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Abstract

Recent studies have uncovered a strong effect of host genetic variation on the composition of host-associated microbiota.
Here, we present HOMINID, a computational approach based on Lasso linear regression, that given host genetic variation
and microbiome taxonomic composition data, identifies host single nucleotide polymorphisms (SNPs) that are correlated
with microbial taxa abundances. Using simulated data, we show that HOMINID has accuracy in identifying associated SNPs
and performs better compared with existing methods. We also show that HOMINID can accurately identify the microbial
taxa that are correlated with associated SNPs. Lastly, by using HOMINID on real data of human genetic variation and
microbiome composition, we identified 13 human SNPs in which genetic variation is correlated with microbiome
taxonomic composition across body sites. In conclusion, HOMINID is a powerful method to detect host genetic variants
linked to microbiome composition and can facilitate discovery of mechanisms controlling host-microbiome interactions.
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Background

The microbial communities found in and on the human body
are influenced by multiple factors [1]. In addition to the clear
effect of environmental factors on the microbiome, there is
growing support for an impact of host genetics [2, 3]. Several
candidate gene studies have found correlation between human
genetic variation and the structure of the microbiome [4–6]. In
addition, genome-wide approaches can also be useful to identify

human genetic impact on the microbiome [7–10]. For example,
Goodrich et al. used hundreds of twin pairs to calculate the her-
itability of the gut microbiome and identify bacterial taxa that
are heritable, such as Christensenellaceae [8]. Researchers have
also utilized quantitative trait locus (QTL)–mapping approaches
in the laboratory mouse and have identified multiple loci asso-
ciated with the structure of gut microbial communities, some of
which overlap with genes involved in immune response [11, 12].
Moreover, studies have used joint human genetic variation and
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Figure 1: Illustration of the HOMINID pipeline.

microbiome data to find associations between loci in the human
genome and microbial taxa [7, 10, 13, 14]. In our recent study,
in addition to showing that human genetic variation is associ-
atedwith the structure ofmicrobial communities across 10 body
sites, we identified human single nucleotide polymorphisms
(SNPs) associated with variation in the microbiome and found
that these loci are highly enriched in immunity genes and path-
ways [7]. This approach, which includes the joint analysis of host
genetic variation (SNPs) and microbiome taxonomic composi-
tion data (usually an operational taxonomic unit (OTU) table),
has the important advantage of identifying specific host genes
and pathways that may control the microbiome, thus shedding
light on the biological mechanisms of the host-microbiome in-
teraction and pinpointing potential disease-causing pathways.
However, this analysis is complicated by the fact that the micro-
biome containsmany taxa that can be used as potentialmolecu-
lar complex traits in the genome-wide association study (GWAS)
analysis. Testingmany taxa reduces the power, andmultiple hy-
pothesis testing correction makes the identification of associa-
tions challenging.

Here, we propose a framework for identifying host SNPs as-
sociated with microbiome composition using Lasso regression,
named Host-Microbiome Interaction Identification (HOMINID)
(Fig. 1 and Supplementary Data). Our method has several ad-
vantages: (i) it takes as input host genetic variation data (in a
modified variant call format (VCF) format) and microbiome tax-
onomic composition data (relative abundance data as anOTU ta-
ble) to facilitate a simple analysis pipeline with no need tomake
new data formats; (ii) HOMINID uses Lasso regression, which is
specifically designed for cases where a relatively small number
of taxa are correlated with host SNP genotype, as opposed to ex-
isting methods that use all taxa abundances; and (iii) HOMINID
uses stability selection with randomized Lasso to identify the
specific microbial taxa that are correlated with each associated
SNP.

Materials and Methods
HOMINID implementation

We implemented Lasso regression with the taxon relative abun-
dances (arcsin sqrt transformed) as predictors and genetic vari-
ation at each SNP as response for the purpose of identifying an
additive effect between host genotype and microbiome features
(see Supplementary Data and Figs S1–S3). In most situations,
we expect at most a few taxa’s abundances to correlate with an
SNP; therefore, ordinary least-squares (OLS) regression, which
includes all taxa abundances as predictor variables,might not be
an appropriate model. Instead, we need a regression algorithm
that selects only the few predictors (taxa) that correlate to host
genetics and discards the rest. The Lasso linear regressionmodel
used for HOMINID is similar to OLS regression, except that it in-
cludes an additional penalty term that shrinks most regression
coefficients to zero, resulting in a sparse solution; thus it pre-
dicts only a few taxa to correlate with the host genetics. The
Lasso regression was implemented using the Python (version
2.7/3.5+) machine-learning library scikit-learn [15], with micro-
biome relative abundances as predictors and SNP genotype as
response variable. The penalty termwas tuned via a 5-fold cross-
validation. How well the host genetics correlates with the mi-
crobiome is measured with the coefficient of determination, R2

