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ABSTRACT T cells must recognize pathogen-derived peptides bound to major histo-
compatibility complexes (MHCs) in order to initiate a cell-mediated immune response
against an infection, or to support the development of high-affinity antibody
responses. Identifying antigens presented on MHCs by infected cells and professional
antigen-presenting cells (APCs) during infection may therefore provide a route toward
developing new vaccines. Peptides bound to MHCs can be identified at whole-pro-
teome scale using mass spectrometry—a technique referred to as “immunopeptido-
mics.” This technique has emerged as a powerful tool for identifying potential vaccine
targets in the context of many infectious diseases. In this review, we discuss the con-
tributions immunopeptidomic studies have made to understanding antigen presenta-
tion and T cell priming in the context of infection and the potential for immunopepti-
domics to inform the development of vaccines to address pressing global health
problems in infectious disease.
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Recognition of pathogen-specific peptide-major histocompatibility complexes (pMHCs)
is required for naive T cells to become activated and proliferate, and for effector T cells

to recognize infected cells and carry out effector functions such as cytokine secretion and
lysis of infected cells that ultimately lead to control of an infection. Antigen-specific T cell
responses are also required for B cells to undergo affinity maturation and produce high-af-
finity antibodies (1). Identifying antigens that can be presented on MHCs and recognized by
T cells is therefore essential for understanding natural immunity to infection and developing
effective vaccines.

The pMHC repertoire is highly complex within any given individual, and highly vari-
able among individuals. MHC class I and class II present peptides for recognition by
CD81 and CD41 T cells, respectively, and are loaded with peptides via distinct path-
ways of antigen processing that have been reviewed in detail elsewhere (2, 3). MHC
molecules are highly genetically polymorphic, and different alleles preferentially bind
different sets of peptide sequences. Three distinct human leukocyte antigen (HLA) loci
encode the alpha chain of MHC class I (HLA-A, HLA-B, and HLA-C), for up to six alleles
in a given individual. Similarly, three loci each encode an alpha chain and a beta chain
of MHC class II (HLA-DR, HLA-DQ, and HLA-DP) (4). Given the diversity and variability of
the immunopeptidome, whole-proteome-scale approaches are needed to comprehen-
sively identify pathogen-derived antigens presented on MHCs.

Mass spectrometry (MS) provides a means of experimentally identifying the repertoire
of peptide antigens presented on MHCs by cells infected with a pathogen of interest. In a
typical immunopeptidomic workflow, MHC-peptide complexes are immunoprecipitated
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(IP) from a population of cells of interest using an HLA-allele-specific antibody or pan-HLA
antibody. Peptides are released by acid elution, MHCs are separated from peptides by size
exclusion or solid-phase extraction, and eluted peptides are analyzed by liquid chromatog-
raphy coupled to tandem MS (LC-MS/MS) (Fig. 1) (5, 6). Mass spectra are then searched
against a database of possible peptides that could be derived from the host and/or patho-
gen proteomes to identify pathogen-derived peptides presented on MHCs.

MS analyses of MHC peptides can be carried out in two distinct modes. In data-de-
pendent mode, peptides are detected and prioritized for tandem mass spectrum ac-
quisition based on their abundance, without prior knowledge of the composition of
the sample, enabling discovery of novel vaccine targets. In targeted mode, a predeter-
mined list of targets is selected for acquisition, enabling studies of the mechanism and
kinetics of presentation of known antigens by providing reliable detection and quanti-
fication across multiple samples.

Here, we review the use of MS-based immunopeptidomics to study antigen presen-
tation in infectious disease. These studies reveal basic insights into the biology of anti-
gen presentation, provide data sets for training predictive models of antigen presenta-
tion, and guide the rational selection of vaccine targets. We go on to discuss
opportunities for further study in this area, technical pitfalls that remain to be over-
come, and the potential for immunopeptidomics to inform vaccine development.

