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While vaccines against SARS-CoV-2 are being administered, in most countries it may still take9

months until their supply can meet demand. The majority of available vaccines elicits strong immune10

responses when administered as prime-boost regimens. Since the immunological response to the first11

(“prime”) injection may provide already a substantial reduction in infectiousness and protection12

against severe disease, it may be more effective—under certain immunological and epidemiological13

conditions—to vaccinate as many people as possible with only one shot, instead of administering a14

person a second (“boost”) shot. Such a vaccination campaign may help to more effectively slow down15

the spread of SARS-CoV-2, reduce hospitalizations, and reduce fatalities, which is our objective.16

Yet, the conditions which make single-dose vaccination favorable over prime-boost administrations17

are not well understood. By combining epidemiological modeling, random sampling techniques,18

and decision tree learning, we find that single-dose vaccination is robustly favored over prime-boost19

vaccination campaigns, even for low single-dose efficacies. For realistic scenarios and assumptions for20

SARS-CoV-2, recent data on new variants included, we show that the difference between prime-boost21

and single-shot waning rates is the only discriminative threshold, falling in the narrow range of22

0.01–0.02 day−1 below which single-dose vaccination should be considered.23

INTRODUCTION24

After the initial identification of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan,25

China in December 2019, the virus quickly reached pandemic proportions and caused major public health and economic26

problems worldwide [1]. The disease associated with SARS-CoV-2 infections was termed coronavirus disease 201927

(COVID-19). As of June 28, 2021, the number of confirmed COVID-19 cases exceeded 180 million and more than 3.928

million COVID-19 deaths in more than 219 countries were reported [2]. Large differences between excess deaths and29

reported COVID-19 deaths across different countries suggest that the actual death toll associated with COVID-19 is30

even higher [3].31

With the start, continuation and resuming of vaccination campaigns against SARS-CoV-2 in many countries [4],32

millions of people will receive partial and full immunization in the next months. The mRNA vaccines BNT162b233

(BioNTech-Pfizer) and mRNA-1273 (Moderna) received emergency use approval in the US and EU. When administered34

as prime-boost regimen, these vaccines have a reported protective efficacy of 95% [5] and 94.1% [6], respectively. An35

effectiveness evaluation of the BNT162b2 BioNTech-Pfizer vaccine shows that it may offer about 50% protection36

against SARS-CoV-2 infections about 2–3 weeks after receiving the first shot [7]. The adenovirus-based vaccine37

ChAdOx1 (Oxford-AstraZeneca) is being used in the UK, EU, and other countries with a reported single-shot regimen38

efficacy between 62–79% [8, 9]. Vaccine effectiveness against symptomatic disease for B.1.1.7 (Alpha) and B.1.617.239

(Delta) variants are reported to be 88% (Alpha) and 80% (Delta) for prime-boost regimens [10], while estimates of the40

effectiveness for hospitalization suggest 92% for Alpha and 94% for Delta [11, 12].41

Taken together, the majority of currently available SARS-CoV-2 vaccines elicits strong immune responses against42

all studied variants when administered as prime-boost regimens. Yet, given the current distribution and production43

constraints, it may take months until the production of COVID-19 vaccines can meet the actual global demand.44

Similar to vaccination campaigns in previous disease outbreaks, it may therefore be a favourable alternative to45

administer a single vaccination dose to twice as many people. In 2016, a single-dose vaccination campaign against46

cholera was implemented in Zambia because of the insufficient number of vaccination doses that were available to47

complete a standard two-dose campaign [13]. Other vaccines, like the oral cholera vaccines that require two doses,48

are highly effective after a single dose but their protection is short lived compared to that obtained with prime-boost49

vaccination [14, 15].50
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FIG. 1. Schematic of vaccination campaigns and model. (A,B) Evolution of the number of individuals that received
prime (n?) and prime-boost (n??) shots in a population of size N . (A) Prime-first (?): Prime shots are administered with
maximal rate as long as unvaccinated susceptible individuals exist. Then, boost shots are administered to prime-vaccinated
individuals. (B) Prime-boost (??) balances prime and boost shots equally. Boosting starts after td days. (C) In our model,
susceptible individuals (S, S?, S??) become exposed (E, E?, E??) at rates β, β?, β?? and transition to an infected state (I, I?,
I??) at rates σ, σ1, σ2. Infectious individuals either recover (R) or die (D) at rates

∑
x(1− fx)γx and

∑
x f

xγx, respectively.
Prime vaccination doses (?) are administered to susceptible individuals at rate ν1 and prime-vaccinated individuals receive a
boost shot (??) at rate ν2. Transitions from S?, S??, and R to S (“waning immunity”) occur at rates η1, η2, and η3, respectively.
Notation:

∑
x β

xIx = βI + β?I? + β??I??.

Despite the clear advantages of single-dose vaccination campaigns, such as faster immunization of a larger number of51

people and lower vaccine-distribution infrastructure requirements and costs, any deviation from the immunologically52

favorable double-dose protocol may negatively affect the level of vaccination-induced immunity. An analysis of blood53

samples from COVID-19 patients suggests that the T cell response plays an important role in the long-term defense54

against SARS-CoV-2 [16] since antibody concentrations were found to decay faster than those of T cells that respond to55

SARS-CoV-2 epitopes. Clinical trial results [17] on the COVID-19 vaccine BNT162b1 show that the vaccination-induced56

CD4+ and CD8+ T cell responses are significantly reduced if no boost shot was administered, indicating that boost57

doses are important for T-cell-mediated immunity against SARS-CoV-2. In the same study, antibody concentrations in58

patients who received prime-boost regimes were found to be about 5 to 20 times higher than those observed in patients59

who only received a single vaccination dose, highlighting the need for boosting. Similar observations were made for60

type-1 inactivated poliovirus vaccine (IPV), for which clinical trial results [18] suggest that boost injections are needed61

to increase the level of neutralizing antibodies. However, for type-2 and 3 IPV, the first vaccination dose already elicits62

a neutralizing antibody response. In addition, single-dose vaccination may provide already a substantial degree of63

protection against infection, as confirmed in studies for BNT162b2 [7] and ChAdOx1 (Oxford-AstraZeneca) [19]. Yet,64

the mechanisms of vaccination-induced humoral (antibody-mediated) and cell-mediated immunity in SARS-CoV-2 is65

not well understood and data on immunity waning is scarce [20, 21].66

Here, we study epidemiological population dynamics of SARS-CoV-2, where vaccine-induced protection levels,67

immunity waning, and other immunological factors are model parameters. Under which epidemiological conditions is68

single-dose vaccination favorable over prime-boost vaccination? This question is being controversially debated in many69

countries, including the US [22, 23], UK [24, 25], and Germany [26], as they are fearing the increasingly wide-spread70

of faster-spreading, more deadly SARS-CoV-2 mutants [27], such as the B.1.167.2 (Delta) variant, and the risk of71

collapsing health care systems [28].72

The current controversy around prime and prime-boost vaccination strategies raises two connected questions, which73

we address in this paper: How do shortages in vaccine supplies and uncertainties in epidemiological parameters alter74

the possible advantage of single-dose over prime-boost vaccination? And how do possible differences in vaccine efficacy75

and loss of vaccine-induced immunity affect the decision boundary separating single-dose and prime-boost vaccination76

regimes in high-dimensional parameter space? By combining methods from epidemiological modeling, statistical77

mechanics [29, 30], and decision tree learning, we explore position, extent, and sensitivity of the decision boundary78

and provide a characterization of discriminative criteria [31], sufficiently simple and immediately accessible to decision79

makers.80
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RESULTS81

Prime-first versus prime-boost vaccination82

Different vaccination campaigns may lead to different proportions of infected, recovered, and deceased individuals at83

a given time. We study the differences between prime-first (Fig. 1) and prime-boost campaigns by accounting for a84

vaccination-induced reduction in transmissibility in a susceptible-exposed-infected-recovered-deceased (SEIRD)-based85

model [32] (see Materials and Methods and Fig. 1). To quantify the effect vaccination protocols have on the overall86

disease-induced fatality we use two fatality measures. The first measure is based on fatality rates, and the second87

one is based on cumulative deaths. Specifically, let d1 (prime-first) and d2 (prime-boost) be the maximum (daily)88

changes in the total number of deaths within the time horizon of about 10 months (T = 300 days). As a measure of89

the relative difference between d1 and d2, we use the relative fatality change (RFC-δ),90

