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Abstract: Genomic studies are increasingly revealing that neurodevelopmental disorders are caused
by underlying genomic alterations. Chromosomal microarray testing has been used to reliably detect
minute changes in genomic copy numbers. The genes located in the aberrated regions identified in
patients with neurodevelopmental disorders may be associated with the phenotypic features. In such
cases, haploinsufficiency is considered to be the mechanism, when the deletion of a gene is related
to neurodevelopmental delay. The loss-of-function mutation in such genes may be evaluated using
next-generation sequencing. On the other hand, the patients with increased copy numbers of the
genes may exhibit different clinical symptoms compared to those with loss-of-function mutation
in the genes. In such cases, the additional copies of the genes are considered to have a dominant
negative effect, inducing cell stress. In other cases, not the copy number changes, but mutations of
the genes are responsible for causing the clinical symptoms. This can be explained by the dominant
negative effects of the gene mutations. Currently, the diagnostic yield of genomic alterations using
comprehensive analysis is less than 50%, indicating the existence of more subtle alterations or
genomic changes in the untranslated regions. Copy-neutral inversions and insertions may be related.
Hence, better analytical algorithms specialized for the detection of such alterations are required for
higher diagnostic yields.

Keywords: nonallelic homologous recombination (NAHR); contiguous gene deletion syndrome;
classical microdeletion syndrome; genome disease; diagnostic yield; exome sequencing

1. Introduction

Neurodevelopmental disorders are defined as a concept that includes a wide range
of symptoms such as intellectual disability, developmental retardation, communication
disorders, autism spectrum disorders, attention deficit hyperactivity disorder, learning
disabilities, and motor disorders such as tics [1,2]. Cerebral palsy, epilepsy, and psychiatric
disorders are also understood as peripheral diseases with the same origin. In other words,
it is easy to think of the pathophysiology of many of these symptoms if we consider
that some disorder of the synaptic function of the central nervous system causes various
combinations of symptoms as clinical symptoms [3].

Since the completion of the Human Genome Project in 2003 (Gibbs), comprehensive
genome analysis technology using the primary sequence information of the human genome
has advanced, and comprehensive genome copy number analysis using microarrays and
comprehensive genome analysis using next-generation sequencers have become possible.
Genomic medicine using these analysis techniques has revealed the causes of neurode-
velopmental disorders in children one after another [4,5]. Although the diagnostic yields
in the chromosome G banding method was approximately 4%, which was the only com-
prehensive analysis method before the Human Genome Project, now, the diagnostic rate
has increased to about 30–40% [6]. Because the genomic research of neurodevelopmental
disorders is still ongoing, the involvement of the genomic alteration in neurodevelopmental
disorders is not yet fully understood.
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Here, the genetic factors of neurodevelopmental disorders and the current state of
diagnosis by genomic medicine are outlined.

2. Chromosomal Deletions

Genomic copy number variations often contribute to neurodevelopmental disorders,
indicating that many genes important for neurogenesis are copy-number-dependent. In
general, 22q11.2 microdeletion (MIM #192430) is the most frequently observed genomic
alteration, occurring in one in three-thousand live births [7]. The 22q11.2 microdeletion
is caused by nonallelic homologous recombination (NAHR) facilitated by the low-copy
repeats (LCRs) present at both ends of the deletions (Figure 1). Similar to the 22q11.2
microdeletion, several other microdeletions are mediated by the LCRs (Table 1). Due to
these characteristics of the genome, microdeletion syndromes resulting from the adjacent
LCRs are sometimes called “genome diseases”. Furthermore, the microdeletion syndromes,
identified before the Human Genome Project, are characterized by prominent phenotypic
features and are relatively easy to diagnose [8]. Therefore, these are called “classical
microdeletion syndromes”.

For instance, patients with 22q11.2 microdeletion syndrome often present with tetral-
ogy of Fallot, as a congenital heart disease (Table 1). Additionally, patients with Williams-
Beuren syndrome (MIM #194050) and Smith-Magenis syndrome (MIM #182290) also
present with congenital heart diseases associated with supraclavicular stenosis and ven-
tricular septal defect, respectively. In addition to congenital heart diseases, patients with
these syndromes exhibit distinctive features, which provide important clues for clinical
diagnosis. Furthermore, the variable phenotypes in these disease groups are caused by
the deletion of multiple adjacent genes, leading to the term “continuous gene deletion
syndrome”.

