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Maintaining intentions over time is fundamental to goal-directed action, and
previous research demonstrated that intentions are encoded and maintained in a
fronto-parietal network including e.g., the dlPFC and IPS. Yet, intention maintenance
is highly challenging in the constantly changing environments we experience every
day. While we might have formed an intention under specific conditions, this
context can change rapidly and unexpectedly. Some suggested that intentions
representations in the fronto-parietal cortex change flexibly when external demands
change (context-dependent coding). Others suggested that these representations are
encoded in an abstract format that is not affected by changes in external demands
(context-invariant coding). Here, I will first outline an analysis approach using multivariate
pattern analysis of fMRI data to comprehensively assess the context-dependence /
invariance of intention representations in the fronto-parietal cortex. I will then highlight
some research following the proposed analysis strategy. Results to date are mixed,
showing context-dependence in some, but context-invariance in other cases. In an
attempt to synthesize these somewhat divergent results, I will argue that depending
on characteristics of the intentions as well as the environment, intentions can either
be encoded in a context-dependent or a context-invariant format. This enables us
to achieve both stability and flexibility of behavior under constantly changing external
demands.

Keywords: intentional action, volition, goal-directed action, fMRI, MVPA, prefrontal cortex, parietal cortex,
context

THE NEURAL BASIS OF INTENTIONAL ACTION

Goal-directed action is central to human behavior (Shallice and Burgess, 1991; Miller and Cohen,
2001), and our ability to pursue desired goals in often volatile environments rests on intentional
control of behavior (Braver, 2012; Brass et al., 2013; Koechlin, 2016). Much previous research
investigated implementation intentions (Gollwitzer and Schaal, 1998), i.e., the intention to initiate
a specific response (e.g., execute a task or action) given a specific situation (e.g., when a relevant
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stimulus is presented), often using a delayed-intention task
(Momennejad and Haynes, 2013), and I will focus on this type of
intention here as well1. Implementation intentions are processed
in different stages, they are first formed, and then maintained over
time until they can be executed (Bunge et al., 2003).

In the past, fMRI has often been used to assess the neural
basis of intentional action (Jahanshahi et al., 1995; Lau et al.,
2004; Zapparoli et al., 2017). For instance, activity in the medial
prefrontal cortex is higher when we maintain a freely chosen
intention (Forstmann et al., 2006; Brass et al., 2013). More
recently, multivariate pattern analysis methods (Kriegeskorte
et al., 2006; Haynes, 2015) have been used increasingly in order
to identify brain regions containing information about which
specific intention is currently maintained. It has been shown that
the intention to perform a specific action or task is encoded in
the fronto-parietal cortex, including the frontopolar (Soon et al.,
2013), lateral prefrontal (Zhang et al., 2013; Muhle-Karbe et al.,
2017), medial prefrontal (Wisniewski et al., 2015b), and posterior
parietal cortex (Woolgar et al., 2011b; Wisniewski et al., 2015a).

These intention-related signals have been largely assessed in
stationary environments that are relatively stable (e.g., repeatedly
choosing between the same two tasks in the absence of any
specific outcomes or experimental manipulations, Soon et al.,
2013), and we currently have limited knowledge of how they
might change if environments were more volatile or dynamically
changing. In such environments, the fundamental problem
is to ensure that intentions encoded in one specific context
can still be executed if that context changes (Franklin and
Frank, 2018). Here, I will tentatively use the term context
to describe the immediate external and internal environment
in which intentions are formed, maintained, and executed2.
In other words, when we learn to perform a task, how do
we ensure that the same task can be efficiently and reliably
performed in a novel environment? Addressing this issue is
demanding, not least because of methodological challenges
(Bhandari et al., 2018). Yet, there have been some important
attempts to assess the context-dependence of intention coding in
the past, investigating e.g., the effects of reward prospect (Etzel
et al., 2016) or task difficulty (Woolgar et al., 2011a)3. Here, I