δ(d1, d2) =
d2 − d1

max(d1, d2)
. (1)

As a cumulative measure, we study the relative change in the cumulative number of deaths (RFC-∆),91

∆(D1, D2) =
D2 −D1

max(D1, D2)
, (2)

defined within the same time horizon as RFC-δ.92

For both measures (1) and (2), a positive sign indicates more fatalities for prime-boost vaccination than for prime-first,93

while a negative sign indicates to favor prime-boost over prime-first campaigns. In the Materials and Methods, we94

show that and how the measures are correlated.95

Current vaccination campaigns prioritize health care workers and vulnerable groups (e.g., elderly people with96

comorbidities) with a high risk of infection, leading to variations in vaccination rates. Further heterogeneity in model97

parameters may arise from infection rates that differ between age groups because of different degrees of susceptibility98

to infection [33] and different mobility characteristics. Our model accounts for these variations in epidemiological99

parameters through a large degree of parameterization. Nine different infection rates describe contacts between100

(susceptible and infectious) unvaccinated, single-dose vaccinated, and prime-boost vaccinated individuals. This large101

degree of parameterization can effectively account for possible correlations between age-group, transmissbility, and102

mobility. We therefore choose not to incorporate demographic compartmentalization in our model [30]. Yet, we study103

the effects of age-stratification, natural immunity waning, and effects from parameter constraints in separate scenarios.104

Vaccination-campaign-preference diagrams105

To provide mechanistic insight into the population-level differences between prime and prime-boost vaccination106

campaigns, we study how RFC-δ and RFC-∆ are impacted by epidemiological parameters and epidemic state. As a107

function of two parameters, green domains as shown in Fig. 2 indicate excess deaths for prime-boost, while prime-boost108

is favored in red regions. The parameter ranges follow existing literature, or are chosen sufficiently broad to cover109

uncertainties. Empirical data [34] suggests an estimated range of the basic reproduction number R0 ∈ [1, 4] for the110

wild-type virus strain. Variants may be outside this range, in particular B.1.167.2 (Delta). Yet, in virtually all111

scenarios, the campaign preference does not change for larger values of R0 (see Materials and Methods for additional112

analyses). Differences in the waning rates η1 and η2 are not known at the present time, not even conclusive estimates113

[35], while clinical trials are still ongoing. Thus, we sample a broad parameter range, η1 − η2 ∈ [10−4, 10−1] day−1114

with η2 = 3× 10−3 day−1, which includes waning time-scales that were reported earlier for SARS-CoV [20]. For the115

initial infection disease prevalence, we assume the range I(0) ∈ [10−4, 10−1]. This range includes up to 10% infected116

individuals but may lie outside estimates of some places with a very high prevalence such as Manaus, Brazil [36] as117

faced in August 2020, and earlier estimates from New York City, USA [37]. For the range of the maximum vaccination118

rate νmax we use [0, 10−1] day−1, which we inferred from current vaccination-campaign data [4].119

We assume that the transmission rates β1 and β2 are proportional to the vaccine efficacies after single-dose and120

prime-boost vaccination, respectively. Thus, we identify the relative efficacy for single-dose immunization (RE) with121

the ratio β2/β1. Values close to one are favorable for prime-first campaigns, while a low RE disfavors prime-first.122

In order to analyze the effect of RE on the effectiveness of prime and prime-boost vaccination campaigns, we study123

β2/β1 ∈ [10−4, 1] day−1. We choose this rather broad range to account for the lack of reliable data, in particular124

regarding new variants of SARS-CoV-2 and possible adverse effects in vaccine protection [38]. Parameters that are125

held constant in our simulations are listed in Tab. I (see Materials and Methods).126
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FIG. 2. Vaccination-campaign-preference diagrams. For combinations of basic reproduction number R0, waning rate
difference η1−η2, initial disease prevalence I(0), maximum vaccination rate νmax, and relative efficacy for prime-first immunization
(RE), β2/β1, we plot RFC-δ [Eq. (1)], and RFC-∆ [Eq. (2)]. Green-shaded regions indicate preference for prime (RFC-δ > 0,
RFC-∆ > 0), red-shaded regions indicate preference for prime-boost (RFC-δ < 0, RFC-∆ < 0). (A-L): Parameter domain as in
Tab. I, assuming a moderate single-dose efficacy, i.e. β1 = β/2, f? = f/10. (K-M): Low single-dose efficacy domain: we set
β1 = 0.9β, f? = 0.6× 10−2 = 0.6f , and all remaining parameters as in Tab. I. For (M) we varied β1/β and β (hence R0) and
set all other parameters according to Tab. I. The ratios β2/β1 = β?

2/β
?
1 = β??

2 /β??
1 = 1/5 are also as in Tab. I. Dashed lines:

Decisive threshold η1 − η2 = 0.017 day−1, and Israel’s vaccination rate as of Feb. 1, 2021 [4] (νmax = 0.013 day−1). Solid line
in (C): decision boundary as guide to the eye between y = η1 − η2 and x = I(0) as given by the following nonlinear relations:

y = 0.4x1/2 + 0.02 (RFC-δ), and y = 0.06x1/4 + 0.017 (RFC-∆).

The vaccination-campaign-preference diagrams (Fig. 2) suggest that prime vaccination campaigns are associated127

with a smaller death toll compared to prime-boost campaigns for a wide range of R0, maximum vaccination rates,128

epidemic states, and relative efficacy ratios (green-shaded regions in Fig. 2).129

As the main result of our study, we identify a two-parameter threshold combination that separates vaccination-130

campaign preferences (dashed black lines in Fig. 2). For a sufficiently small waning-rate difference η1− η2 . 0.02 day−1131

and a sufficiently low maximum vaccination rate νmax . 0.02 day−1, we observe that prime-first vaccination outperforms132

prime-boost vaccination in all projections where parameters are held constant as specified in Tab. I. In the projections133

involving η2 − η1, prime-boost preference is observed if immunity wanes significantly faster for prime-vaccinated134
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individuals than for prime-boost vaccinated individuals.135

All projections in Fig. 2 combined suggest that prime-boost vaccination should only be favored for νmax & 0.02 day−1,136

which largely exceeds SARS-CoV-2 immunization rates worldwide [4].137

How a relatively low single-dose efficacy affects the preference for each campaign is shown in Fig. 2(K–M). In138

Fig. 2(K,L) we assume a transmission reduction of only 10% after single-dose immunization, β1 = 0.9β, together with a139

40% reduction in fatality, f? = 0.6× 10−2 = 0.6f , and all other parameters as in Tab. I. This “low single-dose efficacy”140

domain is comparable with current estimates of vaccine effectiveness of BioNTech-Pfizer and Oxford-AstraZeneca141

against symptomatic disease for Alpha (49%) and Delta (31%) variants [10, 11]. Yet, it represents substantial less142

efficacious single-dose vaccine regimens than those for BioNTech-Pfizer or AstraZeneca against Alpha (78%) and Delta143