ANTIGEN PRESENTATION IN MODEL SYSTEMS

Vaccinia virus infection has served as a model system for research on the basic biol-
ogy of antigen presentation in viral infection. Vaccinia virus is a large, enveloped poxvi-
rus and a relative of variola virus (the etiologic agent of smallpox). It was widely used
as a vaccine against smallpox before the eradication of the disease, and some variants
such as Modified Vaccinia Ankara (MVA) are being used experimentally as viral vectors
for delivery of vaccine antigens (7–9). Although the immunopeptidome of vaccinia vi-
rus could provide insight into the mechanism by which it provides protection against

FIG 1 Schematic representation of an immunopeptidomic workflow to identify pathogen-derived peptides in infected cells. Infected
cells and mock-infected control cells are separately lysed, lysate is subjected to immunoprecipitation with an MHC-specific antibody,
and peptides are eluted in acid and separated from MHC proteins using size filtration or solid-phase extraction. Finally, the eluted
peptides are analyzed by LC-MS/MS, and mass spectra are searched against a database that includes the proteomes of both the
pathogen and the host to identify MHC-associated peptides. Putative pathogen-derived peptides identified in the samples from
infected cells can be looked for in the data from the mock-infected control to identify and eliminate some false positives.
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smallpox (10), its use in basic studies of antigen presentation is due primarily to its
attractiveness as a well-characterized, tractable model of viral infection.

An immunopeptidomic study of vaccinia virus-infected cells assessed whether most
viral peptides presented by MHCs are immunogenic or if a large proportion are immu-
nologically silent (11). The authors identified 170 viral peptides bound to MHC class I,
over 80% of which could be recognized by T cells isolated from vaccinia virus-infected
mice (11). The authors argue that their data represent evidence that most viral pep-
tides presented on MHCs are immunogenic, but it is unclear to what extent this con-
clusion can be generalized beyond vaccinia virus.

Vaccinia virus infection has also been used as a model to study the kinetics of anti-
gen presentation during viral infection and the relationship between pMHC abun-
dance and immunogenicity. Croft et al. (12) used a targeted MS approach to monitor
presentation of eight known vaccinia virus peptides in infected mouse B cells over
time. They found that peptide presentation occurred almost immediately after initia-
tion of viral gene expression, consistent with cotranslational antigen processing (13,
14). They also found that comparably immunogenic peptides can vary widely in their
abundance in the MHC repertoire, suggesting that pMHC abundance may not strongly
correlate with immunogenicity. Using targeted MS to monitor antigen presentation
over time could be useful in selecting vaccine antigens presented during different
stages of infection (15).

COMPUTATIONAL MODEL BUILDING

Computational methods for predicting peptides likely to be presented on MHCs
were first trained using data from in vitro binding assays (16–19), but recently devel-
oped models incorporate large MS-based immunopeptidomic data sets as training
data, resulting in improvements in performance (20–24). The high-throughput nature
of in silico predictions enables such analyses to cover a much wider range of HLA al-
leles. Computational methods can also select sets of epitopes that maximize coverage
of a population with a given set of HLA allele frequencies (25), which will aid in the
design of broadly protective vaccines.

Immunopeptidomic data sets have facilitated the development of models that ex-
plicitly take into account factors beyond MHC binding affinity alone, such as gene
expression level, protein subcellular localization, and predicted protease cleavage sites
(22–24, 26). These modeling approaches could be applied to learn pathogen-specific
rules for antigen presentation, such as whether secreted bacterial proteins are prefer-
entially presented on MHCs, relative to proteins in the pathogen’s cytosol (27). Existing
data sets of pathogen-derived MHC peptides are small, but highly data-efficient
machine learning methods (28) may help build pathogen-specific models from limited
numbers of training examples.

Rapid computational predictions can inform efforts to develop vaccines for emerg-
ing infectious diseases sooner than experimental data. Multiple computational analy-
ses of predicted T cell epitopes in the SARS-CoV-2 proteome were published early in
the pandemic (29, 30), whereas experimental data identifying MHC peptides derived
from SARS-CoV-2 were not published until months later (31, 32). Obtaining accurate
predictions of T cell epitopes could therefore be critical to rapidly developing vaccines
against future emerging pathogens.

