ChimeraX) that allows users to rapidly predict 
volume thresholds directly in ChimeraX (Meng et al. 2023).

Inferring structural blocks with SIREn. 
In addition to an unbiased method for predicting contour 
levels for cryo-EM density maps, we also present SIREn, a 
tool for directly inferring regions of heterogeneity within 
a large structural ensemble. There are several approaches 
one could take to this task, all of which rely on examining 
how voxel occupancies co-vary across the dataset. Indeed, 
a previously-published approach (Sheng et al. 2023) 
involves performing dimensionality reduction with PCA 
and UMAP (McInnes et al. 2018), followed by clustering 
with HDBSCAN (Campello et al. 2015). One could similarly 
classify voxels into blocks via hierarchical clustering using 
simple correlation metrics, or other clustering-based 
approaches to partition voxels into non-overlapping 
classes. In contrast, SIREn allows voxels to be assigned 
to more than one class, which enables the detection of 
overlapping blocks. Our approach furthermore allows 
voxels that may have relatively weak correlations, but 
statistically significant co-occupancies, to be classified 
together. SIREn’s design additionally allows us to impose 
prior knowledge about the real-space relationship 
between voxels within a subunit by implementing a 
locality scaling factor that effectively prioritizes identifying 
relationships between physically proximal voxels. Notably, 
we only apply this scaling factor to positive co-occupancy, 
and generally employ weaker statistical constraints in 
identifying significant negative co-occupancy so as not 
to overly penalize voxels that may participate in multiple 
structural blocks.

In practice, we find that SIREn performs well in identifying 
known heterogeneity within datasets: SIREn is able to 
identify features like a misdocked central protuberance 
and a bound assembly factor in a well-annotated real 
dataset of assembling bacterial ribosomes, which we could 
not have identified using atomic-model-based approaches 
like those we have previously described (Sun et al. 2023). 

Nonetheless, there remain limitations to the performance 
of SIREn, the first being that input volumes must typically 
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be substantially downsampled. Although we are able to 
detect changes as small as ~8 kDa in the simulated uL2 
deletion datasets, interesting smaller scale heterogeneity 
may be lost due to this downsampling. This limitation 
follows from the combinatorial scaling in the number of 
calculations SIREn performs in querying pairs of voxels 
for co-occupancy; even relatively minor increases in the 
number of non-background voxels (caused by either a 
larger box size, or a larger solvent mask) substantially 
impact SIREn running time (Supplemental Tables 1-2). 
SIREn running time is also impacted by the size of the 
volume ensemble, as ensemble size informs the dimensions 
of the precalculated look-up table used to determine 
significance thresholds. In our tests, ensemble sizes in the 
range of 500-1,000 volumes have performed well. Finally, 
the size of blocks that can be detected is also limited by the 
random subsampling we perform in the initial step of block 
detection. We perform this random subsampling to limit 
the multiple hypothesis testing burden and to decrease 
run time. We find that subsampling by a larger factor 
than the default value of 2 generally decreases sensitivity, 
though users may wish to adjust this hyperparameter 
based on available computational resources.

We also emphasize that SIREn is, first and foremost, a 
hypothesis generation tool, and we recommend validating 
observations through traditional high-resolution 
refinement to identify which of the detected blocks are 
likely to represent biologically-meaningful heterogeneity. 
We present several semi-automated pipelines for 
performing such  analysis, including methods for querying 
occupancy of each identified block for every particle 
in a dataset, and performing traditional homogeneous 
refinements using subsets of particles identified in this 
manner. We showcase the power of this approach in 
our analysis of an assembling bacterial large ribosomal 
subunit dataset, where we are able to resolve YjgA and 
the misdocked central protuberance. In particular, for both 
YjgA and the misdocked CP, our homogeneous refinements 
have more interpretable density for these features than the 
original maps produced by 3D classification, despite using 
substantially fewer particles (Figure 4C-D), suggesting 
that our SIREn-MAVEn approach is able to curate a more 
homogeneous subset of particles than 3D classification 
produces.