(75%) regarding hospitalization [11, 12].144

In addition, the low single-dose efficacy domain is characterized by the occurrence of additional prime-boost preference145

regions in parameter space [red-shaded regions in Fig. 2(K,L)]. Yet, even if the fatality rates of prime-first and prime-146

boost deviate substantially, f??/f? . 0.8, only for low values of the relative prime-first efficacy RE = β2/β1 . 0.1,147

preference for prime-boost is observed [Fig. 2(K), shown range 0 ≤ β2/β1 ≤ 0.1]. Given this range and current data on148

SARS-CoV-2 [7, 11, 19], the diagram suggests preference for prime-first. Regarding the waning rate difference, η1 − η2,149

a low single dose-efficacy does not suggest a threshold lower than 0.017 day−1 for prime-first preference [Fig. 2(L)].150

Figure 2(M) shows the dependence of RFC-δ and RFC-∆ on β1/β and R0. Values of β1/β ≈ 1 indicate a very low151

single-shot efficacy, whereas β1/β ≈ 0 indicates an unrealistically high efficacy. For large R0 and very low single-shot152

efficacies, β1/β & 0.8, prime-boost is preferred over prime-first [Fig. 2(M)]. These parameters are, however, unlikely to153

be characteristic of SARS-CoV-2 [7, 19], recent data on the Delta variant included [11].154

Finally, the waning-rate threshold η1 − η2 = 0.017 day−1 robustly separates prime-first and prime-boost preference155

regions for varying natural immunity waning rates and empirical vaccination time series data (see Materials and156

Methods). The waning-rate threshold below which preference for prime-first is observed depends only weakly on the157

initial infection prevalence: it slightly increases as I(0) decreases, η1− η2 . 0.010− 0.017 day−1 for I(0) = 10−5− 10−2158

(see Materials and Methods).159

The presented campaign preference diagrams are two-dimensional projections of a 25-dimensional parameter space,160

with the majority of parameters kept arbitrarily fixed (Tab. I). Hence, we examine next whether the preference for161

prime-first vaccination is supported by other independent methods.162

High-dimensional parameter space Monte Carlo sampling163

Thus far, our results suggest a pronounced preference for prime-first vaccination for a wide range of key epidemiological164

parameters. To further substantiate this conclusion, we performed Monte Carlo sampling of the entire 25-dimensional165

parameter space (see Materials and Methods). For the analyzed high-dimensional parameter space, our results support166

that prime-boost-preference occurs significantly less frequently than samples indicating an advantage of prime-first167

vaccination.168

The relative frequencies of samples for which prime-boost vaccination outperforms prime-first vaccination, character-169

ized by RFC-δ < 0 and RFC-∆ < 0, are estimated as 7.9% [standard error (SE): 0.2%] and 23.2% (SE: 0.4%), see orange170

bars in Fig. 3(a). For waning rate differences η1 − η2 ≤ 0.056 day−1 and vaccination rates νmax ≤ 0.047 day−1, we find171

that the proportions of prime-boost-preference samples are 7.0% (SE: 0.2%) for RFC-δ < 0 and 15.4% (SE: 0.3%) for172

RFC-∆ < 0 [beige bars in Fig. 3(a)]. Further restricting the parameter space using the condition η1− η2 < 0.017 day−1173

(dashed black lines in Fig. 2) and currently reported vaccination rates νmax < 0.013 day−1 [4] leads to proportions of174

prime-boost-preference samples of 8.5% (SE: 0.2%) for RFC-δ < 0 and 6.9% (SE: 0.2%) for RFC-∆ < 0 [blue bars in175

Fig. 3(a)].176

This means that constraining the studied parameter space by lowering νmax and η1 − η2 results in a substantially177

enhanced preference for prime-first in terms of reduced excess deaths, RFC-∆. In contrast, we find that the proportion178

of prime-boost preference samples is almost unaffected by the chosen parameter restrictions, which is indicated by179

the observed narrow rage between 7 and 9% [Fig. 3(a)]. This supports the robustness of our results. Independent of180

the threshold combination, for randomly sampled parameters, prime-first is robustly preferred regarding RFC-δ. In181

addition, domination of prime-first preference is observed in the projections for two-parameter combinations (Fig. 2).182

The discriminative power of the thresholds is also supported by random sampling results for different risk groups183

and in situations with natural immunity waning [Fig. 3(D–F)]. For further details, see Materials and Methods.184
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FIG. 3. Monte Carlo sampling of entire and restricted high-dimensional parameter spaces. Unconditioned data
(orange) is compared with two conditioned, (i) data shown in beige: νmax ≤ 0.047 day−1 and η1 − η2 ≤ 0.056 day−1, and (ii)
data shown in blue: νmax ≤ 0.013 day−1 and η1 − η2 ≤ 0.017 day−1. Thresholds (i) are inferred from our decision tree analysis
(Materials and Methods). (A) Relative frequency of prime-boost-preference samples (RFC-δ < 0, RFC-∆ < 0) for the three
datasets. Error bars are below 0.2% (not shown). (B) Probability density function (PDF) of the difference between death rates
d2 (prime-boost) and d1 (prime). For the conditioned data, averages of d1 − d2 are about 3 × 10−5 day−1 (blue curve) and
about 5× 10−6 day−1 (beige curve), larger than the mean 4× 10−6 day−1 of the unconditioned data. (C) PDF of the difference
between the total number of deaths D2 (prime-boost) and D1 (prime). For the conditioned data, the means of D1 −D2 are
about 2 × 10−3 (blue curve) and about 9 × 10−4 (beige curve), larger than the mean 7 × 10−4 of the unconditioned data.
The presented data are based on 5 × 104 (blue and orange curves) and about 4.4 × 104 (beige curves) samples of the entire
25-dimensional parameter space. (D–F) Relative frequency of prime-boost-preference samples (RFC-δ < 0, RFC-∆ < 0) for
additional datasets with the same constraints as used in (A). Error bars are below 0.5% (not shown). (D) We sampled natural
immunity waning rates η3 from the distribution U(0, 0.1) day−1. All remaining parameters are specified in Tab. II. (E) Fatality
rates are f ∼ U(10−4, 10−3), f∗ ∼ U(10−4, f), and f∗ = f∗∗. Natural immunity waning rate η3 is sampled from U(0, 0.1) day−1.
All remaining parameters are specified in Tab. II. (F) Fatality rates are f ∼ U(10−3, 10−2), f∗ ∼ U(10−3, f), and f∗ = f∗∗.
Natural immunity waning rate η3 is sampled from U(0, 0.1) day−1. All remaining parameters are specified in Tab. II.