VACCINE TARGET DISCOVERY

The direct discovery of vaccine targets is one of the most exciting applications of
immunopeptidomics in infectious disease. Whereas T cell responses contribute to pro-
tective immunity against many globally important infectious diseases, most rationally
designed vaccines licensed to date have been designed to elicit protective immunity
primarily through humoral immune responses (33). Immunopeptidomics can provide a
systematic, rational basis on which to select targets for vaccines that elicit protective
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cell-mediated immunity, which may be essential in order to develop highly effective
vaccines against pathogens for which none yet exist.

Developing effective vaccines against intracellular bacteria has historically proven
challenging, in part due to a lack of knowledge of protective T cell antigens (34).
Immunopeptidomic analyses have helped to address this problem by identifying pro-
tective T cell epitopes of Mycobacterium tuberculosis—the causative agent of tubercu-
losis (35)—and Chlamydia trachomatis—the causative agent of chlamydia (36) and tra-
choma (37). M. tuberculosis-derived peptides have been identified that are presented
on MHC class I (38) and on the noncanonical class Ib MHC molecule HLA-E (39) by M.
tuberculosis-infected human cells, as well as MHC class I and II peptides presented by
human macrophages infected with the bacillus Calmette-Guérin (BCG) vaccine strain
(40). Administering these antigens to mice using the ChAdOx1 viral vector in a prime-
boost regimen with BCG reduced M. tuberculosis bacterial burden in the lung signifi-
cantly more than did BCG alone (40). Similarly, nine antigens identified in an immuno-
petidomic analysis of C. trachomatis-infected cells (41) were recognized by T cells of
infected mice and reduced vaginal shedding of C. trachomatis when delivered as a
recombinant protein vaccine (42). These findings suggest that immunopeptidomics
can help advance the development of effective vaccines against intracellular bacterial
pathogens, though the clinical utility of these vaccine targets has yet to be tested in
humans.

Like intracellular bacteria, eukaryotic parasites have proven difficult to vaccinate
against, with only one vaccine currently licensed (43). Mou et al. (44) used MS to identify
peptides presented on MHC class II by murine macrophages infected with Leishmania
major, a parasite that causes leishmaniasis (45). They identified an immunodominant epi-
tope of phosphoenolpyruvate carboxykinase (PEPCK) that reduced the parasite burden
in a mouse model of leishmaniasis when administered as a peptide vaccine or DNA vac-
cine. These results demonstrate the potential for immunopeptidomics to aid in the de-
velopment of vaccines against intracellular parasites.

Immunopeptidomics may help identify viral T cell epitopes that vaccines can target
to confer lasting protection in the face of viral evasion of antibody-mediated immunity.
A high frequency of escape mutations (46) has made it difficult to develop vaccines
that elicit antibody-mediated protection against human immunodeficiency virus (HIV)
—the causative agent of AIDS (47). However, some individuals naturally control HIV
infection in a manner associated with CD81 T cell responses, suggesting T cells can
contribute to durable immunity against HIV (48–51). Several research groups have
used immunopeptidomic methods to identify HIV-derived epitopes presented on MHC
class I by infected CD41 T cells (52–56). Some of these studies specifically isolated pep-
tides bound to HLA alleles associated with improved control of HIV infection (53, 55),
thereby identifying antigenic targets that may be associated with durable protection.
Many of these epitopes elicited gamma interferon (IFN-g) production in T cells of HIV-
positive patients, validating their relevance to T cell responses against HIV. Including
additional viral T cell epitopes in future HIV vaccine candidates could help mitigate the
effects of viral escape mutations, but this concept has not been tested in animal mod-
els or humans.