L ,
calculated via a nested cross-validation procedure; R2

L is theme-
dian R2 from 5-fold cross-validation, with 100-times resampling.
Also outputted are 95th percentile bootstrap confidence inter-
vals from 10 000 bootstrap samples. Detailed description of the
implementation of Lasso regression is available in the Supple-
mentary Data.

Identifying correlated SNPs and taxa

Identification of the SNPs that are predicted to be correlated
to the microbiome (prediction positive) from the uncorrelated



HOMINID: Host-microbiome interaction identification 3

(prediction negative) HOMINID uses a q-value cutoff, which puts
an upper bound on the false discovery rate (FDR). A cutoff value,
R2
C , of R2

L is chosen such that the q-value, q(R2
C ), is equal to 0.1.

A given SNP is predicted positive (predicted correlated to the
microbiome) if R2

L ≥ R2
C . q(R

2
C ) is determined by a permutation

test, whereby for each SNP the sample labels are shuffled and
Lasso regression is rerun 10 times. q(R2

C ) is defined as the frac-
tion of permuted SNPs predicted positive divided by the fraction
of unpermuted SNPs predicted positive [16]. R2

C is chosen such
that q(R2

C ) = 0.1. The taxa that are most strongly associated with
an SNP are identified using stability selection with randomized
Lasso [17]. Briefly, stability selection perturbs the regression co-
efficients and the penalty term in the Lasso regression, and then
reruns the regression thousands of times. If the same predictors
(taxa) are repeatedly selected, even when the odds are against
them, they are robust predictors. Full details on this procedure
are available in the Supplementary Data.

Controlling for other (non-taxon) covariates

HOMINID allows for controlling for any additional covariates
(other than the microbiome) by including the covariates in the
microbiome taxonomic table. This enables controlling for po-
tentially confounding factors, such as individual age and sex.
It also enables controlling for ancestry (or population substruc-
ture) by including the principal components (PCs) of the genetic
variation data [18, 19] in the analysis. We performed 2 anal-
yses using HMP data, 1 including host genetic PCs as covari-
ates (results in Supplementary Table S1), and 1 without these
covariates (Supplementary Table S2), both including sex as a
covariate.

Synthetic data sets

To test the performance of HOMINID, we generated several syn-
thetic data sets. “Taxon” absolute abundances (“counts”) were
drawn from a log-series distribution. The log-series distribution
is frequently used to represent species abundances (e.g., [20]),
and it allows a range of abundances that spans several orders
of magnitude, mimicking both rare and abundant taxa. Often
in real abundance tables, a large fraction of taxa have an abun-
dance of zero (taxon either not present or not detected). The
log-series abundance tables also had this quality; in our syn-
thetic data, 21% of abundances have a count of zero. Synthetic
data were generated such that, for each SNP independently, Nctc

(“ctc” stands for correlated-taxon count) random taxa’s abun-
dances correlate with that SNP’s genotype. Uncorrelated SNPs
were created by permuting the sample IDs, preserving the mi-
nor allele frequency (MAF). Once the SNP and taxon abundance
data were generated, a measure of the effect size was calcu-
lated: the coefficient of determination, R2

OLS, for an OLS mul-
tiple regression between the correlated taxa’s abundances and
the SNP genotype. As R2

OLS is a characteristic of the input data
before analysis by HOMINID, we call it the “input R2” to distin-
guish it from the R2 output by the HOMINID Lasso regression
(i.e., the “output R2” or R2

L ). To examine data sets with smaller
effect sizes, “noise” was added to the SNP data by swapping the
genotypes of pairs of samples, reducing the correlation between
the Nctc correlated taxa and the host SNP genotype. In data sets
with noise level P, the probability that a random sample’s geno-
types are not correlatedwith the correlated-taxa’s abundances is
P. Several data setswere createdwith progressivelymore “noise,”
until R2