Benchmarking tools for heterogeneity analysis.
To benchmark the performance of SIREn, we used a 
combination of simulated datasets and well-annotated 
real datasets. Using simulated datasets, with their precise 
ground-truth annotations, we were able to probe the limits 
of SIREn’s detection capabilities. We found that identifying 
features that were highly occupied across a dataset, such 
as those seen in the datasets with uL2 titrated at 75% 
frequency (Figure 3A), was challenging, but that SIREn 
was nonetheless able to detect variable features as small 
as ~8 kDa in the context of the ~1.3 MDa 50S ribosome. 
Similarly, we found that SIREn was able to resolve distinct 

blocks corresponding to the continuous conformational 
trajectory sampled by the yeast ATP synthase dataset 
(Figure 3C). Although our approach necessarily discretizes 
a continuous trajectory, we were able to use our ground-
truth labels to reveal that SIREn correctly inferred labels 
assigning each particle to a distinct rotational state (Figure 
3D).

How well simulated datasets recapitulate the features 
of real datasets for the purposes of benchmarking 
heterogeneity analysis tools, however, remains an 
open question (Noble 2024). In particular, real datasets 
contain features we do not see in simulated datasets 
that contribute to error and noise, including ice artifacts, 
radiation damage, incorrect orientation assignments 
from the 3D refinement procedure, and more (Baxter et 
al. 2009). Moreover, it is not clear that the common noise 
models applied to generate simulated data capture the 
effects of noise in real datasets (Baxter et al. 2009; Himes 
and Grigorieff 2021). To address these limitations, we also 
benchmark our tools using several real, well-annotated 
datasets (Figures 4-5), noting that in these real datasets, 
we do not have access to ground-truth labels for the 
conformational state of each particle, which limits our 
ability to precisely examine algorithmic performance. We 
therefore highlight that there is a potential broad utility for 
the development of better tools to accurately benchmark 
the performance of heterogeneous reconstruction 
algorithms and downstream analysis tools.

Resolving heterogeneity in situ with SIREn.
We developed SIREn with highly heterogeneous SPA 
datasets in mind, but we found that it could be readily 
applied to cryo-ET datasets. This is perhaps unsurprising 
given that the SIREn algorithm is largely agnostic to 
upstream processing and relies simply on having a large 
ensemble of 3D density maps aligned to a common 
reference frame. The observation that SIREn performs well 
for cryo-ET data as well as SPA data is exciting, as it affords 
the possibility of quantitatively exploring conformational 
landscapes in situ. For example, here we showed SIREn 
could detect differential occupancy of the A-site tRNA 
and bL12 and uL1 stalks in ribosomes imaged directly 
within intact M. pneumoniae cells (Tegunov et al. 2021). 
The potential for broader application of these approaches 
is still limited by our ability to perform robust particle 
picking and refinement on non-ribosomal particles in situ, 
but there is promising progress towards that end with 
optimized lamella production (Khavnekar et al. 2022), 
new particle picking approaches (Rice et al. 2023), and 
large cryo-ET datasets in which sub-nanometer resolution 
structures of non-ribosomal particles have begun to 
be solved (Khavnekar et al. 2023). In the long term, we 
envision applying SIREn and related approaches to map 
heterogeneous structures back to their native contexts to 
better understand how these structures interact with the 
physical landscape of the cell.
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Automated tools for the quantitative analysis of 
conformational landscapes.
As structural biology moves increasingly towards 
characterizing proteins as they exist in cells – occupying 
highly dynamic conformational landscapes, engaging in 
diverse transient interactions, and existing within distinct 
subcellular spatial contexts – we envision a broad utility 
for approaches like SIREn that enable systematic and 
quantitative analysis of highly heterogeneous structural 
ensembles. Beyond simply identifying where structural 
heterogeneity occurs within a 3D volume, we show here 
that SIREn-MAVEn can be used to quantitatively query 
the occupancy of inferred blocks across a particle stack. 
Having done so, we can not only curate subsets of particles 
that bear a feature of interest, but also examine patterns of 
block occupancy to uncover structural interdependencies. 
For example, we use these quantitative measurements to 
demonstrate that occupancy of the misdocked CP and 
properly-docked CP are, as expected, mutually exclusive 
(Figure 4D). Applying similar approaches to datasets where 
an experimental condition has been varied – for example, 
treatment with a drug or the addition of a binding partner – 
should allow one to interrogate how structural ensembles 
respond to specific perturbations. 