INFECTION AND AUTOIMMUNITY

Some infections are known to be associated with the onset of autoimmune disease,
but the mechanisms underlying this relationship are not fully understood (57).
Immunopeptidomics offers a way to systematically identify pathogen-derived MHC pep-
tides that can trigger self-reactive T cell responses, leading to autoimmunity. For exam-
ple, Alvarez-Navarro et al. (58) used immunopeptidomics to investigate why Chlamydia
trachomatis infection is associated with reactive arthritis in individuals carrying HLA-B al-
leles of the HLA-B*27 group (59). They identified three C. trachomatis peptides presented
by HLA-B*27 that had high sequence similarity to endogenous human peptides and
were predicted to adopt similar conformations when bound to HLA-B*27. T cells that
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respond to these C. trachomatis peptides might cross-react with endogenous peptides,
leading to autoimmunity. Similarly, Wang et al. (60) used immunopeptidomics to reveal
a mechanism that may explain why the HLA-DR*15 haplotype and Epstein-Barr virus
(EBV) infection are both associated with increased risk of multiple sclerosis. They identi-
fied peptides presented by HLA-DR*15 derived from the neuronal marker RASGRP2 and
found that T cells specific for these peptides cross-reacted with peptides derived from
EBV. These results suggest that EBV infection may lead to T cell responses that cross-
react with neuronal markers in individuals expressing HLA-DR*15, leading to neurode-
generation. Cross-reactive epitopes identified in immunopeptidomic studies could in
principle be targeted by therapies designed to induce epitope-specific immune toler-
ance (61, 62) and mitigate autoimmunity associated with infection.

FUTURE DIRECTIONS AND OUTSTANDING CHALLENGES

Immunopeptidomics can elucidate the basic biology and mechanisms of antigen
presentation in infectious disease, improve predictive modeling of pathogen-derived T
cell epitopes, draw connections between infection and autoimmunity, and identify
promising vaccine targets. The discovery of new T cell antigens would aid in the devel-
opment of vaccines against several globally important pathogens. For example, liver-
resident CD81 T cells are known to be a strong correlate of immunity to malaria (63,
64), but only a few T cell antigens presented in liver-stage malaria have been identified
(65, 66). T cell responses are also thought to be important for immunity to bacterial
pathogens with a rapidly growing incidence of antibiotic resistance, such as Salmonella
spp. (67) and Staphylococcus aureus (68), as well as parasites such as Trypanosoma cruzi,
which causes Chagas disease (69). Some of these protective T cell responses could tar-
get ligands that standard immunopeptidomic workflows do not detect, such as nonca-
nonical translation products (70) or small molecules presented by the HLA-like mole-
cules CD1 (71) and MR1 (72), but methods are being developed to analyze these
unconventional epitopes by MS as well (70, 73, 74). The use of immunopeptidomics to
comprehensively identify T cell antigens could therefore help combat both long-stand-
ing global health problems and emerging crises.

Although immunopeptidomics can provide valuable information about the reper-
toire of pathogen-derived MHC ligands at a whole-proteome scale, it currently has at
least three important limitations, enumerated in Table 1. Some of these limitations can
be overcome by combining MS-based immunopeptidomics with other complementary
techniques, and some may be overcome through ongoing method development.

Determining whether a peptide discovered through immunopeptidomics is immuno-
genic (problem 1) generally requires combining immunopeptidomics with techniques that

TABLE 1 Three significant limitations of current immunopeptidomic methods

Limitation of immunopeptidomics Implications Relevant references
1 Not all peptides presented on MHCs

are immunogenic
Targets identified by immunopeptidomics should ideally
be further screened for T cell recognition and
immunogenicity using other assays.

75–79

2 Cell-to-cell heterogeneity in antigen
presentation cannot be resolved

Some contributions to the MS signal in an
immunopeptidomic study may come from uninfected
bystander cells, and a mixture of different cell types
cannot be deconvoluted to learn which types are
important for antigen presentation. Presentation of
specific antigens can be probed at a single-cell level
using pMHC-specific antibodies or biotin labels
transferred between cells.

80–85

3 Large amounts of sample input are
required

Studies in primary cells or with pathogens that cannot be
cultured in large quantities are currently difficult to carry
out. Microfluidic methods and other low-volume sample-
handling techniques may help overcome these
limitations. Targeted MS analyses may have higher
sensitivity and require lower input.

