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Abstract: This study investigated the geographic variation and the clustering of lung cancer incidence rates
in Philadelphia and the surrounding areas using addresses at the time of diagnosis. Using 60,844 cases
from Pennsylvania Cancer Registry, we calculated and mapped the age-adjusted incidence rates for five
Pennsylvania (PA) counties near Philadelphia between 1998–2007 and 2008–2017. We identified ZIP
codes with significantly higher incidence rates than the state rates and examined their demographic and
exposure characteristics. Further, we tested for spatial autocorrelation and identified spatial clusters
using Moran’s I statistic. Our results showed that approximately one in four ZIP codes had an incidence
rate that was significantly higher than the PA state rate in each period studied. Clusters of higher
incidences were detected in the southeastern part of PA bordering New Jersey. These areas tended to
be more populated, of lower socioeconomic status, and closer to manufacturing facilities and major
highways. Possibly driven by the community and environmental factors, the observed differences in
disease incidence suggest the importance of including residential location in risk assessment tools for
lung cancer.

Keywords: lung cancer; incidence; clustering; spatial autocorrelation; environmental risk factor

1. Introduction

Lung cancer is the leading cause of death from cancer in the United States, reporting 228,150 new
diagnoses and 142,670 deaths in 2019 [1]. The national 5-year survival rate for 2010–2016 has been
estimated to be 20.5% [1]. A recent report noted lung cancer constitutes the second most common type
of cancer and the most common cause of cancer deaths in Pennsylvania (PA) in 2018 [2]. Although lung
and bronchus cancer incidence rates in PA have been decreasing in recent years, Pennsylvania still
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consistently has a higher lung cancer incidence rate than the national average. The burden of lung
cancer is even more prominent for major metropolitan areas such as Philadelphia and Pittsburgh.
For example, the Centers for Disease Control and Prevention (CDC) State Cancer Profiles show that
Pennsylvania’s 5-year age-adjusted incidence rate of 64.0 per 100,000 for 2014–2018 is higher than the
national average of 59.2 per 100,000 while Philadelphia County’s reported incidence rate of 77.0 per
100,000 is statistically significant higher than the PA state rate [3].

Tobacco use through cigarette smoking has been established as a principal risk factor for lung
cancer. However, 10%–20% of all lung cancer cases occur in never smokers, who are defined as
people who smoked fewer than 100 cigarettes in their lifetime [4,5]. Environmental risk factors
including exposure to air pollution, radon, asbestos, uranium, and diesel exhaust can also lead to lung
cancer [6–8]. In fact, the International Agency for Research on Cancer (IARC) of the World Health
Organization (WHO) has classified air pollution as a Group 1 carcinogen with clear evidence of being
carcinogenic to humans, accounting for more than 230,000 lung cancer deaths per year worldwide [9,10].
These environmental exposures are likely to contribute to lung cancer development in never smokers
and can increase lung cancer risk in smokers [11].

Because of the potential impact of environmental exposure on cancer risk, residential history
should be included as a factor in population-based studies of lung cancer risk factors or risk
assessment tools. Thus, it is critical to incorporate geographic location as an important component
in identifying at-risk populations for cancer surveillance and screening beyond smoking history
alone. Understanding geographic patterns in cancer incidence may be useful for devising public
health interventions to optimize approaches to lung cancer screening and diagnosis. Furthermore,
geographic analysis of lung cancer incidence may also enable us to gain insight into other cancer risk
factors, such as proximity to industrial facilities that may produce toxic chemicals as well as other
sources of air pollutants (e.g., traffic patterns).

The objective of this work is to examine the geographic variation in lung cancer incidence rates
for Philadelphia and the surrounding counties to assess the impact of location on risk and disease
burden. Using data from the Pennsylvania Cancer Registry, we employ statistical tools to identify
areas with increased incidence risk for developing lung cancer and to detect hot spots of high lung
cancer incidence. Further, we assess whether the population and environmental characteristics of these
areas are associated with higher disease risk. The possible role that environment and community play
in predisposing certain groups to lung cancer warrants its inclusion in lung cancer risk evaluations
and promotes greater health surveillance in identified hot spots.