METHODS
SIREn algorithm design.
The SIREn algorithm is built on the intuition that two voxels 
that belong to the same structural block should be both 
occupied and both unoccupied in a given volume more 
often than predicted by their rates of occupancy across 
the ensemble. To formalize these intuitions, we consider 
two voxels vi and vj, occupied at frequencies fi and fj in an 
ensemble of binarized volumes. If the occupancy of vi and  
vj is independent, then we expect the probability that vi 
and  vj are both occupied in a volume V to be given by
 P(vi∩vj) = P(vi)P(vj) = fifj 
and similarly that
 P(~vi∩~vj) = P(~vi)P(~vj) = (1-fi)(1-fj)
describes the probability of neither voxel being occupied. 

To estimate the expected spread of values around the 
center under the assumption that occupancy of vi and 
vj are not related, we use a bootstrapping approach. 
For every unique pair of frequencies fi and fj found in 
the input ensemble, we computationally resample with 
replacement to generate a new ensemble with randomly-
distributed occupancies of the voxels vi and vj. We perform 
this resampling operation 1,000 times, and use the results 
to define a cut-off threshold tij at which co-occupancy of 
the voxels occurs less frequently than a defined p-value. 
To control for multiple hypothesis testing, we employ a 
Bonferroni correction on this p-value. If we observe that 
P(vi∩vj)>tij and P(~vi∩~vj)>t~i~j, we determine that the 
occupancies of vi and vj are not independent, and vi and 
vj are candidates to belong to the same structural block. 
To reduce the multiple hypothesis testing burden and 
increase computational efficiency, these calculations are 

performed only on voxels occupied in at least 1% of the 
volume ensemble; all voxels occupied less frequently than 
in 1% of volumes are excluded as solvent background. 
Moreover, we randomly subsample the voxels in this initial 
querying step, performing these bootstrap calculations 
on every pair of voxels from a randomly-selected half 
of the remaining non-background voxels. Finally, when 
determining whether a given pair of voxels are significantly 
co-occupied, we modify the positive co-occupancy 
threshold by a factor cij≥1 that we dub the ‘locality scaling 
factor’ and which is dependent on the Euclidean distance 
between vi and vj (Supplemental Figure 1), so that we 
consider vi and vj to be related if P(vi∩vj)>cij*tij.

After using bootstrap approaches to estimate the strength 
of the evidence for each pair of voxels being related, we 
then construct a graph where the nodes are the voxels, and 
where an edge is built between each pair of voxels vi and 
vj that are determined to be significantly related. We use a 
label propagation graph clustering method (Cordasco and 
Gargano 2010) to generate clusters of voxels that serve as 
seed blocks. Having generated the seed blocks, we then 
query each voxel vi against each seed voxel sk,j in a given 
seed block Sk using the bootstrapping approach described 
above. If vi is significantly related to a minimum fraction of 
the seed voxels (empirically, we have found 25% to be a 
reasonable threshold) in Sk, we add vi to Sk. Blocks are saved 
as binary volumes in MRC format, suitable for directly 
visualizing in ChimeraX (Meng et al. 2023), and using as 
input masks to MAVEn (Sun et al. 2023). 