OLS → 0. We created 3 sets of synthetic data to examine
the performance of HOMINID on different qualities of the input

data: Data set MAF varies the minor allele frequency, with MAF
ranging from 0.10 to 0.50; data set CTC varies the number of cor-
related taxa from 5 to 20; and data set TC varies the total number
of taxa in the taxon table from 100 to 500. All data sets contain
500 SNPs each. Data in sets MAF and CTC comprise 1000 individ-
uals; data sets in set TC contain 100 individuals. Data sets MAF
and TC all have 3 correlated taxa per SNP. The MAF for data sets
CTC and TC is 0.30.

Human Microbiome Project data

In addition to the synthetic data sets described above, we also
tested our method on a real data set that includes both human
genetic and microbiome data [7]. This data set includes 93 indi-
viduals for whommicrobiomewas profiled as part of the Human
Microbiome Project, and for which host genetic variation infor-
mation was extracted from shotgun metagenomics sequence
data, as described previously [7]. We annotated the previously
described set of 4.2 million high-quality SNPs using ANNOVAR
[21] and focused the analysis on a set of 32 696 protein-coding
SNPs. We further filtered this set to include only SNPs with a
minor allele frequency of at least 20% and SNPs for which we
had data for at least 50 individuals. The number of SNPs actu-
ally tested varies across body sites, ranging from 12 400 to 14
651 SNPs, with a mean of 14 023. For the stool microbiome data,
which included 107 total taxa, running HOMINID on 14 469 SNPs
using 12-core Intel Xeon E5–2680 2.50 GHzprocessors took 16 cpu
hours.

Comparison with other methods

Permutational multivariate analysis of variance (PERMANOVA)
[22, 23] analysis was done in R with the adonis function in the
vegan [24] package. The model formula has the SNP genotype
as numeric (not factor) predictor variables and the arcsin-sqrt
transformed taxon relative abundance table as a response vari-
able. Themethod used to calculate pairwise “distances” was de-
fault Bray-Curtis. Microbiome regression-based kernel associa-
tion test (MiRKAT) [25] analysiswas performedusing theMiRKAT
package in R. The Bray-Curtis dissimilarity matrix was com-
puted on the arcsin-sqrt transformed taxon table. The matrix
was then converted to a kernel matrix, and MiRKAT invoked for
each SNP. As both PERMANOVA and MiRKAT output P-values
as measures of how well the taxon abundances correlate with
each SNP’s genotype (whereas HOMINID outputs R2

L values), we
chose a cutoff P-value such that q(pc) = 0.1 to separate the pre-
diction positives (correlated) from the prediction negatives (un-
correlated), much in the same way we chose the cutoff R2

C to
separate prediction positive/negatives such that q(R2

C ) = 0.1 for
the Lasso regression.

Results
Analysis using synthetic data

To assess HOMINID’s performance, we first used the pipeline on
a comprehensive set of synthetic data sets (described above and
in the Supplementary Data). These data sets were designed to
simulate variation in several important factors, such as varia-
tion of the strength of correlation (the input R2) of the associ-
ated SNP with microbiome composition, variation in MAF of the
associated SNP, noise level in microbiome data, and the num-
ber of taxa associated with the SNP. After analyzing each of the
data sets, we calculated and plotted the method’s sensitivity,
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Figure 2: Assessment of HOMINID’s performance using synthetic data. Panels (A–D) assess how well HOMINID predicts the SNPs whose genotypes correlate with
microbiome abundances, and (E and F) assess how well HOMINID predicts the specific taxa correlated with an associated SNP. (A) Sensitivity as a function of effect
size (input R2) for the data sets with MAF = 0.30. Different colored points and boxplots represent data sets with different noise levels and therefore different effect
sizes. (B) Same as (A) with variation in input data MAF values represented by different colored points at each data set’s median-input R2. See Supplemental Fig. S30

for a visualization of the same data with boxplots instead of medians. (C) FDR as a function of effect size (input R2) for data sets with MAF = 0.30. (D) Same as (C) with
variation in input MAF values represented by different colored points at each data set’s median-input R2. See Supplemental Fig. S35 for a visualization of the same
data with boxplots instead of medians. (E) FPR for the stability selection step (identifying the taxa that associate with an SNP’s genotype) as a function of effect size
(input R2) for data sets with 3 correlated taxa. (F) Same as (E) but with 20 correlated taxa.

specificity, precision, negative predictive value (NPV), false posi-
tive rate (FPR), false negative rate (FNR), false discovery rate, and
accuracy as a function of the input R2, highlighting the effects
of the variable factors above (see Fig. 2a–d, Supplementary Data,
and Supplementary Figs S5–S44).