1Implementation intentions are closely related to concepts like task-set (Sakai,
2008), proactive control (Braver, 2012), or prospective memory (McDaniel and
Einstein, 2000). I will use the term (implementation) intention to broadly describe
these and related processes.
2There is currently no consensus on a precise definition of “context” in the
literature on intentional action, and the proposed definition remains tentative.
This is likely because the “environment” can be described along many different
dimensions. Some of these are more related to external factors, e.g., motivational
(different reward outcomes (Etzel et al., 2016)), or spatial contexts (breakfast table
vs. supermarket Uithol et al., 2018). Other factors are more strongly related to
internal, or task-related factors. For instance, intending to perform a difficult task
(e.g., solving an equation in a final math exam) is different to intending to perform
an easy task (e.g., splitting a restaurant bill in half, see also Woolgar et al., 2011a),
likely due to differences in anticipated effort. Also, freely choosing a task is different
from being told which task to perform (Wisniewski et al., 2016). The unifying
feature of all these examples is that some (external or internal) environmental
variable likely affects the formation, maintenance, or execution of intentions in the
brain.
3The issue of context-dependence is also being discussed in the literature on
prospective memory (McDaniel and Einstein, 2000). Given that prospective
memory and intentional action are closely related concepts, the interested reader

will highlight recent theoretical and methodological advances in
understanding context-dependence of intention coding in the
brain, and propose a comprehensive analysis strategy that will
help illuminate this issue even further.

CONTEXT-DEPENDENT AND
CONTEXT-INVARIANT CODING OF
INTENTIONS

In the past, at least two accounts have been put forward to
explain how intention representations might adapt to changing
external demands, emphasizing two different aspect of intention
coding. First, it has been argued that the neural coding of
intentions becomes more separable (or “enhanced,” for more
information see Waskom et al., 2014) e.g., in contexts that make
their implementation difficult (context-dependent coding, see, e.g.,
Woolgar et al., 2011a). Such flexibly changing intention coding is
thought to support flexible adaptation of behavior and to ensure
correct intention implementation even under difficult conditions.
This argument is closely related to the adaptive-coding theory
(Duncan, 2010; Fedorenko et al., 2013), which posits that some
regions of the frontal and parietal cortex are part of a “multiple
demand network,” a set of domain- and process-general cortical
regions. This allows these regions to adapt their coding properties
to cope with a wide variety of different demands, which supports
flexible adaptation of behavior to changing environments. The
multiple demand network partly overlaps with the network
found to encode intentions, and it thus might be that contextual
changes lead to changes in the coding of intentions as well. The
same specific intention (e.g., brew tea) would then be encoded
differently in different contexts (e.g., using a teabag vs. Japanese
tea ceremony).

Second, it has been argued that intention representations
might be encoded in an abstract form, which remains stable
even if external demands change (context-invariant coding, e.g.,
Loose et al., 2017). This would allow the same representation
to be re-used in a number of different contexts, and would
thus support behavioral stability and generalization to novel
environments4. This argument is closely related to compositional
coding (Reverberi et al., 2012; Franklin and Frank, 2018), which
is thought to be one of the fundamental principles underlying
human learning (Kriete et al., 2013). Intentions might be encoded
in a compositional format, i.e., representations of a specific
intention (e.g., brew tea) would be built out of its components
parts (e.g., pour water into cup + add tea). These component
parts could then be re-used in different contexts (e.g., pour
water into cup + add coffee). Re-using the same representations
in different contexts (sometimes also called “multiplexing”
Botvinick and Cohen, 2014; Naud and Sprekeler, 2018) is thought
to be a highly efficient way of encoding information (but

is pointed to e.g., (Bugg and Ball, 2017; Pedale et al., 2017) for more details. The
method proposed here to assess context-dependence of intention coding is also
applicable to prospective memory research, and might be of use there as well.
4Here, I focus on effects of different specific contexts or environments. For
a discussion of flexible coding across time (within the same context) see e.g.,
(Sigala et al., 2008; Stokes et al., 2013; Wisniewski et al., 2015a).
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also inherently leads to issues with cross-talk between different
representations, Feng et al., 2014). Given that we can never fully
anticipate the specific conditions under which we will need to
implement our intentions, context-invariant coding ensures we
can perform under the widest range of conditions. Overall, both
theories try to explain our ability to adapt our (intentional)
actions under changing conditions, and emphasize different
coding properties that might support this ability.

TESTING PREDICTIONS USING MVPA
ON FMRI DATA

In a typical experiment on neural coding of intentional action,
subjects are asked to encode one of two different intentions
(e.g., perform an addition or subtraction task), and then need to
maintain this information over a short delay period, after which
they are able to execute their intention. In order to identify brain
regions encoding intentions during the maintenance period,
fMRI and multivariate pattern analysis (MVPA, Kriegeskorte
et al., 2006; Haynes, 2015) have been used in the past (for a review
see Woolgar et al., 2016).