Decision tree learning185

As another independent method for determining decisive conditions for strategic vaccination campaigns, we performed186

binary decision tree learning with repeated stratified cross validation [39, 40]. This technique has proven useful to187

extract the most discriminative features in high-dimensional data. Our analysis suggests that νmax and η1 − η2 are188

the most discriminative parameters within the 25-dimensional parameter space (see Materials and Methods). For the189

samples that we generated according to the distributions listed in Tab. I (orange lines and markers in Fig. 3), and190

the constraints νmax ≤ 0.047 day−1 and η1 − η2 ≤ 0.056 day−1, about 70% of vaccination preferences of simulated191

scenarios are correctly predicted (see Materials and Methods for accuracy scores and details). Additionally constraining192

the parameter space with the thresholds that we used in the previous paragraph (beige and blue lines and markers193
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in Fig. 3), results in prime-first preference for 93% of the parameter space volume. This suggests that for realistic194

vaccination rates, the vaccination-dose-dependent immunity waning rate difference is the only highly discriminative195

factor.196

DISCUSSION197

Effective vaccination protocols are crucial to achieve a high immunization coverage, especially if vaccination supplies198

are limited. The ongoing debate on the most effective way of distributing prime-boost regimens against SARS-CoV-2199

has been sparked by arguments suggesting that, from an epidemiological perspective, single-dose vaccination protocols200

may be more effective than immediate prime-boost administration given the current supply shortages [22, 24, 26, 41, 42].201

For many COVID-19 vaccines, prime-boost protocols are considered immunologically efficient due to their ability202

to elicit strong and long-term humoral and cellular immune responses [17]. Immunologically efficient vaccination203

protocols, however, may be not epidemiologically favorable, in particular for exponentially increasing infection numbers204

and vaccine doses shortages on times scales of months. We have studied the effect of relevant immunological and205

epidemiological parameters (e.g., vaccine efficacy and immunity waning) on a possible advantage of prime-first over206

prime-boost vaccination by combining epidemiological modeling, methods from statistical mechanics, and decision207

tree learning. We have identified and studied decision boundaries separating the parameter regimes in which one or208

the other vaccination protocol is preferable. Our results suggest that prime-first campaigns are associated with a209

lower death toll compared to prime-boost vaccination campaigns, even for relatively high vaccination rates, and more210

surprisingly, for low single-dose efficacies, which is in contrast to existing literature [7, 19, 41, 43].211

A related study [41] compares single-dose and prime-boost vaccination campaigns against SARS-CoV-2, without212

accounting for immunity waning. This study reports that single-dose vaccination campaigns make optimal use of213

resources in the short term, given a sufficiently large single-dose efficacy that they identify as the main discriminative214

factor. In contrast, our study calls attention to immunity waning and the vaccination rate as the highly discriminative215

factors, while we find that vaccine efficacies are less discriminative.216

Previous works consistently emphasize that due to the complexity of underlying models and limitations from available217

data, a vaccine campaign recommendation can only be given, once the precision in all key epidemiological parameters218

becomes sufficiently high. Laubenbacher et al . [44] highlight the need of further data collection and model integration219

in infectious disease modeling, which are important steps to better estimate immunity waning rates and vaccine220

effectiveness [7, 14, 43].221

Saad-Roy et al . [45] focus on the long-term effects of waning and evolutionary immune response in a highly222

parameterized model. Certain scenarios they analyze suggest that single-dose campaigns may be favorable for some223

time scales but not for others, depending on a combination of parameters, waning rates included. In contrast, for224

the critical time scale of months, we provide a preference criterion based on the waning rate difference as the only225

discriminative threshold.226

Preference for prime-first vaccination is not unexpected. For the initial inter-dose interval time, both vaccination227

strategies are identical since, regardless of the chosen strategy, booster jabs are not yet administered. In the subsequent228

time interval twice as many susceptible individuals can be immunized with a prime-first protocol compared to229

prime-boost vaccination. This means, about 50% of individuals who could have received a shot will actually remain230

unvaccinated. Let us refer to this unvaccinated group as group A and denote with group B those that receive both231

shots in the prime-boost campaign. One can assume that the infection rates of individuals in group A are larger than232

those of individuals in group B, who benefit from a more effective immune response. As a result, higher transmission233

in group A is the expected dominating differential adverse effect. As expected for effective prime-boost vaccines,234

one may assume that the prime-boost infection rate, β2, and the fatality rate, f??, are significantly lower than their235

counterparts for prime-first. Thus, the effective transmission rate for group A and B combined is dominated by group236

A’s rate but not critically dependent on β2, which intuitively explains why the relative efficacy ratio RE = β2/β1 is237

not a highly discriminative factor.238

For very low single-shot efficacies, or very high single-shot disease-induced fatality rates, the single-dose efficacy239

β1/β, the relative prime-first efficacy RE, and R0, may be discriminative, depending on the circumstances. Current240

data on SARS-CoV-2 vaccination campaigns [7, 19], however, suggest that those parameter combinations are unlikely241

to occur. Furthermore, if immunity wanes substantially faster after the first shot than after the additional booster242

jab, prime-boost vaccination may become favorable over prime-first, depending on R0. Unvaccinated and susceptible243

individuals should also receive both vaccination shots if a few percent of a jurisdiction’s total population can be244

vaccinated daily. However, even for the relatively large vaccination rate of about ∼ 1% per day, as realized in Israel [4],245

our analyses suggest that prime-first vaccination is still favorable over prime-boost campaigns.246

A recent study in single-dose vaccinated SARS-CoV-2 patients infected with B.1.351 (Beta) or B.1.617.2 (Delta)247

variants showed neutralizing antibody concentrations below the quantitative limit of detection [46]. Does this well248
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recognized study challenge our findings? While antibody titres correlate with protection against severe disease [47],249

they are only a single component of the intricate immune response and are not a necessary condition for effectiveness250

of vaccines against symptomatic disease or hospitalization. In fact, recent effectiveness estimates suggest that the251

first dose of BNT162b2 and ChAdOx1 is about 75% effective against hospitalization after an infection with the Delta252

variant (78% for Alpha, B.1.1.7) [11, 12]. These data strongly support our conclusions, given the high correlation253

between hospitalization and fatality.254

But what about data on vaccine effectiveness against symptomatic disease? The effectiveness estimates for Alpha255

and Delta variants as reported in [11, 12] are as low as 31% for single-dose immunization, compared to 80% for two256

doses. While efficacies below 50% may strongly suggest that the population should get as soon as possible both257

immunization shots and not only one, our study finds that prime-first vaccination should be considered if the primary258

health objective is minimizing hospitalizations and fatalities. This means that vaccination campaigns that deviate259

from the recommended immunization protocol are particularly relevant in countries facing a possible health crises from260

emerging variants such as the Delta variant [48–50].261

In summary, our results contrast existing literature [14, 41, 43, 45] in the sense that not all key epidemiological data262

are required to be collected to identify most effective vaccination protocols. Instead, our analysis suggests that even for263

a large degree of uncertainty in key epidemiological data, prime-first vaccination is robustly preferred over prime-boost264

vaccination—if the waning rate difference between prime-first and prime-boost is sufficiently small. For realistic265

scenarios specific to SARS-CoV-2, we found this threshold to be in the narrow range of 0.01–0.02 day−1. Unfortunately,266

to date, there is no reliable data available on waning time scales [20, 35], although recent estimates may suggest that267

no significant waning occurs for ChAdOx1 (Oxford-AstraZeneca) in the first 90 days after receiving the first shot [19].268

Yet, once vaccination-dependent waning rates can be estimated from data [21] and adverse immunological effects can269

be assessed or excluded, our criterion may become highly valuable for decision-makers in countries facing vaccine270

shortages.271

Although clinical studies of the approved SARS-CoV-2 vaccines may suggest that these vaccines are safe and272

effective, only little is known about their possible long-term adverse effects [51]. Clearly, for the comparison of different273

vaccination strategies we assume that negative long-term effects are negligible. In addition, we do not consider harm274

measures covering non-hospitalized symptomatic cases. Adverse effects and different levels of protection may be275

incorporated in models that account for different subgroups [52]. Yet, our results are independent of the actual fatality276

ratio for unvaccinated individuals.277

To conclude, while current vaccine supplies are not keeping up with demand, especially in low- and middle-income278

countries, and newly-emerging variants of SARS-CoV-2 may reduce the effectiveness of currently available vaccines [53],279

it is desirable to provide decision makers with transparent tools that supports them in assessing different vaccination280

protocols. This study may be of help to healthcare officials and decision makers since, in contrast to existing literature,281

our combination of tools result in unexpectedly robust and highly decisive criteria. More generally, the presented282

framework establishes how epidemiologically efficient vaccine dosing strategies [54, 55] can be integrated into effective283

pandemic control plans.284
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MATERIALS AND METHODS415

Modeling prime and prime-boost vaccination416

FIG. 4. Proportions of prime and prime-boost vaccinated individuals in Israel. The proportions of prime (orange)
and prime-boost (green) vaccinated individuals in Israel. The first prime shot was administered on December 20, 2020. On
January 10, 2021 the first individuals received booster doses. The prime-boost delay td is thus 21 days. The solid and dashed
black lines are guides to the eye, representing a maximum daily vaccination rate of νmax = 1.3% and νmax/2, respectively.
All data is taken from https://github.com/owid/covid-19-data/tree/master/public/data/vaccinations/country_data,
accessed May 23, 2021.