2. Materials and Methods

2.1. Study Area

The study area consisted of ZIP codes that fall into the five counties (Bucks, Chester, Delaware,
Montgomery, and Philadelphia) in southeastern Pennsylvania. We chose to use ZIP code as the
geographical unit of interest because of its familiarity in communications with health care providers
and the general population. Even though ZIP codes typically have more variations within the unit
than census tracts, many published reports have demonstrated findings from ZIP code level analyses
to have similar utility to those that used census tracts [12–14]. Recent studies have used the ZIP code
as their unit for analysis [15,16]. ZIP code boundaries for the year 2017 were used and sourced from
the United States Census Bureau [17]. In total, 213 ZIP codes were included in the analysis. The study
area of interest and its surrounding states are shown in Figure 1.
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Figure 1. The study area in southeastern Pennsylvania. (NJ: New Jersey, DE: Delaware, MD: 
Maryland, WV: West Virginia, OH: Ohio, NY: New York). 

2.2. Data Sources 

Case data were obtained from the Pennsylvania Cancer Registry (PCR), a statewide data system 
established in 1985 to collect records of all new cases of cancer diagnosed or treated in Pennsylvania. 
The PCR is an incidence-based registry, such that subsequent progression of diseases or relapses is 
not captured in the registry. The registry provides data on patient- and tumor-specific characteristics 
for individual cases and has earned Gold Certification from the North American Association of 
Central Cancer Registries (NAACCR), the highest level of data quality achieving at least 95% 
completeness, for all years of data available except 2001 (not certified) and 2012 (Silver Certification 
with at least 85% completeness) [18]. For this study, we restricted our analysis to (1) lung and 
bronchus cases using International Statistical Classification of Diseases and Related Health Problems, 
10th revision (ICD 10) diagnosis codes for malignant neoplasm—C340 (main bronchus), C341 (upper 
lobe, bronchus or lung), C342 (middle lobe, bronchus or lung), C343 (lower lobe, bronchus or lung), 
C348 (overlapping sites of bronchus and lung), and C349 (unspecified part of bronchus or lung), (2) 
diagnoses between 1998 and 2017, the latest year which the data are available for research, and (3) 
those cases where residential address at the time of diagnosis was located within the above 
mentioned five counties in Pennsylvania. We conducted the present analysis under a data use 
agreement with Pennsylvania Department of Health and with the approval of the University of 
Pennsylvania Institutional Review Board (IRB number 831671). 

To determine the geographical location at the time of diagnosis, the reported street addresses 
were geocoded using ArcGIS 10.6.1 software [19]. Only cases that matched on at least ZIP code level 
accuracy (65,261 cases, 99%) and addresses that were not a P.O. Box address (4362, 2%) were included 
in the subsequent analysis. A total of 60,899 lung and bronchus cancer cases met these criteria. Cases 
were further excluded if the matched ZIP codes no longer existed in the study area in 2015 (37, 0.06%) 
or if the age at diagnosis fell into an age group reported to have no population for the ZIP code of 
interest based on the government population estimates (see next section on Population size and 
covariate information), suggesting data entry error (18, 0.03%). The final sample size for analysis was 
60,844 cases. We further classified each case into the major histology groupings (adenocarcinoma, 
squamous cell carcinoma, small cell carcinoma, large cell carcinoma, and other) using ICD-O-3 
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2.2. Data Sources

Case data were obtained from the Pennsylvania Cancer Registry (PCR), a statewide data system
established in 1985 to collect records of all new cases of cancer diagnosed or treated in Pennsylvania.
The PCR is an incidence-based registry, such that subsequent progression of diseases or relapses is not
captured in the registry. The registry provides data on patient- and tumor-specific characteristics for
individual cases and has earned Gold Certification from the North American Association of Central
Cancer Registries (NAACCR), the highest level of data quality achieving at least 95% completeness,
for all years of data available except 2001 (not certified) and 2012 (Silver Certification with at least 85%
completeness) [18]. For this study, we restricted our analysis to (1) lung and bronchus cases using
International Statistical Classification of Diseases and Related Health Problems, 10th revision (ICD 10)
diagnosis codes for malignant neoplasm—C340 (main bronchus), C341 (upper lobe, bronchus or lung),
C342 (middle lobe, bronchus or lung), C343 (lower lobe, bronchus or lung), C348 (overlapping sites
of bronchus and lung), and C349 (unspecified part of bronchus or lung), (2) diagnoses between
1998 and 2017, the latest year which the data are available for research, and (3) those cases where
residential address at the time of diagnosis was located within the above mentioned five counties in
Pennsylvania. We conducted the present analysis under a data use agreement with Pennsylvania
Department of Health and with the approval of the University of Pennsylvania Institutional Review
Board (IRB number 831671).