We found that the strength of correlation (input R2) between
SNP genotype and the correlated taxa has little effect on HO-

MINID’s ability to identify the SNP, unless the correlation is very
low (Fig. 2a and b, Supplementary Data, and Supplementary
Figs S5–S12). HOMINID achieved high sensitivity and specificity
for R2 values of above ∼0.05. The FDR is below 0.1 by design, and
variation in FDR is due to imprecision (finite number of signifi-
cant digits) in calculation of R2

L , and therefore imprecision in cal-
culation of q. (Fig. 2c and d). Similarly, variation in MAF does not
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Figure 3: Comparison of the performance of HOMINID vs MiRKAT and PERMANOVA. Sensitivity is plotted as a function of effect size (input R2) for HOMINID (red),
MirKAT (green), and PERMANOVA (blue). At high-input R2, all 3 methods perform well, finding all SNPs that correlate with the microbiome. However, at smaller effect
sizes (lower-input R2), HOMINID is more sensitive.

affect HOMINID’s sensitivity, as data sets with different MAFs
follow the same behavior (Fig. 2b).

One of HOMINID’s unique features is the ability to iden-
tify the taxa that are correlated with an associated SNP. We
found that this prediction performs well, with accuracy ap-
proaching 1 and a false positive rate of 0 for input R2 val-
ues larger than about 0.1, but it drops off at lower R2 values
(Fig. 2e and f, Supplementary Figs S27 and S28). The num-
ber of correlated taxa had a noticeable effect, whereby SNPs
that correlated with more taxa had higher FPRs (compare
Fig. 2e with Fig. 2f), although in all test data sets FPR remained
<0.07.

Comparison with other methods

In order to assess HOMINID’s performance, we compared it with
PERMANOVA [22, 23] and MiRKAT [25], 2 platforms that can be
used to identify host SNPs associated with microbiome compo-
sition. We note that HOMINID has a unique feature allowing it
to identify the specific microbial taxa associated with each SNP.
As other approaches lack this option, the comparison centered
on the ability to detect SNPs that are correlated with the micro-
biome, and not on the detection of correlated taxa. Our analy-
sis included input data sets with various input R2 values and
noise levels (various effect sizes) and compared the sensitivity
of each method to detect the associated SNPs. We found that
for median-input R2 values (correlation between associated SNP
andmicrobiome composition) of about 0.15 or above, the 3meth-
ods are all highly sensitive (Fig. 3). However, for lower-input R2

values, HOMINID is more sensitive. Specifically, for the data set
with median-input R2 = 0.08, HOMINID’s sensitivity is 1, while
the sensitivities of MiRKAT and PERMANOVA are 0.19 and 0.29,
respectively (Fig. 3). Similarly, for median-input R2 = 0.03, HO-
MINID’s sensitivity is 0.46, while the othermethods’ sensitivities
are 0.

Analysis of human microbiome project data

We ran the HOMINID pipeline on previously published data of
microbiome and host genetic variation from the Human Micro-
biome Project cohort [7].We focused our analysis on coding SNPs
with minor allele frequency ≥0.2 and identified SNPs for which
permutation-based q-value ≤0.1 and the 95th percentile confi-
dence interval for R2

L does not include zero. To account for pop-
ulation substructure, we ran a second analysis including the
genetic principal components as additional covariates [18, 19].
This resulted in the identification of 11 (regression with genetic
PCs as covariates) and 6 (regression without genetic PCs) for a
total of 13 unique associations between host SNP and micro-
biome composition across 15 body sites (see Supplementary Ta-
bles S1 and S2, respectively). As can be seen in Fig. 4, HOMINID is
able to detect SNPs with the expected pattern of association be-
tween host genetic variation and the microbiome. For example,
for SNP rs2297345 in the gene PAK7, we detected a correlation
between genotype and a single microbial taxon, Propionibacte-
riaceae (Fig. 4a). HOMINID can also detect SNPs where multiple
taxa are correlatedwith the sameSNP (e.g., SNP rs6032 in Fig. 4b),
as well as more complex patterns of association; for example,
for SNP rs230898 in the gene TEKT3 (Fig. 4c), genetic variation
is positively correlated with 1 taxon (Clostridia) and negatively
with others (Rhodocyclales and Aerococcaceae).