Neural network design and architecture.
Input maps used for training the 3D-CNN were downloaded 
from the Electron Microscopy Data Bank (EMDB) (Turner et 
al. 2024). A total of 5,627 maps were downloaded from the 
EMDB, along with their corresponding annotated contour 
levels, based on structure determination method (single-
particle cryo-EM) and resolution (<10 Å). These entries were 
filtered to select maps with box sizes less than 916 pixels 
and fractional enclosed volumes (see below) ranging from 
0.001 to 0.02, resulting in 4,730 entries. Test and validation 
sets (10%) were selected at random, resulting in a final 
training set of 3,784 maps that were Fourier cropped to a 
box size of 64 pixels. Following Ranno and Si (see eqs. 1-3), 
the maps and their accompanying labels were normalized 
based on map statistics (Ranno and Si 2022). The scatter 
plots shown in Figure 2 exclude a small number of maps 
that had negative binarization thresholds predicted by 
the 99th percentile approach (60, 5, and 7 maps from the 
training, validation, and test sets, respectively).

eq. 1

eq. 2

eq. 3
where qi denotes the ith percentile of the data matrix x.
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The preprocessed (downsampled and normalized) maps 
were input to a 3D-CNN coupled to a multilayer perceptron 
(MLP). The architecture of the convolutional layers is 
adapted from Lee and colleagues (Lee et al. 2022), with 
one batch normalization layer added after each of the first 
four convolutional layers. The output of the convolutional 
layers was subjected to a 3D average pooling layer and 
dropout of 0.3 was applied. The final binarization threshold 
was predicted by an MLP with the following architecture: 
a first layer with 384 input and 64 output nodes, a ReLU 
layer, and a final layer with 64 input nodes and 1 output 
node. The model was trained for 10 epochs with batch 
size 32, Adam optimizer, learning rate of 5x10-6, and 
weight decay of 0. Loss during training was calculated 
by comparing the fraction of the volume enclosed at the 
predicted threshold – i.e. what fraction of the voxels in a 
volume have a value equal to or greater than the predicted 
threshold – to the fraction of the volume enclosed at the 
annotated threshold. As such a ‘counting’ operation is not 
differentiable, we adapted the loss by implementing a soft 
threshold using a sigmoid function, and calculating the 
mean squared error between the outputs of this sigmoidal 
function for the predicted threshold and the annotated 
threshold (eq. 4). The loss is thus given by: 

with means ranging between 10,000 and 25,500 Å, stepped 
by 5,000 Å, each with a standard deviation of 1,000 Å. The 
other parameters used in CTF corruption were as follows: 
spherical aberration of 2.7 nm, microscope voltage of 300 
kV, amplitude contrast ratio of 0.1, and phase shift of 0°.

To generate the five homogeneous particle stacks, we used 
the write_starfile script to write a RELION 3.0 .star file 
for each dataset. To generate the heterogeneous particle 
stacks, we implemented a shuffle_particles script 
(available with SIREn) to randomly select and shuffle entries 
from the intact (uL2Δ0) and full or partial deletion (uL2Δ1, 
uL2Δ0.25, uL2Δ0.5, uL2Δ.25) uL2 particle stacks and generate a 
.star file with particles mixed at the desired frequencies. 
A total of 17 (5 homogeneous and 12 heterogeneous) 
datasets were generated. For the purpose of training 
cryoDRGN models, CTF and pose parameters were parsed 
from the .star files using cryoDRGN’s parse_ctf_star 
and parse_pose_star commands, respectively, and 
particle images were downsampled to a box size of 128 
pixels using cryoDRGN’s downsample tool. The model 
architectures used were as follows: encoder and decoder 
dimensions of 3 layers with 1024 nodes each. Models were 
trained for 50 epochs with batch size 8. The input volume 
ensemble for SIREn was generated by performing k-means 
clustering on the cryoDRGN latent encodings with k = 500, 
and generating a volume at each k-means cluster center. 
cryoDRGN v1.1.2 was used for all trained models.