To determine the geographical location at the time of diagnosis, the reported street addresses
were geocoded using ArcGIS 10.6.1 software [19]. Only cases that matched on at least ZIP code level
accuracy (65,261 cases, 99%) and addresses that were not a P.O. Box address (4362, 2%) were included in
the subsequent analysis. A total of 60,899 lung and bronchus cancer cases met these criteria. Cases were
further excluded if the matched ZIP codes no longer existed in the study area in 2015 (37, 0.06%) or if
the age at diagnosis fell into an age group reported to have no population for the ZIP code of interest
based on the government population estimates (see next section on Population size and covariate
information), suggesting data entry error (18, 0.03%). The final sample size for analysis was 60,844 cases.
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We further classified each case into the major histology groupings (adenocarcinoma, squamous cell
carcinoma, small cell carcinoma, large cell carcinoma, and other) using ICD-O-3 morphology codes and
stages (local, regional, distant, other/unknown) using either 1977 or 2000 Surveillance, Epidemiology,
and End Results (SEER) summary stage guidelines depending on the year of diagnosis [20–22]. Overall,
37.8% of the cases were adenocarcinoma, 18.8% were squamous cell carcinoma, and 13.2% and 10%
were small cell and large cell carcinoma, respectively. The distribution for cases with local, regional,
and distant stages was 32.6%, 17.2%, and 14.8%, respectively, and the remaining were unknown
or un-staged.

2.3. Population Size and Covariate Information

The annual population size by age groups for a ZIP code was obtained from US Census
Bureau using decennial census (2000, 2010), American Community Survey (ACS) 5-year estimates
(2011 to 2017), or purchased through the data vendor Geolytics Inc. (Branchburg Township, NJ, USA)
(2001 to 2009) [23,24]. Demographic information including median age, median income, percentage
of whites, percentage of Hispanics, poverty level, percentage graduating high school or higher,
employment to population ratio, and unemployment rates were obtained for each ZIP code using 2017
ACS estimates. Information on facilities reported to U.S. Environmental Protection Agency (EPA)’s
Toxic Release Inventory (TRI) program [25], which tracks the management of toxic chemicals that may
pose a threat to human health and the environment, were gathered from EPA’s Data Mart [26]. The total
number of unique TRI facilities, total amounts of air emission as well as emissions from benzene,
beryllium, cadmium, chloromethyl methyl ether, chromium compounds, crocidolite asbestos, and nickel
compounds that fall within a 10-mile radius and a 15-mile radius of the centroid of a ZIP code between
1987 and 2017, and the distances to the nearest TRI facility from the centroid were computed [27].
These chemicals are chosen because they have been classified as Group 1 carcinogens affecting humans
by IARC and as lung cancer-specific carcinogens according to the review by Cogliano et al. [9,28].
The shortest distances from each ZIP code’s centroid to Philadelphia International Airport (PHL)
and Interstate-95 highway were computed using ArcGIS software. The locations of TRI facilities,
the city of Philadelphia, PHL, and Interstate-95 highway are shown in Figure 2.

Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 4 of 14 

morphology codes and stages (local, regional, distant, other/unknown) using either 1977 or 2000 
Surveillance, Epidemiology, and End Results (SEER) summary stage guidelines depending on the 
year of diagnosis [20–22]. Overall, 37.8% of the cases were adenocarcinoma, 18.8% were squamous 
cell carcinoma, and 13.2% and 10% were small cell and large cell carcinoma, respectively. The 
distribution for cases with local, regional, and distant stages was 32.6%, 17.2%, and 14.8%, 
respectively, and the remaining were unknown or un-staged. 