We adapt the SEIRD model [29, 32] to account for immunity waning and a vaccination-induced reduction in417

transmissibility [Fig. 1]. The fractions of susceptible, exposed, infected, recovered, and deceased individuals at time t418

are denoted by S(t), E(t), I(t), R(t), and D(t) respectively. Moreover, we denote the fractions of prime and prime-boost419

vaccinated susceptible individuals by S?(t) and S??(t), respectively. With rate ν1, susceptible individuals get vaccinated420

with prime shots and with rate ν2 prime-vaccinated susceptible individuals get vaccinated with boost shots. The time421

dependence in the vaccination rates reflects temporal variations in the availability of vaccination doses, as explained422

below. The corresponding fractions of vaccinated exposed and infected individuals are denoted by E?(t) and E??(t)423

and I?(t) and I??(t). We use three constant rates η1, η2, η3 to model immunity waning (i.e., transitions from S?, S??,424

and R to S). Characteristic time scales of waning immunity [20], defined by the inverse of the corresponding rates,425

are much longer than those associated with entering and leaving exposed and infected compartments, so we do not426

explicitly model waning immunity in these compartments. For long time horizons, additional birth and death processes427

may be employed to model birth and age-related death.428

The resulting dynamics of the susceptible and exposed classes is described by the following rate equations:

dS

dt
= −βSI − β?SI? − β??SI?? − ν1 + η1S

? + η2S
?? + η3R ,

dS?

dt
= ν1 − β1S?I − β?

1S
?I? − β??

1 S?I?? − ν2 − η1S? ,

dS??

dt
= ν2 − β2S??I − β?

2S
??I? − β??

2 S??I?? − η2S?? ,

dE

dt
= βSI + β?SI? + β??SI?? − σE ,

dE?

dt
= β1S

?I + β?
1S

?I? + β??
1 S?I?? − σ1E? ,

dE??

dt
= β2S

??I + β?
2S

??I? + β??
2 S??I?? − σ2E?? .

(3)

The maximum proportion of susceptible individuals that can be prime and prime-boost vaccinated is S(t) and S?(t),429

respectively. Based on vaccination data from Israel (Fig. 4), we assume linearly increasing immunization over time in430

our model and use the vaccination rates431

ν1(µ1, µ2, S, S
?, td, t) = (µ1 + µ2)H[S(t)]H[td − t] + µ1H[S(t)]H[t− td] (4)
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and432

ν2(µ1, µ2, S, S
?, td, t) = µ2H[S?(t)]H[t− td] + µ1 (1−H[S(t)])H[S?(t)]H[t− td] , (5)

where µ1 = νmax and µ2 = 0 for prime-first vaccination and µ1 = µ2 = νmax/2 for prime-boost vaccination. Here, H[x]433

denotes the Heaviside step function, which is zero for x < 0 and one for x ≥ 0. The function H[t− td] describes the434

delay td of about 2–3 weeks [56] (Fig. 4) between prime and boost shots. Up to time td, susceptible individuals get435

vaccinated with rate µ1 + µ2. If no susceptible individuals are left, prime-vaccinated individuals get vaccinated with436

rate µ1 too, leading to the term µ1(1−H[S(t)])H[S?(t)]H[t− td] in Eq. (5). In our model, only susceptible individuals437

are vaccinated. This can be justified by the assumption that susceptible individuals outnumber those in other disease438

states.439

Exposed individuals transition to infected state at rates σ, σ1, and σ2. The evolution of the infected, recovered, and
deceased compartments is described by:

dI

dt
= σE − γI ,

dI?

dt
= σ1E

? − γ?I? ,

dI??

dt
= σ2E

?? − γ??I?? ,

dR

dt
= γ(1− f)I + γ?(1− f?)I? + γ??(1− f??)I?? − η3R, ,

dD

dt
= γfI + γ?f?I? + γ??f??I?? .

(6)

Only 10 of equations (3) and (6) are independent since we employ the normalization condition S+S? +S?? +E+E? +440

E?? + I + I? + I?? +R+D = 1. Different transmissibilities β, β?, β??, β1, β
?
1 , β

??
1 , and β2, β

?
2 , β

??
2 describe interactions441

between susceptible and infected individuals with different immunity levels.442

For each infected compartment I, I?, and I??, we calculate the infection fatality ratios (IFRs) [3] by dividing the443

associated cumulative number of deaths by the total number of infections in the unvaccinated, prime-vaccinated, and444

prime-boost-vaccinated compartments, respectively. The IFR of the unvaccinated pool of individuals is445

IFR(t) =

∫ t

0
γfI(t′) dt′

I(t) +
∫ t

0
γfI(t′) dt′ +

∫ t

0
γ(1− f)I(t′) dt′

. (7)

For constant γ, f , we obtain446

IFR(t) =
γf

∫ t

0
I(t′) dt′

I(t) + γ
∫ t

0
I(t′) dt′

. (8)

As the number of infected individuals approaches zero for long time horizons (i.e., limt→∞ I(t) = 0), the IFR447

satisfies limt→∞ IFR(t) = f . Similarly, limt→∞ IFR?(t) = f? and limt→∞ IFR??(t) = f?? if γ?, f? and γ??, f?? are448

time-independent.449

Due to ergodicity breaking effects from multiplicative noise [57] deterministic models tend to overestimate infection450

and fatality. However, it is realistic to assume that the effects from noise are not discriminative as they do not differ451

for either vaccination campaign.452

After all, the immunological intricacies of SARS-CoV-2 remain largely unknown and there is no single commonly453

accepted epidemiological standard model. At the same time, we anticipate more reliable data on immunity waning and454

other immunological effects in the coming months. Our framework is transparent and flexible enough to change or455

augment the (already high) degree of parameterization, or compartmentalization, if warranted.456

Basic reproduction number457

We calculate the basic reproduction number R0 of the epidemic model (3) and (6) using the next-generation matrix
method [61]. As a first step, we rewrite the rate equations (3) and (6) of the infected compartments in matrix form

ẋ(t) = F(x, y)− V(x, y) , (9)
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TABLE I. Overview of model parameters for scenarios without natural immunity waning. The listed parameter
values are used when the associated model parameters are held constant in the parameter-space plots that we show in the results
section. As initial fractions of infected and susceptible individuals, we use I(0) = 10−2 and S(0) = 1− I(0).

Parameter Symbol Value Units Comments/References

infection rates S β, β?, β?? 3/14, β/10, β/20 [day−1] β inferred from R0 = β/γ [34]

infection rates S? β1, β?
1 , β??

1 β/2, β?/2, β??/2 [day−1] estimate

infection rates S?? β2, β?
2 , β??