In principle, contextual changes (e.g., easy vs. difficult
additions) can modulate these intention representations
independently along two different dimensions (Figure 1). The
strength of intention coding, i.e., the separability or distance of
neural activation patterns, can be increased from one context to
the other. In MVPA, this is generally measured as an increase
in decoding accuracies. For support vector classification (Chang
and Lin, 2011), one of the most commonly used classification
algorithms, this can reflect a greater distance of neural activity
patterns from the classifier decision boundary (Figure 1B). This
distance can serve as an alternative measure for the strength of
intention coding (see Etzel et al., 2016). In the past, contextual
effects have been shown both on decoding accuracies (e.g.,
Qiao et al., 2017), as well as distance to the decision boundary
(Etzel et al., 2016). If there were no contextual effects on coding
strength, no such differences would be expected. Assessing the
strength of intention coding only shows a partial picture of
contextual effects, however. To fully understand such effects
on intention coding, we also need to assess the format of
intention coding, i.e., the geometry of neural activation patterns
(Kriegeskorte and Kievit, 2013), and how it changes across
contexts (Figures 1A,D). In the MVPA framework, differences
and similarities in coding formats across conditions can be
tested using a cross-classification approach (Kaplan et al.,
2015). Here, a classifier is trained in one context (e.g., easy
addition vs. subtraction), and is tested in a different context
(e.g., difficult addition vs. subtraction). If the representational
format remains similar across contexts, significant, above chance
accuracy values will be expected5. If the representational format
changes, cross-classification will be unsuccessful. Please note

5Please note that there are alternative methods to assess the format of intention
coding in the brain, e.g., representational similarity analysis (Kriegeskorte, 2011),
or repetition suppression (Barron et al., 2016). However, given that most previous
research on this issue used multivariate classification I will focus on this approach
here.

FIGURE 1 | Contextual effects on the coding of intentions. Depicted are the
results of a hypothetical MVPA, decoding two different intentions (yellow dots
vs. blue crosses). For illustration purposes, each axis represents the activity in
one single voxel. Each dot or cross represents one measurement, and the
black line represents the fitted hyperplane separating both intention
representations. On the left, you see decoding in one context (Context A), on
the right in another context (Context B). (A) Context-dependent coding. If the
strength of intention coding (shown as distance from the hyperplane)
increases from one context to another, this would show that intentions are
encoded in a context-dependent form. In this case, decoding accuracies
would be higher in one than in the other context. This is true even if the
representational format changes between contexts (shown as hyperplane
orientation). In this example, the same hyperplane cannot be used to
successfully classify different intentions in both contexts, and a
cross-classification analysis would fail. (B) Another form of context-dependent
coding. Here, the strength of intention coding increases from one context to
the other, but the representational format stays similar. This would again show
context-dependent coding of intentions, by means of a gain increase or
amplification of intention-related signals. (C) Context-invariant coding. The
strength of intention coding is the same in both contexts, as is the
representational format. Here, there would be no difference in decoding
accuracies, but cross-classification would be successful. This results pattern
would be expected if intentions were encoded in a context-invariant format.
(D) Null-effect. If there is neither a significant difference in accuracies, and
cross-classification failed, results would be difficult to interpret as both
analyses would show null-effects. In this case, a lack of statistical power is
difficult to exclude using frequentist statistics.
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that cross-classification only shows context-invariance, which
is necessary but not sufficient to show compositional coding
(Reverberi et al., 2012). Unfortunately, despite MVPA’s potential
to separately assess effects on intention coding strength and
format, this important distinction has not been made explicitly
in much of the past research.

If we are to draw strong conclusions about the
context-dependence of intention coding from an experiment
employing MVPA, we need to perform both a comparison
of decoding accuracies across contexts, as well as a
cross-classification across contexts. Context-dependent coding
would predict stronger coding of intentions in one context than
the other (Woolgar et al., 2011a; Etzel et al., 2016; Qiao et al.,
2017). Although context-dependent coding seems to suggest
changes to coding formats across contexts as well, no strong
claims in this direction have been made in the past, so that this
account does not seem to have a strong position on intention
coding formats. Context-invariant coding on the other hand
would predict no contextual effects on coding strength, and
would predict similar coding formats in both contexts (see Zhang
et al., 2013; Wisniewski et al., 2016). Please note that this does
not constitute a case of arguing the null, as this results pattern
requires significant findings in a cross-classification analysis (see
also Wisniewski et al., 2018).