SIREn analysis of simulated uL2 ribosomal SPA datasets.
The input volume ensemble was downsampled and 
normalized using the SIREn preprocess command, 
which implements the downsampling and normalization 
described above. The 3D-CNN predicted per-map 
binarization thresholds for all 500 maps using the SIREn 
eval_model command and the trained model weights. 
The sketch_communities command was run with 
default p-value thresholds for positive and negative co-
occupancy (0.01 and 0.05, respectively) and with random 
subsampling by a factor of 2. The expand_communities 
command was likewise run with default p-value thresholds 
for positive and negative co-occupancy (0.01 and 0.05, 
respectively). In the datasets where an uL2 block was 
identified, the resulting block was used as mask for 
MAVEn’s calc_occupancy script (https://github.com/
lkinman/MAVEn) to query the occupancy of that block in 
each of the 500 cryoDRGN-generated maps. Occupancy 
values were normalized by uL2 block size. We fit a two-
component Gaussian mixture model (GMM) with tied 
covariance matrices to the resulting uL2 block occupancy 
distribution in each dataset, and assigned each volume to 
a low- or high- uL2 occupancy class based on the fit GMM 
to quantify the frequency of uL2-intact particles in each 
dataset.

eq. 4

where Li is the loss calculated by this method for a given 
map i; pi and ti are the predicted and annotated labels, 
respectively, for the map i; and vij is the intensity of voxel 
j in map i.

Simulating uL2 ribosomal SPA datasets.
Full or partial uL2 deletion models were generated by 
deleting 271, 213, 136, 73, or 0 amino acids from the 
C-terminus of protein uL2 in the atomic model of the 
E. coli ribosomal large subunit (PDB: 4ybb) (Noeske et 
al. 2015), resulting in the uL2Δ1, uL2Δ0.75, uL2Δ0.5, uL2Δ0.25, 
and uL2Δ0 models, respectively. These atomic models 
were converted to 3D density maps using the pdb2mrc 
command implemented in EMAN2 (Tang et al. 2007) 
at a box size of 440 pixels and pixel size of 1 Å/px. We 
generated 100,000 noiseless 2D projections from each 
model, randomly sampling projection angles from SO(3), 
and randomly sampling a uniform translation distribution 
with an upper bound of 22 pixels using the project3d 
script as implemented in cryoSRPNT (https://github.com/
bpowell122/cryoSRPNT) and described previously (Powell 
and Davis 2024). Structural and shot noise were added to 
the projections using the acn script in cryoSRPNT, adapted 
to calculate the standard deviation of a clean particle stack 
on 2,000 particles at a time, rather than the full particle 
stack. We subsequently corrupted the resulting particle 
images via the contrast transfer function (CTF) using 
the same script. Defocus values for CTF corruption were 
randomly sampled from a series of Gaussian distributions 
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SIREn analysis of a simulated cryo-ET dataset.
The simulated yeast ATP synthase dataset was generated 
from PDB models 7tk6, 7tk7, 7tk8, 7tk9, 7tka, 7tkb, 7tkc, and 
7tkd (Guo and Rubinstein 2022), and a tomoDRGN model 
was trained on the resulting data, as described previously 
(Powell and Davis 2024). Maps (500) were generated at 
a box size of 104 pixels from the trained model’s latent 
space using k-means clustering, and input to SIREn. Maps 
were downsampled and normalized, and binarization 
thresholds were predicted, using the preprocess 
and eval_model commands implemented in SIREn 
as described above. The sketch_communities and 
expand_communities commands were run with 
default values to generate putative structural blocks. The 
calc_occupancy_otf script implemented in MAVEn 
was adapted to incorporate binarization predictions for 
each generated map using the 3D-CNN we developed, 
and to be compatible with tomoDRGN-generated maps. 
We used this adapted script to query the occupancy of 
the five blocks representing rotational states of the yeast 
ATP synthase in each of the 20,000 particles in the dataset. 
Occupancies were normalized by input block size to scale 
between 0 and 1 for each block. Each particle was then 
assigned to an inferred particle class corresponding to the 
block for which that particle had maximal occupancy. The 
filter_star script from tomoDRGN was used to filter the 
image series .star file based on indices of particles assigned 
to each class. The resulting filtered .star files were used 
to perform reconstructions (without pose refinement) in 
RELION 3.1. The maps were postprocessed in RELION and 
low-pass filtered to 10 Å.