2 β/10, β?/10, β??/10 [day−1] estimate

incubation rate E σ 1/5 [day−1] [34, 58]

incubation rate E? σ1 1/5 [day−1] estimate

incubation rate E?? σ2 1/5 [day−1] estimate

vaccination rate νmax 10−3 [day−1] [4]

waning rate (prime) η1 10−2 [day−1] estimate

waning rate (prime-boost) η2 3× 10−3 [day−1] estimate

waning rate (recovered) η3 0 [day−1] estimate

resolution rate I γ 1/14 [day−1] [52, 59]

resolution rate I? γ? 2γ [day−1] estimate

resolution rate I?? γ?? 4γ [day−1] estimate

fatality ratio I f 10−2 - [3, 60]

fatality ratio I? f? 10−3 - estimated from
reported efficacy [56]

fatality ratio I?? f?? 10−3 - estimated from
reported efficacy [56]

prime-boost delay td 21 [day] [56] and Fig. 4

where x = (E,E?, E??, I, I?, I??)>, y = (S, S?, S??, R,D), F represents the vector of new infections, and V describes458

all remaining transitions. We thus find for the corresponding Jacobians of F and V at the disease-free equilibrium:459

F =


0 0 0 βS β?S β??S
0 0 0 β1S

? β?
1S

? β??
1 S?

0 0 0 β2S
?? β?

2S
?? β??

2 S??

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 and V =


σ 0 0 0 0 0
0 σ1 0 0 0 0
0 0 σ2 0 0 0
−σ 0 0 γ 0 0
0 −σ1 0 0 γ? 0
0 0 −σ2 0 0 γ??

 . (10)

The basic reproduction number R0, the expected number of infections generated by an infectious individual in an460

otherwise completely susceptible population, is the spectral radius of the next-generation matrix FV −1 [61]. Finding461

R0 for the general system (10) involves the analytically cumbersome task of finding roots of a cubic equation, which462

can be avoided by using numerical methods (e.g., the power method). For very effective vaccines, however, one may463

assume that the transmissibility of prime-boost vaccinated individuals is much lower than the transmissibility of464

unvaccinated individuals. That is, β?? � β, β??
1 � β, and β??

2 � β. In this approximation, we obtain465

R0 =
βSγ? + β?

1S
?γ +

√
β2γ?2S2 + 2γγ?SS? (2β1β? − ββ?

1) + γ2β?
1
2S?2

2γγ?
. (11)

For S(0) = 1 and S?(0) = 0, the basic reproduction number is466

R0 =
β

γ
. (12)
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FIG. 5. Selection of vaccination-campaign-preference diagrams for small incidence rates. For selected combinations
of basic reproduction number R0, waning rate difference η1 − η2, and maximum vaccination rate νmax, we plot RFC-δ [Eq. (1)]
and RFC-∆ [Eq. (2)]. Green-shaded regions indicate preference for prime (RFC-δ > 0, RFC-∆ > 0), red-shaded regions indicate
preference for prime-boost (RFC-δ < 0, RFC-∆ < 0). In the top panels, we set I(0) = 10−5; in the bottom panels, we set
I(0) = 10−7. The remaining parameters are as in Tab. I. Dashed lines are guides to the eye: Thresholds η1 − η2 = 0.01, and
Israel’s vaccination rate as of Feb. 1, 2021 [4] (νmax = 0.013).

Numerical solution and model parameters467

To solve Eqs. (3) and (6) numerically, we use the Dormand–Prince method [62] with a maximum time step of 10−1468

and simulate the evolution of different epidemics in the time interval [0, T ] where T = 300 days. For the simulation469

results that we show in Fig. 2, we set I(0) = 10−2 and S(0) = 1 − I(0). If model parameters are held constant in470

Fig. 2, we use the parameters that are listed in Tab. I. Transmissibilities of infection events that involve at least one471

vaccinated individual are smaller than or equal to the baseline transmissibility β as long as mobility and distancing472

characteristics of vaccinated individuals do not differ significantly from those who are unvaccinated. In our model,473

this means that β ≥ β? ≥ β??, β ≥ β1 ≥ β2, β1 ≥ β?
1 ≥ β??

1 , and β2 ≥ β?
2 ≥ β??

2 (equality holds for very ineffective474

vaccines). As vaccination campaigns and vaccine effectiveness analyses are ongoing, we used estimates for β?, β??, β1,475

β?
1 , β??

1 , β2, β?
2 , and β??

2 as reported in Tab. I. We also model the effect of small incidence rates and broader parameter476

ranges in a random-sampling analysis as reported in the next sections.477

There are two more constraints that our model parameters have to satisfy to describe the impact of vaccination478

campaigns on disease transmission. First, the fatality ratio in the unvaccinated compartment is larger than the479

fatality ratios in the vaccinated compartments (i.e., f ≥ f? ≥ f??). We assume that differences in f? and f?? are480

negligible. Second, the waning rate in the prime-boost vaccinated compartment is smaller than the waning rate in the481

prime-vaccinated compartment (i.e., η2 ≤ η1).482

Influence of small incidence rates483

To study the effect of small incidence rates on the location and extent of prime-first and prime-boost preference484

regions, we set I(0) = 10−5 and 10−7, which is three to five orders of magnitude smaller than the value I(0) = 10−2485

we used in Fig. 2, and show vaccination preference diagrams for η1 − η2 vs. νmax and η1 − η2 vs. R0 in Fig. 5. We486

observe that a threshold η1 − η2 = 0.01 separates prime-first and prime-boost preference regions in both diagrams.487

This value is smaller than the threshold of η1 − η2 = 0.017, which we used in Fig. 2.488
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FIG. 6. Empirical vaccination data from Israel does not lower decision threshold, η1 − η2. For variations in η1 − η2
and R0, we plot RFC-δ [Eq. (1)] and RFC-∆ [Eq. (2)] for empirical vaccination data (Fig. 4) and two natural immunity waning
rates. In the left panel, we set η3 = 6× 10−3/day (waning within about 6 months); in the right panel, we set η3 = 3× 10−3/day
(waning within about 12 months). Green-shaded regions indicate preference for prime (RFC-δ > 0, RFC-∆ > 0), red-shaded
regions indicate preference for prime-boost (RFC-δ < 0, RFC-∆ < 0). The simulation horizon is T = 150 days. The remaining
parameters are as in Tab. I. Dashed lines are guides to the eye of the original threshold η1 − η2 = 0.017. We observe preference
for prime-first over prime-boost vaccination even for faster waning, η1 − η2 > 0.017, compared to other epidemiological scenarios
with a constant and, on average, larger vaccination rate.

FIG. 7. Natural immunity waning does not lower decision threshold, η1−η2. For variations in η1−η2 and R0, we plot
RFC-δ [Eq. (1)] and RFC-∆ [Eq. (2)] for two natural immunity waning rates. In the left panel, we set η3 = 6×10−3/day (waning
within about 6 months); in the right panel, we set η3 = 3× 10−3/day (waning within about 12 months). Green-shaded regions
indicate preference for prime (RFC-δ > 0, RFC-∆ > 0), red-shaded regions indicate preference for prime-boost (RFC-δ < 0,
RFC-∆ < 0). The remaining parameters are as in Tab. I. Dashed lines are guides to the eye of the original, unchanged threshold
η1 − η2 = 0.017.

Empirical vaccination data489

We also study the influence of empirical vaccination data (Fig. 4) on the prime-first preference threshold η1−η2 = 0.017.490

Figure 6 shows that preference for prime-first over prime-boost vaccination is given for faster immunity waning than491

indicated by the threshold η1 − η2 = 0.017, demonstrating the robustness of the original waning-rate difference492

threshold.493

Influence of natural immunity waning494

For the critical time horizon of a few months that we consider in the main text, for scenarios (referred to as datasets)495

A and B, we assume robust natural (T cell) immunity in accordance with corresponding clinical data [63]. Figure 7496

shows vaccination-campaign-preference diagrams for η1 − η2 vs. R0, and for natural immunity waning time scales of497

about 6 and 12 months. We observe that these variations in η3 do not change the campaign-preference threshold498

(dashed black line in Fig. 7).499
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TABLE II. Sampling distributions with and without natural immunity waning The listed parameter values and
distributions are used in our random-sampling analysis. As initial fraction of susceptible individuals, we use S(0) = 1− I(0)−
S?(0) − S??(0). We set E(0) = 0, E?(0) = 0, E??(0) = 0, I?(0) = 0, I??(0) = 0, R(0) = 0, D(0) = 0. The minimum and
maximum values of β are βmin = γ and βmax = 4γ, respectively. A uniform distribution with boundaries a and b is indicated by
U(a, b).