“Classical microdeletion syndromes” or “genome diseases” are often associated with
various levels of neurodevelopmental abnormalities, because the deleted region contains
genes related to neurodevelopment, which are copy-number-dependent. Furthermore,
a condition where heterozygous deletions or loss of homologous alleles occur and the
remaining functional copy of the gene is incapable of producing a sufficient gene product
required for maintaining the normal function is referred to as haploinsufficiency. Haploin-
sufficiency of genes related to neurodevelopment is an essential mechanism in classical
microdeletion syndromes.
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Figure 1. Schematic representation of the mechanism of nonallelic homologous recombination.
Deletions and duplications of the regions of interest (grey rectangles) can be caused by nonallelic
homologous recombination triggered by the presence of low-copy repeats (LCRs).



Cells 2021, 10, 2317 3 of 11

Table 1. Classical microdeletion syndromes and reciprocal duplications.

Chromosomal
Regions Deletions Duplications

Microdeletion
Syndromes Main Clinical Features Microduplication

Syndromes Main Clinical Features

22q11.2 22q11.2 deletion
syndrome

Tetralogy of Fallot, language
delay, distinctive facial features

22q11.2 duplication
syndrome ADHD

7q11.23 Williams-Beuren
syndrome

Supraventricular stenosis,
intellectual disability, distinctive
facial features

7q11.23 duplication
syndrome

Speech delay and autism
spectrum behaviors

15q11 Prader-Willi
syndrome

Developmental delay, hypotonia,
obesity 15q11 duplication Intellectual disability,

autism spectrum behaviors

Angelman
syndrome

Developmental delay, epilepsy,
distinctive facial features

17p11 Smith-Magenis
syndrome

Congenital heart defects,
developmental delay, distinctive
facial features

Potocki-Lupski
syndrome

Intellectual disability,
autism spectrum behaviors

5q35 Sotos syndrome Developmental delay,
macrocephaly 5q35 duplication

3. Microduplications

The genes that cause neurodevelopmental delay upon their deletion are often copy-
number-dependent. These genes affect the neurodevelopmental process, not only by
deletions, but also by duplications, (e.g., reciprocally increased number of gene copies,
such as in chromosomal partial trisomy). In fact, it is known that neurodevelopmental dis-
orders, such as autism and attention deficit hyperactivity disorder, occur when the regions
responsible for classical chromosomal microdeletion syndrome are duplicated (Table 1).
Smith-Magenis syndrome is caused by the deletion of the 17p11 region [9], whereas, re-
ciprocal duplication of this region causes Potocki-Lupski syndrome (MIM #610883), and
the patients present with relatively severe developmental disorders [10]. The RAI1 gene,
located on 17p11, is considered to be responsible for the neurodevelopmental disability
in both Smith-Magenis and Potocki-Lupski syndromes [11]. In addition, developmental
disorders occur when the regions responsible for 22q11.2 microdeletion and Williams
syndromes are duplicated.

4. Different Symptoms Are Associated with Deletion and Duplication of
Certain Genes

Several genes are known to show different clinical symptoms depending on their
deletion or duplication (Table 2). For instance, deletion of PMP22 (located on 17p12) causes
hereditary neuropathy with susceptibility to pressure palsies (MIM #162500) [12], while its
duplication causes Charcot-Marie-Tooth disease (MIM #118220) [13]. Similarly, deletion of
PLP1 (located on Xq22.2) causes spastic paraplegia associated with peripheral neuropathy;
however, its duplication causes a congenital white matter abnormality, known as Pelizaeus-
Merzbacher disease (MIM #312080) [14,15]. These differences can be attributed to different
mechanisms associated with gene deletion or duplication events [16]. Additionally, it
is believed that duplication events result in the increased expression of genes, inducing
cell stress.
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Table 2. The genes with different phenotypes in deletions and duplications.