2.3. Population Size and Covariate Information 

The annual population size by age groups for a ZIP code was obtained from US Census Bureau 
using decennial census (2000, 2010), American Community Survey (ACS) 5-year estimates (2011 to 
2017), or purchased through the data vendor Geolytics Inc. (Branchburg Township, NJ, USA) (2001 
to 2009) [23,24]. Demographic information including median age, median income, percentage of 
whites, percentage of Hispanics, poverty level, percentage graduating high school or higher, 
employment to population ratio, and unemployment rates were obtained for each ZIP code using 
2017 ACS estimates. Information on facilities reported to U.S. Environmental Protection Agency 
(EPA)’s Toxic Release Inventory (TRI) program [25], which tracks the management of toxic chemicals 
that may pose a threat to human health and the environment, were gathered from EPA’s Data Mart 
[26]. The total number of unique TRI facilities, total amounts of air emission as well as emissions from 
benzene, beryllium, cadmium, chloromethyl methyl ether, chromium compounds, crocidolite 
asbestos, and nickel compounds that fall within a 10-mile radius and a 15-mile radius of the centroid 
of a ZIP code between 1987 and 2017, and the distances to the nearest TRI facility from the centroid 
were computed [27]. These chemicals are chosen because they have been classified as Group 1 
carcinogens affecting humans by IARC and as lung cancer-specific carcinogens according to the 
review by Cogliano et al. [9,28]. The shortest distances from each ZIP code’s centroid to Philadelphia 
International Airport (PHL) and Interstate-95 highway were computed using ArcGIS software. The 
locations of TRI facilities, the city of Philadelphia, PHL, and Interstate-95 highway are shown in 
Figure 2. 

 
Figure 2. Locations of TRI facilities, Philadelphia (green point), Philadelphia International (PHL) 
Airport (yellow point), and Interstate I-95 highway (in red) in the study area. 

Figure 2. Locations of TRI facilities, Philadelphia (green point), Philadelphia International (PHL)
Airport (yellow point), and Interstate I-95 highway (in red) in the study area.



Int. J. Environ. Res. Public Health 2020, 17, 9498 5 of 14

To explore whether the geographical patterns we observed in incidence rate can be explained by
smoking, a key risk factor for lung cancer, we obtained the ZIP code level annual household expenditure
on tobacco and smoking supplies provided by Geolytics as a proxy for cigarette use. The cigarette
expenditure data are part of the Consumer Expenditure Survey (CES) collected by the US Bureau of
Labor Statistics [29,30]. We computed the 5-year averaged annual expenditures per household using
data from 2004 to 2008. Although it is not the goal of the current analyses to make inferences on
association or causality, we have selected these years as an attempt to address the temporal relationship
between smoking or cigarette use and lung cancer incidence.

2.4. Calculation of Age-Adjusted Incidence Rates

Because cancer tends to affect older people more and different ZIP codes may have different
proportions of older individuals, we calculated age-adjusted incidence rates such that crude incidences
for each ZIP code were externally adjusted according to the 2000 U.S. Standard Million Population,
a commonly used standard population for adjustment that assumed a total population of 1,000,000 [3].
We specified 13 age groups distribution (0–4, 5–9, 10–14,15–19, 20–24, 25–34, 35–44, 45–54, 55–59,
60–64,65–74,75–84, 85 and above) as used by the ACS population estimates report. The age-adjusted
incidence rate (reported as the number of cases per 100,000) for a ZIP code was calculated as

100, 000
∑
k

casesk
populationk

·
std.popk

1,000,000 , where casesk
populationk

is the crude incidence rate and std.popk is the standard

population, respectively, for kth age group (k = 1, . . . , 13). We calculated ten-year age-adjusted rates
for the two time periods: 1998–2007 and 2008–2017. For each interval, the total number of cases and
population size within the time period were summed over the years. We used 10-year intervals for
simplicity and based on the reasonable assumption that incidence does not change substantially over
consecutive years. Considering two time periods not only provided information on the general trend
in lung cancer incidence in the past two decades but could also highlight important changes in the
observed rates.

2.5. Mapping of Incidence Rates

The changes in the age-adjusted incidence rate from the first time period to the next were tested
using Wilcoxon signed rank test. We calculated the percentage change in rates, and ZIP codes with rates
higher in the 2008 to 2017 period than in the 1998 to 2007 period were identified. We then compared
the rates against the five-year PA state age-adjusted rate for 2000–2004 and 2010–2014, which roughly
correspond to the mid-point of each 10-year study time period, respectively. The state age-adjusted
rates were obtained from the PA Department of Health’s Enterprise Data Dissemination Informatics
Exchange (EDDIE) website [31], and the rates were 69.2 (95% CI: 68.6, 69.8) and 64.6 (95% CI: 64.1,
65.2) per 100,000 for 2000–2004 and 2010–2014, respectively. We determined whether the incidence
rates were statistically higher than the state rate by computing 95% confidence intervals for the rate
difference according to the method proposed by Tiwari et al. [32]. A 95% confidence interval that is
completely above 0 would imply a statistically significant higher incidence rate than the state rate;
ZIP codes with age-adjusted incidence rates in 2008–2017 that are significantly higher than the state
rate were identified as “high incidence” ZIP codes. Additionally, rate ratios were calculated using
the individual ZIP code rates and state rates. We reported the median and interquartile range (IQR)
values of demographic and environmental characteristics and household expenditures on tobacco and
smoking supplies for the high incidence ZIP codes versus remaining ZIP codes and compared them
using Wilcoxon rank sum tests. Maps of 10–year age-adjusted incidence rates, the percentage change
in rates, rate ratios, high incidence ZIP codes, and ZIP code characteristics were constructed using the
sp package in R version 3.6.
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2.6. Spatial Autocorrelation and Clustering