PREVIOUS EVIDENCE

Having outlined an analysis approach that allows us to
test comprehensively whether intentions are encoded in a
context-dependent or context-invariant way, we can now turn
to previous evidence on this issue. Unfortunately, most of the
previous studies (Table 1) focused only on effects on coding
strength and did not directly assess effects on representational
formats (Woolgar et al., 2011a; Hebart et al., 2012; Nee and
Brown, 2012; Waskom et al., 2014; Etzel et al., 2016), and

conclusions from these findings remain limited. Some previous
research did follow the analysis strategy outlined above, however
(Momennejad and Haynes, 2013; Zhang et al., 2013; Wisniewski
et al., 2016, 2018; Loose et al., 2017; Qiao et al., 2017), and we will
focus on these findings here.

In these previous papers, four different contextual variables
were assessed. Two experiments assessed the effect of freely
choosing an intention vs. being externally cued which intention
to choose (Zhang et al., 2013; Wisniewski et al., 2016).
Both experiments demonstrated context-invariant coding in the
parietal cortex, with less consistent results in the prefrontal
cortex. While Zhang and colleagues showed context-dependence
in the lateral prefrontal cortex, Wisniewski and colleagues
showed context-invariance. Other experiments assessed the
effects of high vs. low cognitive control demands on intentions
coding in a task switching paradigm (Loose et al., 2017;
Qiao et al., 2017). Again, results are not consistent, with
one study showing context-invariant coding in frontal and
parietal brain regions (Loose et al., 2017), and another study
showing context-dependent coding in these brain regions
(Qiao et al., 2017). One study assessed the effect of high
vs. low cognitive load (Momennejad and Haynes, 2013), and
found that some brain regions showed context-invariant coding
(pre-SMA, lateral frontopolar cortex), while others showed
context-dependent coding (vmPFC, posterior temporal cortex).
The last study assessed the effect of choice-contingent vs.
non-contingent reward outcomes, and found context-invariant
coding in the parietal and lateral prefrontal cortex (Wisniewski
et al., 2018).

Overall, results seem somewhat inconsistent. Given the small
number of studies performed to date, this is not entirely
surprising, and more evidence is clearly needed in order to
draw robust conclusions. One possible explanation could be that
these studies show substantial differences in their experimental
designs, which could lead to increased variance in the results.
It has been pointed out that, e.g., contrasting different cognitive

TABLE 1 | Previous studies investigating context-effects on intention coding.

Name Context manipulation Coding strength Coding format n

Difference in
coding strength?

Invariant coding?

Etzel et al., 2016 reward vs. no reward yes not tested 20

Hebart et al., 2012 easy vs. difficult task yes not tested 22

Loose et al., 2017 task switch vs. repeat no yes 38

Momennejad and Haynes, 2013+ high vs. low cognitive load yes yes 23

Nee and Brown, 2012 abstract vs. concrete rules yes not tested 21

Qiao et al., 2017 task switch vs. repeat yes no 44

Waskom et al., 2014 task switch vs. repeat yes not tested 15

Wisniewski et al., 2016 free vs. cued intentions no yes 31

Wisniewski et al., 2018 contingent vs. non-contingent rewards no yes 35

Woolgar et al., 2011a easy vs. difficult task yes not tested 18

Zhang et al., 2013+ free vs. cued intentions yes yes 19

For each study, the context manipulation used and sample size (n) is shown. Furthermore, it is shown whether effects on coding strength and/or coding format were
found, or whether this was not assessed. This list is not exhaustive and only represents the research focused on the most in this article. +found context-dependent coding
in some, and context-invariant coding in other brain regions.
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tasks (e.g., adding vs. subtracting) vs. contrasting different
stimulus-response (SR) mappings (e.g., odd number → left
button vs. odd number → right button) might explain at least
some of the observed differences (Qiao et al., 2017). Indeed,
two SR mappings will often be more similar to each other
than two cognitive tasks. Using SR mappings might thus bias
results toward similar / context-invariant coding (which makes
context-dependent coding for SR mappings a stronger result, see
Woolgar et al., 2011a). Conversely, using cognitive tasks might
potentially bias results toward dis-similar/ context-dependent
coding (which makes context-invariant coding for different tasks
a stronger result, see Wisniewski et al., 2016).