Deletion Duplication

PMP22 hereditary neuropathy with susceptibility
to pressure palsies (HNPP) Charcot-Marie-Tooth disease

PLP1 spastic paraplegia Pelizaeus-Merzbacher disease

MECP2 Rett syndrome in female MECP2 duplication syndrome in male

Furthermore, mutation of MECP2 gene (located on Xq28) causes Rett syndrome (MIM
#312750), a neurodevelopmental disorder specific to females; however, its duplication
(MIM #300815) is asymptomatic in women, while causing severe intellectual disability,
epilepsy, and susceptibility to infection in males [17]. The exact mechanism underlying
MECP2 deletion or duplication is unclear to date [18].

5. Significance of Microarray in Detecting Chromosomal Aberrations

Since 2010, chromosomal microarray testing has been commonly used for detecting
chromosomal aberrations, and it has helped in the diagnosis of several previously un-
known chromosomal microdeletion syndromes [19,20]. Among these, a few are novel
genomic diseases that are caused by LCR-mediated NAHR; one such disease is 16p11.2 mi-
crodeletion syndrome (MIM #611913) [21]. The 16p11.2 microdeletion is relatively frequent
and is observed in approximately 1/100 patients with autism. Furthermore, deletion or
duplication of 16p11.2 causes similar developmental disorders, and their clinical diagnosis
is difficult, contrary to the classical microdeletion syndromes, as the patients have very few
differentiating symptoms. Hence, comprehensive copy number variation (CNV) analysis
by microarray is the only diagnostic method for 16p11.2 microdeletion syndrome.

The chromosomal microdeletions caused by LCR-mediated NAHR are limited, and
various chromosomal aberrations detected by microarray are caused by random break-
points (Table 3). However, even if the breakpoints are not common, the chromosomal
microdeletions that can be clinically classified as the same entities due to the common
clinical symptoms include the main gene(s) in the deleted region (Figure 2). Thus, the
clinical symptoms can be diagnosed because of the involvement of the main gene(s) in the
deleted regions.
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Table 3. Chromosomal regions and phenotypes.

Regions Responsible Gene(s) Phenotypes

Microdeletions/duplications
derived from NAHR

1q21.1 deletion/duplication Developmental delay, distinctive features, congenital anomalies

3q29 deletion DLG1, PAK2 Developmental delay, psychiatric symptoms

15q13.3 deletion CHRNA7 Intellectual disability, epilepsy

16p11.2 deletion/duplication Developmental disorder

17q12 deletion/duplication HNF1B Maturity onset diabetes of the young (MODY)

17q21.31 deletion/duplication CRHR1, MAPT Developmental delay, muscular hypotonia, distinctive features

Microdeletions/duplications
derived from random breakpoints

1q32 deletion IRF6 Van der Woude syndrome

1q41q42 deletion DISP1 Developmental delay, epilepsy, distinctive features

2p15-p16.1 deletion Autism spectrum disorder

2q23.1 deletion MBD5 Severe developmental delay, epilepsy, microcephaly

2q33 deletion/duplication SATB2 Intellectual disability

3p21.31 deletion BSN Developmental delay, white matter abnormality, hyperCKemia

3q13.31 deletion ZBTB20 Language delay

5q14 deletion MEF2C Severe developmental delay, epilepsy, brain abnormalities

5q31.3deletion PURA, NRG2 Severe developmental delay, epilepsy

8q24 deletion EXT1, TRPS1 Langer-Giedion syndrome

9q22.3 deletion PTCH1 Gorlin syndrome

10q22 deletion KAT6B Ohdo syndrome

10q23 deletion PTEN Juvenile polyposis

11p13 deletion WT1, PAX6 WAGR syndrome

11p11.2 deletion EXT2, ALX4 Potocki-Shaffer syndrome

12q24.21 deletion MED13L Intellectual disability

13q32 deletion ZIC2 Holoprosencephaly

15q22.2 deletion NRG2, RORA Developmental delay, epilepsy

16q24.3 deletion ANKRD11, ZNF778 Autism spectrum disorder

17p13.1 deletion DLG4, GABARAP Intellectual disability, epilepsy

18q12.3 deletion SETBP1 Language delay

18q21.2 deletion TCF4 Pitt-Hopkins syndrome

19p13.2 deletion NFIX Malan syndrome

Xp22.3 deletion KAL1 Kallmann syndrome

Xp21-22 deletion CDKL5, ARX Epileptic encephalopathy

Xp11.4 deletion CASK Developmental delay, microcephaly

Xp11.22 deletion HUWE1 Developmental delay

Xq11.1 deletion ARHGEF9 Developmental delay, epilepsy

Xq28 duplication MECP2 Developmental delay, epilepsy
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6. Genes Identified Based on Their Genomic Copy Number Changes