Parameter Symbol Value/Distribution Units

infection rates S β, β?, β?? U(βmin, βmax), U(0, β), U(0, β?) [day−1]

infection rates S? β1, β?
1 , β??

1 U(0, β), U(0, β1), U(0, β?
1 ) [day−1]

infection rates S?? β2, β?
2 , β??

2 U(0, β1), U(0, β?
1 ), U(0, β??

1 ) [day−1]

incubation rate E σ U(0.2, 0.5) [day−1]

incubation rate E? σ1 U(0.2, 0.5) [day−1]

incubation rate E?? σ2 U(0.2, 0.5) [day−1]

vaccination rate νmax U(0, 0.02) [day−1]

waning rate (prime) η1 U(0, 0.1) [day−1]

waning rate (prime-boost) η2 U(0, η1) [day−1]

waning rate (recovered) η3
0 [scenarios w/o natural immunity waning]

U(0, 0.1) [scenarios w/ natural immunity waning]
[day−1]

resolution rate I γ 1/14 [day−1]

resolution rate I? γ? U(γ, 2γ) [day−1]

resolution rate I?? γ?? U(γ?, 2γ?) [day−1]

fatality ratio I f U(10−3, 10−1) -

fatality ratio I? f? U(10−3, f) -

fatality ratio I?? f?? f? -

prime-boost delay td U(7, 35) [day]

initially infected individuals I(0) U(10−4, 3× 10−1) -

initially prime-vaccinated individuals S?(0) U(10−4, 10−1) -

initially prime-boost vaccinated individuals S??(0) U(10−4, 10−1) -

Monte Carlo sampling500

The parameter distributions that we use in our random sampling and decision tree analysis are summarized in501

Tab. II. We generate two datasets with N = 50000 samples each and analyze the influence of different combinations of502

model parameters and initial conditions on RFC-δ(d1, d2) [Eq. (1)] and RFC-∆(D1, D2) [Eq. (2)].503504

Correlation between fatality measures505

RFC-δ and RFC-∆ are complementary fatality measures but are correlated, [Fig. 8 (A–C), R = 0.94 (A), R = 0.68506

(B), and R = 0.68 (C); corresponding p-values are smaller than machine precision]. The correlation observed for507

the threshold combination νmax ≤ 0.013 day−1 and η1 − η2 ≤ 0.017 day−1 confirms the discriminative power and508

robustness of our results regarding the choice of both fatality measures.509
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FIG. 8. Fatality measure correlations for entire and restricted high-dimensional parameter spaces. Correlation
plots of RFC-δ and RFC-∆. Unconditioned data (orange) is compared with two conditioned, (i) data shown in beige:
νmax ≤ 0.047 day−1 and η1 − η2 ≤ 0.056 day−1, and (ii) data shown in blue: νmax ≤ 0.013 day−1 and η1 − η2 ≤ 0.017 day−1.
Thresholds (i) are inferred from our decision tree analysis. The presented data are based on 5× 104 (blue and orange curves)
and about 4.4× 104 (beige curves) samples of the entire 25-dimensional parameter space. Parameters are as listed in Tab. II (no
natural immunity waning).

FIG. 9. Monte Carlo sampling of entire and restricted high-dimensional parameter spaces with natural immunity
waning. Unconditioned data (orange) is compared with two conditioned, (i) data shown in beige: νmax ≤ 0.047 day−1 and
η1 − η2 ≤ 0.056 day−1, and (ii) data shown in blue: νmax ≤ 0.013 day−1 and η1 − η2 ≤ 0.017 day−1. Thresholds (i) are inferred
from our decision tree analysis. We sampled natural immunity waning rates η3 from the distribution U(0, 0.1) day−1. All
remaining parameters are specified in Tab. II. (A) Relative frequency of prime-boost-preference samples (RFC-δ < 0, RFC-∆ < 0)
for the three datasets (similar to Fig. 3(A) of the main text). Error bars are below 0.5% (not shown). (B) Probability density
function (PDF) of the difference between death rates d2 (prime-boost) and d1 (prime). For the conditioned data, averages of
d1−d2 are about 1.0×10−6 day−1 (blue curve) and about 8.3×10−7 day−1 (beige curve), larger than the mean 6.8×10−7 day−1

of the unconditioned data. (C) PDF of the difference between the total number of deaths D2 (prime-boost) and D1 (prime).
For the conditioned data, the means of D1 −D2 are about 7.3× 10−3 (blue curve) and about 2.0× 10−3 (beige curve), larger
than the mean −1.5× 10−3 of the unconditioned data.

Influence of natural immunity waning510

We further analyze the effect of natural immunity waning by sampling η3 from U(0, 0.1) day−1. Figure 9 shows the511

corresponding distributions and correlation plots associated with the fatality measures RFC-δ and RFC-∆.512

The relative frequencies of prime-boost-preference samples, characterized by RFC-δ < 0 and RFC-∆ < 0, are513

estimated as 10.4% (SE: 0.3%) and 41.2% (SE: 0.4%), see orange bars in Fig. 9(a). For waning rate differences514

η1 − η2 ≤ 0.056 day−1 and vaccination rates νmax ≤ 0.047 day−1, the proportions of prime-boost-preference samples515

are 8.9% (SE: 0.3%) for RFC-δ < 0 and 33.7% (SE: 0.4%) for RFC-∆ < 0 [beige bars in Fig. 9(a)]. Using the condition516

η1 − η2 < 0.017 day−1 (dashed black lines in Fig. 2) and vaccination rates νmax < 0.013 day−1 [4] leads to proportions517

of prime-boost-preference samples of 6.6% (SE: 0.2%) for RFC-δ < 0 and 9.3% (SE: 0.3%) for RFC-∆ < 0 [blue bars518
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FIG. 10. Monte Carlo sampling of entire and restricted high-dimensional parameter spaces with age-
stratification and natural immunity waning. Unconditioned data (orange) is compared with two conditioned, (i) data
shown in beige: νmax ≤ 0.047 day−1 and η1 − η2 ≤ 0.056 day−1, and (ii) data shown in blue: νmax ≤ 0.013 day−1 and
η1 − η2 ≤ 0.017 day−1. Thresholds (i) are inferred from our decision tree analysis. (A–C) Fatality rates are f ∼ U(10−4, 10−3),
f∗ ∼ U(10−4, f), and f∗ = f∗∗. (D–F) Fatality rates are f ∼ U(10−3, 10−2), f∗ ∼ U(10−3, f), and f∗ = f∗∗. Natural immunity
waning rate η3 is sampled from U(0, 0.1) day−1. All remaining parameters are specified in Tab. II. (A,D) Same plots as in Fig.
3 of the main text. Relative frequency of prime-boost-preference samples (RFC-δ < 0, RFC-∆ < 0) for the three datasets.
Error bars are below 0.5% (not shown). (B,E) Probability density function (PDF) of the difference between death rates d2
(prime-boost) and d1 (prime). For the conditioned data in (B), averages of d1 − d2 are about 1.2× 10−8 day−1 (blue curve) and
about 8.3× 10−9 day−1 (beige curve), larger than the mean 6.1× 10−9 day−1 of the unconditioned data. For the conditioned
data in (E), averages of d1 − d2 are about 1.1× 10−7 day−1 (blue curve) and about 8.7× 10−8 day−1 (beige curve), larger than
the mean 6.6× 10−8 day−1 of the unconditioned data. (C,F) PDF of the difference between the total number of deaths D2