CONTEXT-DEPENDENCE AND
INVARIANCE ARE NOT MUTUALLY
EXCLUSIVE

Given the previous evidence, it seems unlikely that intentions
are encoded solely in a context-dependent or context-invariant
form. These two views are not mutually exclusive, and using
both encoding formats has some potential benefits. In the
case of visual perception, it has been argued that the brain
has both context-dependent and context-invariant processing
systems, which are anatomically separated (Xu, 2018). This helps
maintaining stable representations of visual objects while also
being able to flexibly react to changing environments. A similar
division of coding formats might be present for intention coding
as well, although an anatomical separation is less likely in this
case (but see Momennejad and Haynes, 2013). A more likely
scenario is that the fronto-parietal network can exhibit both
context-dependent and context-invariant intention coding.

Of course, in this case one or the other encoding format
needs to be selected. This will likely depend on which format
is more useful in reaching desired goals, and both context-
dependent and context-invariant coding have associated costs
and benefits. Context-dependent coding allows us to flexibly
react to rapidly changing demands, at the cost of potentially
limited generalization to novel conditions (Botvinick et al.,
2009). Context-invariant coding allows us to easily generalize
existing intention representations to novel conditions, but at
the cost of increased cross-talk between different representations
(Feng et al., 2014). One thus might predict e.g., that intentions
implemented in frequently changing and novel contexts should
be encoded in a context-invariant form, and this prediction
should be tested directly in future research. The structure of
the environment is also key in determining the format of
intention coding. First, the degree to which contextual changes
are behaviorally relevant likely plays a role. It seems that
contextual manipulations that strongly affect the implementation
or performance of the chosen intention (e.g., difficulty, reward
prospect) lead to more context-dependent coding (Woolgar
et al., 2011a; Etzel et al., 2016), while manipulations that
have subtler behavioral effects (e.g., free vs. cued intentions)
lead to more context-invariant coding (Zhang et al., 2013;
Wisniewski et al., 2016). Second, the similarity of different
contexts likely plays a role as well. Sometimes, different contexts

will be similar, allowing us to implement our intentions in
a relatively similar fashion (e.g., brewing green tea vs. black
tea). At other times, different contexts will be highly dis-
similar, and our intentions will need to be implemented in
very different ways (e.g., brewing tea using a teabag vs.
Japanese tea ceremony). Recent evidence from computational
modeling suggests that this similarity between contexts plays
a large role in how we generalize behavior from one context
to the other (Franklin and Frank, 2018). If contexts are
similar, and we can implement our intentions in largely the
same way, we should see more compositional or context-
invariant coding (Reverberi et al., 2012), as this facilitates
generalization across such contexts. Overall, it seems likely
that intentions can be encoded both in a context-dependent
and context-invariant format, and that both characteristics of
the intentions themselves as well as the environment will
determine which format will be more useful to reach desired
goals.

FUTURE DIRECTIONS

In the previous sections, I described two accounts of how
intentions can be encoded in changing environments:
context-dependent vs. context-invariant coding. Using MVPA,
we are able to assess contextual effects both on the strength
and format of intention coding in the fronto-parietal cortex,
although this important distinction has not been made
explicitly in much of the previous research. Importantly, by
investigating effects on both, we can assess evidence for and
against context-dependent and -invariant coding, and determine
which coding format is used under which circumstances.
Evidence for both types of intention coding have been found
in the past, and the specific type of intention coding likely
depends on both characteristics of the intentions as well as
environments.

Clearly, there still remain a number of both empirical and
theoretical questions. Here, I highlighted the usefulness of MVPA
methods to address context-dependence of intention coding.
Representational similarity analysis (Kriegeskorte, 2011) might
offer an alternative analysis approach that is able to address
similar issues, and in the future we might see more experiments
using this method (see e.g., Qiao et al., 2017). Furthermore,
we will need to address much more systematically under which
specific conditions the brain encodes intentions in a context-
dependent or -invariant way. Above, I have shown that both
the similarity of different contexts, as well as their effects on
behavior likely play a key role. What is currently missing is a
more precise definition and a “taxonomy” of different contexts,
i.e., a system to define and classify contextual manipulations
into different types. For instance, one possible dimension along
which contextual manipulations could be organized is “external”
vs. “internal.” More external contextual changes like reward
outcomes (Etzel et al., 2016) might lead to different effects
on intention coding strength / format than more internal
contextual changes like cognitive load (Momennejad and Haynes,
2013), possibly mediated by differential effects on behavioral
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performance. A systematic assessment of different types of
contextual changes will help us determine boundary conditions
for context-dependent and -invariant coding in the future.
Addressing these issues will help us understand how we are able
to implement our intentions consistently, yet being able to react
flexibly to the constantly changing environments we are faced
with every day.
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