6, 86
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can directly measure a T cell response against a given peptide of interest. Traditionally, this
has been done by measuring production of IFN-g by T cells specific for each epitope of interest
(40). T cells specific for a pMHC complex of interest can also be stained using pMHC tetramers
(75). More recently, a suite of methods for high-throughput measurement of T cell receptor
(TCR)-pMHC interactions has been developed (76). Computational models have also been
developed to predict the immunogenicity of putative T cell epitopes (77–79), which may help
prioritize hits identified in an immunopeptidomic experiment for development as potential
vaccine targets.

Cell-to-cell heterogeneity in antigen presentation (problem 2) may be consequen-
tial for immunity to some infections. For example, certain antigens of Mycobacterium
tuberculosis can be presented by both infected cells and uninfected bystander cells
(80, 81), while other antigens may be specific to infected cells. An antigen presented
by uninfected bystander cells could potentially cause off-target lysis of bystander cells
by cytotoxic T cells if targeted by a vaccine and/or might be presented at a lower level
on infected cells than immunopeptidomic data would suggest, leading to less effective
targeting of infected cells. Antibodies that recognize specific peptide-MHC complexes
(82, 83) can enable measurements of antigen presentation at the single-cell level using
flow cytometry or microscopy. Interactions between T cells and antigen-presenting
cells (APCs) can also be tracked using a transferable biotin label (84, 85), providing a
single-cell readout of pMHC-TCR interactions. These methods can complement immunopep-
tidomics by probing antigen presentation in a heterogeneous population of cells.

Whereas recent immunopeptidomic studies in cancer immunology have used sam-
ple input on the order of 106 to 107 cells (6), sample input on the order of 108 to 109

cells (problem 3) is often required to detect pathogen-derived peptides. The use of
microfluidic devices or other low-volume sample handling techniques (86) could help
reduce input requirements dramatically while retaining high sensitivity. Serial immuno-
precipitation has already been successfully used to isolate both MHC class I and class II
peptides from the same sample, further conserving input material (40). Lower sample
input requirements could enable immunopeptidomic studies on infected primary cells
or ex vivo samples from animals infected with a pathogen of interest or studies of
pathogens that are impossible to culture in large quantities, such as the liver stage of
malaria parasites (Plasmodium spp.).

Combining computational modeling with targeted mass spectrometry approaches
could provide another avenue toward reducing sample input requirements (problem
3). Targeted MS analyses can detect MHC-associated peptides with greater sensitivity
than data-dependent analyses, potentially reducing sample input requirements and
increasing the likelihood of detecting peptides that would not be detectable in a data-
dependent analysis. Accurate predictive models of peptide presentation on MHCs
could identify promising candidates to experimentally validate using highly sensitive
targeted MS workflows, and these experimental results could in turn be used for fur-
ther model refinement.

Future improvements in immunopeptidomic methods may also focus on overcom-
ing technical pitfalls that can result in inaccurate identification of MHC peptides by MS.
In one instance, for example, HIV-derived peptides previously identified as MHC class I
ligands (52) were shown to nonspecifically copurify with host membrane proteins (87).
This result highlights the importance of proper controls in immunopeptidomic studies.
Ambiguities in peptide identification may also be a source of uncertainty. It has
recently been proposed that posttranslationally spliced peptides (88–91) and peptides
derived from noncanonical translation products (92, 93) contribute substantially to the
immunopeptidome. However, matching mass spectra against an expanded search
space that includes spliced peptides and noncanonical translation products may
increase the risk of false positives (70, 94). The false-discovery rate associated with
these identifications must be carefully estimated to obtain accurate results (70).

Immunopeptidomics has already been used to design vaccines that improve con-
trol of infection in mouse models of chlamydia (42), leishmaniasis (44), and tuberculosis
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(40). As the field continues to advance, it is likely that immunopeptidomics and/or
computational models trained on immunopeptidomic data will provide a rapid, sensi-
tive, and systematic means of identifying vaccine targets in many human pathogens.
Combining immunopeptidomics with other next-generation immunoassays and exist-
ing preclinical and clinical vaccine development platforms has the potential to have a
transformative impact on global health.
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