We assessed spatial autocorrelation and clustering using the Moran’s I statistic [33], the corresponding
global test, and its Local Indicators of Spatial Association (LISA) [34]. Analogous to a correlation
coefficient, the global Moran’s I statistic measures overall spatial autocorrelation of a quantity
(e.g., incidence rate) by using the form of a correlation coefficient from every pair of the spatial units
(e.g., ZIP codes) but weighted according to the spatial relationships among the units. The weights
(also known as spatial weights) are used to represent neighboring relationships for each ZIP code under
study in which two units that are closer in space would weigh more than the units that are farther
away. We used the “queen” criterion to define spatial weights such that two ZIP codes were neighbors
if they either share a common edge or share a common vertex and, thus, were more inclusive [35,36].
The difference in the results was minimal when the “rook” criterion was used, which defines another
ZIP code as a neighbor only if they share a common edge.

A positive Moran’s I value would occur when incidence rates for neighbors are both greater
or both less than the mean rate, and a negative value if the rate of a ZIP code is less than the mean
and the rate for its neighbor is greater than the mean. A study region in which many high incidence
ZIP codes neighbor other ZIP codes with high incidence would result in a large and positive I value.
The global test for Moran’s I evaluated the overall patterns for the entire study region—whether the
expressed trends in incidence were clustered (i.e., I > 0), dispersed (i.e., I < 0), or random (i.e., I ~ 0).
The null hypothesis was that the incidence rates are randomly distributed among ZIP codes; that is,
spatial processes underlying observed patterns were due to random chance [35,37]. We computed the
associated p-value with a permutation test, which employed a conditional randomization assumption.
To identify local spatial clusters (i.e., hot spots) in which ZIP codes with higher incidence rates
tend to neighbor each other (i.e., high-high clusters), we considered LISA. These local indicators
decomposed the global Moran’s I into individual contributions from each ZIP code and assessed the
influence of individual spatial units on the magnitude of the global I value [34]. The LISA for each
ZIP code indicated the extent of spatial clustering of similar incidence around that ZIP code and, thus,
measured autocorrelation in smaller sub-regions [34].

We analyzed each 10-year time period separately and examined the pattern of high-high clusters
across the two time periods. The global Moran’s I was calculated using the moran.mc function using
999 permutations, and local Moran’s I indicators were calculated using the function localmoran with
the critical value set at 1.96 (or p-value < 0.05) for statistical significance. These functions may be found
in the spdep package in R.