SIREn analysis of EMPIAR-10076.
A cryoDRGN (v0.3.2) model was trained on the 
EMPIAR-10076 dataset, as described previously (Zhong et 
al. 2021; Kinman et al. 2022), and 500 maps were sampled 
from the latent space using k-means clustering. Maps were 
generated at box size 64, and normalized using SIREn’s 
preprocess command. Binarization thresholds were 
predicted using the eval_model command and trained 
model weights, and structural blocks were predicted 
using the sketch_communites and expand_
communities commands with default values. The 
occupancy of the resulting blocks was measured in each 
of the 500 input maps, using the predicted binarization 
thresholds and normalizing occupancies by the size of each 
block. These occupancy measurements were hierarchically 
clustered to generate the heatmap shown in Figure 4D. 
Each of the 500 input maps was assigned to a volume class 
by implementing a threshold on the dendrogram resulting 
from the hierarchical clustering; all particles within a 
k-means class were assigned the same volume class as 
their corresponding k-means cluster center volume. The 
median position in latent space was then calculated for 
each of the four volume classes, and a centroid volume 
generated at the nearest on-data point in the latent space. 
The structural blocks generated by SIREn were also used 

as input masks in a version of the calc_occupancy_
otf script implemented in MAVEn (Sun et al. 2023) that 
was adapted to incorporate SIREn-predicted binarization 
thresholds for each volume, producing measurements 
of the occupancy of each block in each of the particles in 
the dataset (96,478 in total). Particles with high occupancy 
of block 5 (bL12 stalk and YjgA) and 10 (misdocked 
central protuberance) were isolated and used to perform 
homogeneous refinements in cryoSPARC (Punjani et al. 
2017).

SIREn analysis of EMPIAR-10499.
TomoDRGN models were trained on the EMPIAR-10499 
(Tegunov et al. 2021) dataset of chloramphenicol-treated M. 
pneumoniae cells as described previously, with one model 
trained on particles extracted with a real box size of ~36 
nm (the intramolecular heterogeneity model) and another 
model trained on particles with a real box size of ~74 nm 
(the intermolecular heterogeneity model) (Powell and 
Davis 2024). We performed k-means clustering on the latent 
space of each model, with k = 500, and generated maps at 
box size 64 at each k-means cluster center. The resulting 
maps were low-pass filtered to 8 and 12Å, respectively. 
These maps were then normalized using SIREn’s 
preprocess command, and binarization thresholds were 
predicted using the eval_model command and trained 
model weights. The sketch_communities command 
was run with default values after filtering maps with 
predicted binarization thresholds more than two standard 
deviations from the mean, thereby excluding low-quality 
maps deriving from low-quality particles. This capability is 
directly implemented in the sketch_communities and 
expand_communites commands using the --filter 
flag. For both the intramolecular and intermolecular 
models, the adapted calc_occupancy_otf script 
described above for use with tomoDRGN and SIREn-
predicted binarization thresholds was used to generate 
a map for each particle in the dataset (20,981 particles 
in total) and to measure occupancy of each block in the 
resulting maps. Occupancies were normalized by block 
size to scale between 0 and 1, and subsets of particles were 
selected as having high or low occupancy of each block 
using empirically defined cutoffs. In the intramolecular 
heterogeneity dataset, particles with occupancy of 0 for 
the relevant blocks were designated as ‘low occupancy’ 
particles, while thresholds of 0.5, 0.7, and 0.2 were used to 
select ‘high occupancy’ particles for blocks 19, 6, and 20, 
respectively. In the intermolecular heterogeneity dataset, 
all particles with occupancy of membrane or disome blocks 
greater than 0.2 were designated as ‘high occupancy’ for 
the relevant block (Figures 5A,E). The relevant particle 
subsets were saved as .pkl files and used to filter the 
appropriate image series .star file using the tomoDRGN 
filter_star script. Filtered .star files were used as inputs 
for RELION reconstructions (without pose refinement). 
Maps were post-processed and low-pass filtered to 10 Å 
(20 Å for the disome maps). SIREn-annotated particles 
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were compared to the manual annotations described by 
Powell and Davis. Relevant particles were mapped onto 
tomograms using tomoDRGN’s subtomo2chimerax 
command. Membrane density in the tomograms was 
segmented using MemBrain-Seg (Lamm et al. 2024). 
Segmented membrane density was postprocessed using a 
custom jupyter notebook (Powell et al. 2024) and ChimeraX 
(Meng et al. 2023).