In 2011, we identified a small deletion in Xq11.1, in a patient with epileptic en-
cephalopathy [22]. The deleted region contained the ARHGEF9 gene. Additionally, we iden-
tified a nonsense mutation in ARHGEF9 in a different patient with epileptic encephalopathy.
Based on these findings, ARHGEF9 has been registered as the causative gene for develop-
mental and epileptic encephalopathy 8 (MIM #300607) [23].

Further, in 2011, we reported two cases of 5q31 microdeletion for the first time [24].
Both patients exhibited common clinical symptoms with infantile epileptic encephalopathy
and shared severe psychomotor development. Following our study, two other studies
reporting overlapping chromosomal microdeletions narrowed down the candidate gene re-
sponsible for the syndrome to be PURA [25,26]. Finally, next-generation sequencing (NGS)
of patients with severe psychomotor development and infantile epileptic encephalopa-
thy revealed a large number of de novo mutations in PURA, confirming the association
of PURA with 5q31 microdeletion syndrome [27]. Hence, currently, 5q31 microdeletion
syndrome is known as a PURA-related neurodevelopmental disorder.

In another study, we found a 15q14 microdeletion in a patient with mild neurodevel-
opmental disorder with ventricular septal defect and submucosal cleft palate [28]. Further,
the deleted region contained MEIS2, which has since been identified as the causative
gene for neurodevelopmental disorders associated with cleft palate and congenital heart
disease [29].

Hence, as discussed above, when the phenotype caused by chromosomal deletion
and gene mutation is the same, it is considered to be caused by haploinsufficiency and is
relatively easy to understand.

7. Genes Whose Phenotypes Are Not Affected by Genomic Copy Number Changes

ZBTB20, located at 3q13.31, has been identified as the causative gene for Primrose
syndrome (MIM #259050), which is associated with severe neurodevelopmental disor-
ders [30]. Previously, we found that the symptoms associated with neurodevelopmental
disorders were very mild and inconsistent in the cases with 3q13 deletion compared to
those observed in Primrose syndrome [31]. Therefore, Primrose syndrome is unlikely to be
caused by haploinsufficiency of ZBTB20 and is thought to be the result of the dominant
negative effect of ZBTB20 mutations.

SATB2 is located at 2q33.1 and is known as the causative gene for Glass syndrome
(MIM #612313), which causes characteristic symptoms, such as intellectual disability and
dentition malformation. Patients with SATB2 mutations and deletions show similar symp-
toms [32,33]. Furthermore, HECW2 is located on the 3-Mb centromeric side of SATB2 at
2q32.3-q33.1 and has recently been identified as a causative gene for neurodevelopmental
disorders with hypotonia, seizures, and absent language (NDHSAL; MIM #617268) [34,35].
However, microdeletion of 2q32.3-q33.1 is not known to cause severe developmental disor-
ders. Hence, the neurodevelopmental disorders due to HECW2 mutations are considered
to be because of the dominant negative effect [36].

Thus, the pathomechanism of neurodevelopmental disorders can be revealed by
understanding whether the gene mutation is due to haploinsufficiency or the dominant
negative effect. Therefore, it is important to compare the phenotypes of patients due to
gene deletions and the gene mutations associated with the dominant negative effects.

8. Diagnostic Yield of the Methods Used for Genetic Testing

The diagnostic yield of chromosomal microarray testing has been found to be
12–20% [20,37,38]. Furthermore, the diagnostic yield does not vary depending on the
type of platform used, such as comparative genomic hybridization or single-nucleotide
polymorphism, indicating that it does not depend on the resolution of the microarrays.