3. Results

3.1. Mapping of Age-Adjusted Lung Cancer Incidence Rates

Maps of the age-adjusted lung cancer incidence rates for 1998–2007 and 2008–2017 are displayed
in Figure 3. Across the 213 ZIP codes considered, the rates for 1998 to 2007 ranged from 0 to 292.96
and there were on average 69.72 lung cancer cases for every 100,000 people per year. The median was
66.37 and the first and third quartiles were 49.94 and 84.13, respectively, per 100,000. The rates for
2008 to 2017 ranged from 0 to 124.53 with a mean of 62.12 per 100,000; the median was 60.40 with
the first and third quartiles of 46.91 and 77.88. One ZIP code was too small (e.g., <30) to provide
a valid estimation of the incidence rate. ZIP codes with a higher incidence of lung cancer tended
to lie along the lower right side of the study region, along the PA border with NJ. As shown in
Supplementary Figures S1 and S2, the percentages of the major histology groups and stages in each
ZIP code varied but no clear geographical patterns were observed.
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There were 51 ZIP codes, accounting for 24% of the ZIP codes in each time period, that were
significantly higher than the age-adjusted PA state rates, as shown in Figure 4; the two time periods
shared 41 ZIP codes in common, suggesting these consistently had higher incidences of lung cancer.
The ZIP codes with higher relative age-adjusted incidence rates tended to lie along the southeast part of
the study area. Among cases from those ZIP codes, 35.4% were adenocarcinoma, 21.2% were squamous
cell carcinoma, and 13.7% and 10.3% were small cell and large cell carcinoma, respectively. 33.1%,
16.9%, and 14%, were attributed to distant, regional, and localized stages, respectively, the numbers for
which are similar to the distribution observed for the whole group.
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The rate ratios of age-adjusted incidence rate relative to the age-adjusted incidence rate of PA state
are shown in Figure 5. For 1998–2007, the mean rate ratio was 1.01, the median was 0.96, and the first
and third quartiles were 0.72 and 1.22, respectively, while the maximum rate ratio was 4.23, indicating
that some ZIP codes had rates that were over four times greater than the state rate. For 2008–2017,
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the mean rate ratio was 0.96, the median was 0.94, and the first and third quartiles were 0.74 and 1.21,
respectively; the maximum ratio observed was 1.93, suggesting ZIP codes exist that had lung cancer
rates that were almost double the state rate.
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We also observed a statistically significant difference in age-adjusted incidence rates between
1998–2007 and 2008–2017 (Wilcoxon signed rank test, p < 0.05). The median change in incidence rates
from the first to the second ten-year periods was 0.074 with first and third quartiles of −0.060 and
0.172, respectively. The percent changes in rates are presented in Figure 6. Specifically, from 1998–2007
to 2008–2017, approximately 22% of the ZIP codes were observed to have over 10% increase in rates
while 42% of ZIP codes had over 10% decrease in rates. 17% of ZIP codes had increased rates of over
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3.2. Characterizing ZIP Codes with High Incidence Rates

We observed significant differences between the 51 high incidence ZIP codes and the remaining
ones with respect to all demographic variables examined (Wilcoxon rank sum tests, all p-values < 0.05).
As shown in Table 1, ZIP codes with high incidence rates of lung cancer tended to have a larger
population size and density, higher proportions of Hispanics, lower proportions of whites, and lower
median age and were less wealthy as indicated by lower median incomes and higher poverty rates.
Furthermore, residents in these ZIP codes also had significantly lower levels of education and higher
unemployment rates.

Table 1. Comparisons of demographic, Toxic Release Inventory (TRI), and distance characteristics:
high incidence ZIP codes versus the remaining ZIP codes. Data are presented as median (IQR).

Characteristics High Incidence
ZIP Codes (n = 51)

Remaining ZIP
Codes (n = 161)

Data Source Median (IQR) Median (IQR) p-Value *

Demographic
(2017 ACS)

Population size 21,685 (25,959) 12,473 (19,196) 0.00045

Population density (/sq mi) 7216 (9788) 1548 (2607) <0.00001

Median age 36.9 (6.2) 42 (6.8) <0.00001

Median income (dollar) 52,859 (25,036) 88,558 (32,919) <0.00001

Percent White 72.7 (50.1) 87.8 (14.2) <0.00001

Percent Hispanic 5.2 (6.5) 3.3 (3.3) 0.000472

Percent below poverty 11.6 (11.3) 3.1 (3.4) <0.00001

Percent with at least HS education 88.5 (8.4) 94.6 (5.5) <0.00001

Employment to pop ratio 59.0 (15.6) 64.3 (6.3) 0.000114

Unemployment rate 7.8 (5.5) 5.0 (2.4) <0.00001

TRI and distance
(1987–2017 TRI)

No. of TRI facility/year ≤ 10 miles 148.5 (72.3) 78.0 (84.5) <0.00001

Total air emission ≤ 10 miles (ton) 23,898 (7162) 9120 (13,725) <0.00001
Benzene 1567.501 (1289.7) 10.197 (30.3) <0.00001

Beryllium 0 (0.3) 0 (0.3) 0.03630
Cadmium 1.268 (4.7) 0.145 (2.7) <0.00001

Chloromethyl methyl ether 0 (0.1) 0 (0) 0.00007
Chromium Compounds 154.949 (123.0) 15.129 (21.2) <0.00001
Crocidolite (Asbestos) 0 (0) 0 (0) 0.08244

Nickel Compounds 160.575 (114.1) 9.721 (16.3) <0.00001

No. of TRI facility/year ≤ 15 miles 267.5 (68.5) 155.0 (186.5) <0.00001

Total air emission ≤ 15 miles (ton) 40,523 (12,550) 20,734 (26,047) <0.00001
Benzene 2147.298 (775.2) 18.101 (1363.4) <0.00001