Runtime Experiments. 
For runtime experiments, SIREn was run on a cluster 
equipped with an NVIDIA GeForce RTX 3090 GPU (24 GB) 
and two Intel Xeon Gold 6242R CPUs. The resulting runtimes 
are reported in Supplemental Tables 1-2. In cases where 
the input volumes were not at a box size of 64 pixels, as 
required for siren eval_model, maps were downsampled 
by siren preprocess prior to normalization. Selected real 
datasets were run using the ‘--filter’ argument in the 
sketch_communities and expand_communities 
commands, which filters volumes with outlier predicted 
binarization thresholds. For the dataset where box size was 
less than 64 pixels, a single, manually selected binarization 
threshold was supplied to the sketch_communities 
and expand_communities commands.

CODE AVAILABILITY
The SIREn software is available at:
www.github.com/lkinman/SIREn.

Script to automate threshold predictions in ChimeraX 
using the trained 3D-CNN are available at:
www.github.com/mariacarreira/calc_level_ChimeraX.

Scripts to simulate particle stacks are available at:
https://github.com/bpowell122/cryoSRPNT.
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Supplemental Figure 1: Distance-dependent locality scaling factor.
The scaling factor used to modify threshold for positive co-occupancy is shown as a function of voxel distance. Note that the scaling 
factor remains fixed at 1.75 for all voxel distances greater than 40 Å.
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Supplemental Figure 2: 3D-CNN training, and testing. 
(A) 3D-CNN training loss (see Methods) plotted as function of number of epochs trained. (B) 3D-CNN predicted threshold plotted 
against EMDB ground truth thresholds, with each point plotted as percentile of the relevant volume data, for training, validation, and 
test sets. The 99th percentile of volume data, a widely-used statistical approach to predicting binarization thresholds, is shown as a 
dotted blue line, which highlights the significant number of volumes whose ground-truth and 3D-CNN predicted labels deviate from 
this value. (C) Representative density maps of transmembrane proteins displayed top-to-bottom from Silberberg et al. 2022, Shen et al. 
2022, Huang et al. 2023, Gu et al. 2022, and Xiong et al. 2023, respectively. Maps are presented at binarization thresholds from EMDB 
ground truth (left), 3D-CNN-predicted threshold (middle), and 99th percentile threshold (right).
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Supplemental Figure 3: Simulated dataset of compositional heterogeneity in the E. coli 50S ribosome. 
(A) uL2 blocks detected by SIREn for the four datasets containing 25% uL2-intact particles. (B) Per-volume uL2 block occupancies for 
datasets containing either 50% or 25% uL2-intact particles (gray, see Methods). Datasets are labeled as shown in heatmap key. Dashed 
lines indicate fit Gaussian mixture model distributions (black – low occupancy class, purple – high occupancy class).
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Supplemental Figure 4: SIREn analysis of a simulated cryo-ET dataset bearing conformational heterogeneity. 
(A) Schematic workflow for ‘on-the-fly’ querying of the occupancy of SIREn blocks for each particle across a full particle stack. (B) Violin 
plots showing distributions of normalized occupancy of all five SIREn blocks in each inferred particle class (see Methods). Blocks are 
colored as in Figure 3. 
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SUPPLEMENTARY TABLES

Dataset Number of 
volumes

Box size 
(px)

Number of voxels in 
solvent mask Command --filter Running time 

(hr:min:sec)