When there are no pathogenic CNVs, single-nucleotide variants (SNVs) may be as-
sociated with the occurrence of the diseases. Currently, NGS-based exome sequencing is
recommended to detect SNVs [1]. The diagnostic yield of exome sequencing is approxi-
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mately 30% [6]. Thus, more than 40% of the cases can be diagnosed using either genome
copy number analysis or exome sequencing. However, for the remaining patients (more
than 50%), the genomic background of the diseases remains unclear (Figure 3).
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9. Undetected Genomic Backgrounds

What are the causes of the diseases where no pathogenic CNVs or SNVs have been
observed? One possible cause in such cases is the genomic copy number aberrations;
however, they are very small such that cannot be detected by microarray with the general
resolution. For instance, most patients with Duchenne muscular dystrophy (DMD; MIM
#310200, 71%) show exonic deletions in the DMD gene, and only 17% of the patients show
pathogenic SNVs [39]. As this is a well-known phenomenon, multiplex ligation probe
amplification is primarily used for the diagnosis of DMD. Previously, we identified an
exonic deletion in MED13L. The microarray results showed an aberrant log2 ratio in only
three probes; hence, we used a different method to confirm the deletion [40]. Thus, such
small CNVs could be misdiagnosed by microarray and exome sequencing.

The other possible mechanisms are silent mutations, deep intronic variants, aberra-
tions in the noncoding regions, and genomic methylation. A few silent mutations and deep
intronic variants are known to affect the splicing machinery [41–43]. As these variants
are generally excluded during the filtering of exome sequencing data, those affecting the
splicing machinery may have been overlooked. Furthermore, aberrations in the noncoding
regions cannot be detected by exome sequencing, and scientific evidence of their association
with disease occurrence is insufficient. Additionally, altered methylation of the wild-type
sequences is known to be the underlying cause of a few diseases. However, methylation
abnormalities cannot be detected by microarray and exome sequencing.

However, even if such abnormalities are detected, it may be difficult to confirm their
association with the diseases. For instance, the precise detection of small CNVs is not
possible. However, while targeting small CNVs, a large number of nonpathogenic CNVs
may be detected, making it difficult to distinguish the pathogenic CNVs. A similar problem
may arise with other discussed mechanisms. Exome sequencing covers only approximately
2% of the entire genome. However, sequencing the entire genome may result in a large
number of variants, making the visual filtering difficult. Thus, analyzing the entire genome
is not practical unless a more accurate database is developed and automated filtering using
artificial intelligence is introduced.
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10. Novel Developments Expected in Whole Genome Analysis for the Detection of
Chromosomal Aberrations

To date, we have analyzed CNVs in many patients. Among the analyzed cases, a
few have exhibited comparatively more complicated structural abnormalities, such as
three consecutive deletions and additional triplications in the duplicated fragment [44,45].
Further, we performed whole-genome analysis to clarify the patterns of structural abnor-
malities [46]. The results suggested that seemingly simple structural abnormalities may be
caused by more complex changes, such as inversions and insertions.

Thus, there is a possibility that the copy-neutral rearrangements, such as inversions or
insertions, contribute to disease occurrence. However, they cannot be detected through
microarray (Figure 4), as evidenced in the literature [47–49]. Hence, with the usage of
whole-genome analysis and the availability of appropriate algorithms or analysis software
that can efficiently detect inversions and insertions without copy number changes, the
diagnostic yields of the disease-causing genomic backgrounds will increase.
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11. Conclusions

The involvement of genomic alterations in neurodevelopmental disorders and the
progress of their analysis technology were outlined. Chromosomal microarray testing is
positioned as the first-tier testing for undiagnosed neurodevelopmental disorders [20]. In
approximately 15% of patients, pathogenic CNVs are expected to be detected, and the
final diagnosis would be obtained. If the diagnosis cannot be obtained by the chromo-
somal microarray testing, SNVs are recommended to be comprehensively analyzed by
exome analysis. Exome analysis will reveal pathogenic SNVs in approximately 30% of
patients. If neither microarray chromosomal testing nor exome analysis show pathogenic
variants, there may be variants that cannot be detected by these techniques. Exonic dele-
tions/duplications, copy-neutral inversions/insertions, and variants in noncoding regions
would have been underdiagnosed. Therefore, it is expected that whole-genome analysis
will detect such alterations that have not been found so far and that the diagnostic yield
will be further improved (Figure 5). The genomic basis of neurodevelopmental disorders
has not yet been fully elucidated, and genomic testing methods will be refined further in
the future.
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