Beryllium 0.26 (0) 0.26 (0.3) 0.02805
Cadmium 5.560 (1.1) 2.750 (5.0) <0.00001

Chloromethyl methyl ether 0.103 (0) 0 (0.1) <0.00001
Chromium Compounds 173.379 (8.0) 35.056 (149.7) <0.00001
Crocidolite (Asbestos) 0 (0) 0 (0.8) 0.01102

Nickel Compounds 192.075 (150.5) 22.500 (113.0) <0.00001

Nearest TRI facility (meters) 1161 (1248) 2677 (3417) <0.00001

Distance to PHL airport (meters) 22,451 (11,876) 23,020 (21,394) 0.6558

Distance to I-95/major highway
(meters) 3076 (3429) 18,811 (22,116) <0.00001

Cigarette Use
(2004–2008 CES)

Annual household expenditure
for tobacco and smoking supplies

(dollar)
285.04 (26.8) 302.42 (7.5) <0.00001

*: p-values are based on Wilcoxon rank sum test.
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Furthermore, high incidence ZIP codes were observed to have a significantly higher number of
TRI facilities, tended to be located closer to these facilities, and had several times more air emissions
recorded compared to the remaining ZIP codes (Wilcoxon rank sum tests, all p < 0.005). A closer look at
individual compounds known to have carcinogenic effects indicated the same pattern of high incidence
ZIP codes being exposed to a higher level of toxic emission. There were no significant differences in
terms of distance to airport (p = 0.65), but high incidence ZIP codes were located significantly closer to
I–95, a major interstate highway (p < 0.05). On the other hand, high incidence ZIP codes appeared
to have a statistically significant (p < 0.05) lower median smoking spending (US$285.04) than the
remaining ones (US$302.42). Maps showing the distribution of the demographic variables (Figure S3),
TRI characteristics (Figure S4), and household expenditures on tobacco products (Figure S5) by ZIP
code are provided in the Supplementary Materials.

3.3. Spatial Autocorrelation

The global indices for Moran’s I were 0.136 for 1998–2007 and 0.411 for 2008–2017,
indicating significant spatial autocorrelation (both p < 0.05). More specifically, ZIP codes with
high incidence rates tended to be near others with high incidence and similarly for low incidence
ZIP codes. Maps of LISA corresponding to Moran’s I for the two 10–year intervals are provided in
Figure 7. Areas in red are clusters that had significant high-high autocorrelations for incidence rates
(i.e., ZIP codes with high incidence neighbor other high incidence ZIP codes) included 12 ZIP codes
for 1998–2007 and 33 ZIP codes for 2008–2017. Eleven of these (19,074, 19,094, 19,148, 19,022, 19,079,
19,029, 19,132, 19,134, 19,145, 19,032, 19,078) were in common to both sets and were among the 51 ZIP
codes that were significantly higher than the state rates, indicating these ZIP codes consistently had
greater lung cancer incidences. These high-high clusters were located along the southeast area near the
border to New Jersey. This finding reinforced the observations from earlier analyses regarding the
location of hotspots.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 11 of 14 
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4. Discussion

In this study, we examined the geographic patterns of lung cancer incidence for Philadelphia and
its surrounding regions over two ten-year periods from 1998 to 2017. We identified ZIP codes with high
lung cancer incidence relative to the PA state rates and located clusters or “hotspots” of high incidences.

Our results demonstrated that lung cancer incidence rates were not the same across the ZIP codes
in the five PA counties, suggesting disparity in environmental exposure or other risk factors. Almost all
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analyses suggested the southeastern study region inside Philadelphia county bordering New Jersey
had higher rates of lung cancer. Local indicators of Moran’s I confirmed this general area as having
clusters of significantly high incidence. These ZIP codes housed manufacturing industries in the past
(some are remaining) and tracked closely along the I-95 highway. Factories and road traffic may be
possible sources of hazardous exposures that can increase lung cancer risks. Although over half of the
ZIP codes showed a decline in rates from 1998–2007 to 2008–2017, certain ones had high incidence
across both time periods. Approximately one in four—making up 24% of those studied—ZIP codes in
the study area had significantly higher incidence rates than that of the state as a whole in both time
periods. Many of those ZIP codes were also identified to be in high incidence clusters with rate ratios
ranging from 1.2 to 1.9.