ATP synthase 500 64 7,924

preprocess
 n/a

0:01:30
eval_model 0:00:04

sketch_communities  no 0:05:39
expand_communities no 0:05:12

uL2 deletion 500 64 6,412

preprocess
 n/a

0:00:25
eval_model 0:00:05

sketch_communities  no 0:03:53
expand_communities no 0:01:57

EMPIAR
10499

(intramolecular)

500

32 6,119
sketch_communities no 0:04:21
expand_communities  no 0:03:44

64 27,914

preprocess
 n/a

0:00:22
eval_model 0:00:04

sketch_communities yes 0:41:00
expand_communities yes 0:25:53

96 75,439

preprocess
 n/a

0:00:55
eval_model 0:00:04

sketch_communities yes 3:21:41
expand_communities yes 1:53:08

100 64 30,677

preprocess
 n/a

0:00:04
eval_model 0:00:02

sketch_communities yes 0:40:58
expand_communities yes 0:00:29

1,000 64 27,754

preprocess
 n/a

0:00:44
eval_model 0:00:07

sketch_communities yes 0:46:42
expand_communities yes 0:45:39

EMPIAR
10499

(intermolecular)
500 64 86,979

preprocess
 n/a

0:00:22
eval_model 0:00:04

sketch_communities yes 6:17:08
expand_communities yes 3:43:31

EMPIAR
10076 500 64 12,547

preprocess
 n/a

0:00:22
eval_model 0:00:04

sketch_communities  no 0:10:27
expand_communities no 0:08:03

Supplemental Table 1: SIREn running times for selected datasets. Timing experiments were performed on a worker node equipped with 
an NVIDIA 3090 24 GB GPU and two Intel Xeon Gold 6242R CPUs (3.10GHz, 512 GB RAM), as described in the Methods. Timing experiments 
were performed for a variety of volume ensemble sizes and box sizes, and for datasets with a range of number of voxels within the solvent 
mask. All timing experiments were run using the same node and computational resources. Note that the --filter flag only applies to the  
sketch_communities and expand_communities commands.
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Dataset Number of 
volumes

Box size 
(px)

Number of voxels 
in solvent mask Command Number of 

hypothesis tested Step Running time 
(hr:min:sec)

uL2 deletion 500 64 64,12

sketch_communities 5,137,615

bootstrapping 
cut-off thresholds 0:01:50

querying voxel 
pairs 0:01:58

expand_communities 76,944

bootstrapping 
cut-off thresholds 0:01:52

querying voxels 
for expansion 0:00:01

EMPIAR
10499

(intramolecular)

500 64 27,914

sketch_communities 97,391,946

bootstrapping 
cut-off thresholds 0:02:34

querying voxel 
pairs 0:37:26

expand_communities 122,207,492

bootstrapping 
cut-off thresholds 0:02:33

querying voxels 
for expansion 0:23:11

100 64 30,677

sketch_communities 117,619,453

bootstrapping 
cut-off thresholds 0:00:05

querying voxel 
pairs 0:40:51

expand_communities 1,288,434

bootstrapping 
cut-off thresholds 0:00:06

querying voxels 
for expansion 0:00:22

1,000 64 27,754

sketch_communities 82,902,126

bootstrapping 
cut-off thresholds 0:12:17

querying voxel 
pairs 0:32:45

expand_communities 144,042,122

bootstrapping 
cut-off thresholds 0:12:30

querying voxels 
for expansion 0:32:51

Supplemental Table 2: Expanded SIREn running time information. Timing information for two key steps of SIREn are presented for selected datasets. 
The number of hypotheses tested in the expand_communities command, which is calculated as the product of the number of voxels in the solvent 
mask, and the number of seed blocks generated by sketch_communities, is indicated. Note that run times depend, in part, on the number of 
hypotheses tested. Timing experiments were performed on a worker node equipped with an NVIDIA RTX 3090 24 GB GPU and two Intel Xeon Gold 
6242R CPUs (3.10GHz, 512 GB RAM), as described in the Methods.
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