Although HOMINID performs strongly on the data used in
this paper, there are several potential limitations to our method.
First, as it is especially designed to identify SNPs where a num-
ber of taxa are associated, it might not be optimal for cases
where there is a dramatic shift in the microbiome that includes
many dozens of taxa. Moreover, as the SNP is used as the re-
sponse in the HOMINID model, it is difficult to identify epistatic
effects whereby genetic variation in 2 or more loci interact to
affect microbiome composition. Although HOMINID could still
be used to detect these interactions by including all genotype
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(A)

(B)

(C)

Figure 4: Examples of SNPs where correlations were found between host genetic
variation and the microbiome. Three SNPs are shown: (A) rs2297345 (correlated
with abundance of microbial taxa in the right antecubital fossa), (B) rs6032 cor-

related with abundance of microbial taxa in the throat), and (C) rs230898 (corre-
lated with abundance of microbial taxa in the supragingival plaque). The x-axis
shows the host SNP genotypes, and the y-axis shows the arcsin sqrt transformed
taxon abundances. The different correlated taxa for each SNP are shown in dif-

ferent colors. See Fig. S59 for a visualization of the results in (4B), but omitting
the highest-abundance taxon, Bacteroidetes (dark green), to better display the
trends for the 3 lower-abundance taxa.

combinations as response variables, multiple hypothesis testing
could be an issue, especially for microbiome association stud-
ies, where samples sizes are currently small relative to GWAS
of other complex traits. Nevertheless, HOMINID might be useful
for detection of interaction of between candidate loci.

Lastly, we developed a web-based tool for the visualiza-
tion of host-microbiome interaction network identified in HO-
MINID [26]. The website, designed using D3.js with a dedicated
MySQL database serving as the back end, displays a dynamic
visualization of host gene–microbiome taxa interaction net-
works and allows the user to add and remove nodes (host gene
and microbial taxa), adjust the display size and node locations,
filter by body sites, and generate figures. Currently, the web-
site includes toy data representing all SNP-microbe associations
with a nominal P-value ≤ .01 in the Human Microbiome Project
data described above. We believe that as studies using larger
sample sizes materialize (for example, a recent study included
1514 subjects [13]), this tool will be useful for visualization of
much larger number of associations.

Conclusions

We present HOMINID, a framework designed for identifying as-
sociations between host genetic variation andmicrobiome com-
position. We analyze synthetic data to show HOMINID’s overall
strong performance, identify specific factors that may affect it,
highlight HOMINID’s unique features, and showHOMINID’s util-
ity with a real data set.We expect that HOMINIDwould be useful
for studies attempting to characterize the genetic basis of host-
microbiome interactions.

Availability of supporting source code and
requirements
� Project name: HOMINID (RRID: SCR 015765)
� Project homepage: https://github.com/blekhmanlab/hominid
� Operating system(s): UNIX
� Programming language: Python
� Other requirements: see https://github.com/blekhmanlab/
hominid/wiki/Requirements

� License: MIT

Availability of supporting data

The real data set used in this study is from Blekhman et al. [7];
16S rRNA gene sequence data and OTU tables are available from
the NIH HumanMicrobiome Project DACCwebsite [27]. SNP data
including host genetic data are deposited in dbGaP under project
number phs000228.

The synthetic data used in this work can be accessed from
the HOMINID GitHub page [28]. HMP taxon tables and other sup-
porting metadata are available from the GigaScience repository,
GigaDB [29].

Additional files

Supplementaryinfo.pdf
supplementalTableS1.xlsx
supplementalTableS2.xlsx

Abbreviations

CTC: correlated-taxon count; FDR: false discovery rate; FNR:
false negative rate; FPR: false positive rate; MAF: minor allele
frequency; NPV: negative predictive value; OLS: ordinary least
square; QTL: quantitative trait locus; OTU: operational taxo-
nomic unit; PC: principal component; SNP: single nucleotide
polymorphism; VCF: variant call format.
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