Regions with increased rates may benefit from further investigation of the reasons for the observed
trend. The high incidence ZIP codes were denser in terms of population size, poorer, and had lower
percentages of whites and larger Hispanic populations. We further showed that these areas were
in closer proximity to a greater number of TRI facilities, which released greater amounts of toxic
emissions including many carcinogenic compounds, and to a major interstate highway. Surprisingly,
given the established risk posed by smoking, the average household cigarette expenditure was lower
for high incidence ZIP codes. Although cigarette expenditure is not a perfect measure of smoking
behavior, this result may suggest that smoking may be more reflective of individual-specific risk;
thus, associations between smoking and lung cancer may not transfer from the individual level to
the group level (population in a certain zip code). When considering differences in risk between
subpopulations, environmental factors may be more important. The comparison of high incidence
ZIP codes to others pointed out additional factors to consider, emphasizing the contribution of one’s
location. People who have known risk factors (e.g., smoking history, exposure to second-hand smoking,
working in occupations that expose them to potential toxicants, etc.) may be more vulnerable and
have the added burden of living in these areas. Characteristics and locations of these high incidence
areas also matched with those for environmental justice communities [38], which are socially and
economically disadvantaged and underserved. These findings suggested that identified communities
may be disproportionately vulnerable to lung cancer and may require more attention.

Limitations

There were some limitations in our study. Although lung cancer incidence rates are not expected
to change substantially in consecutive years, we aggregated cancer cases into two ten-year periods that
may have masked certain short-term fluctuations. The current study was also limited to one urban
area and its surroundings. Although implementing this type of analysis to areas known to have high
incidence provided more targeted and actionable impacts, our approaches are applicable for studying
other geographical areas (e.g., state). We also did not have information on individual smoking history
although we used cigarette expenditure as a proxy. However, it is unlikely smoking prevalence would
be significantly varied sufficiently by ZIP code to fully explain the geographic variations observed.
Furthermore, we only simplistically utilized TRI data in the current study and compared TRI data
according to the subject’s place of residence at the time of diagnosis which may or may not be the
same as the location of exposures. Although we observed greater overall air emissions and specific
chemical exposures from ZIP codes with significantly higher incidence, the mechanisms by which these
compounds contribute to lung cancer development remain unclear, nor did we consider differences in
fugitive and stack air emissions which may affect dispersion. Determining the relative impact of each
environmental toxicant and other known or unknown risk factors is beyond the scope of the current
study, but future work should focus on conducting studies to confirm and estimate the magnitude of
the associations observed in the current analyses.
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5. Conclusions

Based on our geographic and clustering analyses of lung cancer incidence rates, we detected areas
with high incidences in southeastern Pennsylvania along its border with New Jersey. These areas were
associated with lower socioeconomic status and closer proximity to potential sources of pollution.
Thus, environmental exposures and community risk factors corresponding to residential location may
make certain individuals more susceptible to lung cancer, on top of the risk posed by smoking status.
Future research is warranted to understand how risk factors identified in this study can be incorporated
into existing risk assessment tools according to their relative effects on disease development and
possible interactions between different factors. This may be accomplished by analyzing the significant
risk factors we found in a spatial regression model. Public health professionals may use these tools to
better identify individuals for targeted screening of lung cancer and greater surveillance.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/24/9498/s1:
Maps of the characteristics analyzed in Table 1 are presented. Figure S1: Percentages of lung cancer cases by the
major lung cancer histology types: (a) adenocarcinoma, (b) squamous cell, (c) small cell, and (d) large cell. Figure S2:
Percentages of lung cancer cases by the SEER summary stages classification: (a) distant stage, (b) regional stage,
(c) local stage. Figure S3: Demographic characteristics: (a) Population size, (b) population density, (c) median age
in years, (d) median income in $10,000, (e) percentage of the population who are white, (f) percentage of the
population who are Hispanic, (g) percentage below poverty line, (h) percentage with at least a high school education,
(i) employment to population ratio, and (j) unemployment rate. Figure S4: Amount of air emission (in tons)
within 10 miles of a ZIP code’s centroid for chemicals suggested to be possible lung carcinogens: (a) benzene,
(b) beryllium, (c) cadmium, (d) chloromethyl methyl ether, (e) chromium compounds, (f) crocidolite (asbestos),
and (g) nickel compounds. Figure S5: Median averaged annual household expenditures (2004–2008) on tobacco
products or smoking supplies.
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