(prime-boost) and D1 (prime). For the conditioned data in (C), the means of D1 −D2 are about 9.1× 10−5 (blue curve) and
about 1.6× 10−5 (beige curve), larger than the mean −3.2× 10−5 of the unconditioned data. For the conditioned data in (F),
the means of D1 −D2 are about 8.9× 10−4 (blue curve) and about 1.7× 10−4 (beige curve), larger than the mean −2.7× 10−4

of the unconditioned data.

in Fig. 9(a)].519

As in the main text, we find that constraining the studied parameter space by lowering νmax and η1 − η2 yields520

an substantial increase in prime-first-preference samples that are associated with fewer total fatalities, as quantified521

by RFC-∆. The proportions of prime-boost preference samples with RFC-δ < 0 fall into the narrow rage between 7522

and 10% and are less affected by the chosen parameter restrictions [Fig. 9(a)]. This again supports the robustness of523

our results. For randomly sampled parameters that account for different natural immunity-waning rates, prime-first524

vaccination is preferred regarding RFC-δ.525
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Risk-group stratification526

To study the effect age-related fatality rates, we perform a random-sampling analysis for two age groups. In the first527

group, we set f ∼ U(10−4, 10−3), f∗ ∼ U(10−4, f), f∗ = f∗∗. Fatality rates f of less than 0.1% have been observed for528

individuals younger than 40 years [60]. In the second group, we set f ∼ U(10−3, 10−2), f∗ ∼ U(10−3, f), f∗ = f∗∗.529

Fatality rates of about 0.1–1% have been reported for individuals with an age between 40–70 years. As in the previous530

section, we also account for natural immunity waning by setting η3 ∼ U(0, 0.1) day−1. All remaining parameters are531

specified in Tab. II.532

Figure 10 shows different distributions and correlation plots associated with the fatality measures RFC-δ and RFC-∆533

for both age groups. The shown results are in agreement with those reported in the previous section and main text.534

Prime-boost-preference samples (i.e., those samples with RFC-δ < 0 and RFC-∆ < 0) occur less frequently than535

prime-first-preference samples in both age groups. The conditions η1 − η2 < 0.017 day−1 (dashed black lines in Fig. 2)536

and νmax < 0.013 day−1 [4] again lead to significantly reduced proportions of prime-boost-preference samples (blue537

bars and curves in Fig. 10), supporting the validity of these decisive thresholds.538

Decision Tree Analysis539

A binary decision tree consists of a root condition and branches, where the left branch refers to the “yes”-branch540

while the rights branch refers to the “no”-branch.541

We employed binary decision tree learning with repeated stratified cross validation (k = 5 folds, n = 10 repeats).542

The algorithm RepeatedStratifiedKFold (available in the Python library scikit-learn1) optimizes for split purity543

using Gini as loss function (split criterion).544

Gini impurity is a standard measure in tree learning that quantifies how often a randomly chosen sample from the545

training dataset would be incorrectly labeled if it was entirely randomly labeled, given the distribution of (binary)546

labels in the subset. In our analysis, labels are “prime-first” and “prime-boost”.547

Stratified cross-validation is based on splitting the data into folds such that each fold has the same proportion of548

observations with a given categorical value. It is particularly useful for imbalanced datasets. Overall, here, we have549

more prime-first samples than prime-boost ones.550

Following standard procedure, we split the dataset (randomly) into training and test datasets, 70% and 30%,551

respectively. Learning is performed using the training dataset while the test dataset is cross-validated.552

The training accuracy score (for a binary classification task) is defined as the relative number of correctly predicted553

labels, that is,554

Accuracy =
TP + TN

TP + TN + FP + FN
, (13)

where TP are true positives, TN are true negatives, FP are false positives, and FN are false negatives.555

In our binary classification problem, positives are prime-first labeled samples, negatives are prime-boost labeled556

samples. Class prime-boost is defined by ∆D < 0 (red-shaded regions in Fig. 2). Class prime-first is defined by ∆D > 0557

(green-shaded regions in Fig. 2).558

An n-times repeated stratified cross-validation is based on the following iteration: (i) Shuffle the test dataset559

randomly, (ii) split the dataset into k folds, (iii) for each fold: take the fold as test dataset and take the remaining560

folds as training dataset, (iv) fit the tree on the training dataset and evaluate it on the test dataset.561

Accuracy and balanced accuracy are monitored as main cross-validation scores. We also monitored precision,562

F1-score based metrics, ROC AUC, and recall. Balanced accuracy is warranted for imbalanced datasets and defined as563

the arithmetic mean of sensitivity= TP
TP+FN (true positive rate) and specificity= TN

TN+FP (true negative rate).564

565

Dataset A Dataset A comprises of 50000 randomly sampled data points for parameter ranges and disease stages as566

described in Tab. II (without natural immunity waning). In Fig. 3 dataset A is called “unconditioned data” (displayed567

in orange).568

Here, we analyze dataset A, see Fig. 11. Training performance is excellent and reaches 100% for large depths due to569

overfitting. Learning performance is satisfactory, as seen from similar behaviors for test accuracy and balanced accuracy,570

around 70% for depth = 3. The resulting tree reveals two highly discriminative conditions for prime-boost preference,571

νmax ≤ 0.047 and η1 − η2 ≤ 0.056. This threshold combination is used in Fig. 3, referred to as the conditioned data,572

displayed in beige.573574

1 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RepeatedStratifiedKFold.html, accessed: 02-28-
2021
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FIG. 11. Decision tree analysis for dataset A. Cross-validation: Training accuracy (green curve) reaches 100% for large
tree size. This indicates that fitting is satisfactory, while test training data is overfitted for large tree sizes, as expected. Accuracy
(blue curve and shades) and balanced accuracy (orange curve and shades) show a fair and also similar performance for all depths.
This indicates satisfactory class prediction. Confusion matrix: Number of instances for predicted and true (ground truth) labels,
for prime-first and prime-boost. Upper left: True positives, Upper right: False positives, Lower left: False negatives, Lower
right: True negatives. Notation: Positives are prime-first, negatives prime-boost. Decision tree: (Value) denotes the number of
samples in class “prime-first” (left part) and class “prime-boost” (right part), respectively, for the given branch (brackets), while
samples denote the total sum of samples at the given branch. Left branches satisfy the displayed condition (“yes” branch), right
descendants are “no” branches. Notation: diff eta = η1 − η2, nu max = νmax, and I0 = I(0). Shown tree: depth = 3.

Dataset B Here we study the conditioned data constrained by η1 − η2 ≤ 0.017 and νmax < 0.013, as analyzed in575

Fig. 3 (blue), here called dataset B. For this dataset, we uniformly sampled initial proportions of infected individuals,576

I(0), on a logarithmic scale from 10−7 to 3× 10−1. This way of sampling allows us to study the robustness of decision577

boundary thresholds for a large range of initial disease prevalences.578

Dataset B comprises of 50000 randomly sampled data points (without natural immunity waning) where samples579

simultaneously satisfy η1 − η2 ≤ 0.017 and νmax < 0.013. Class prime-boost is defined by ∆D < 0 (red-shaded regions580

in Fig. 2). Class prime-first is defined by ∆D > 0 (green-shaded regions in Fig. 2).581

Results are presented in Fig. 12. The training accuracy curve (green curve) shows high accuracy levels from582

overfitting of the training set that reaches 100% for large tree depths. The accuracy curve (blue) shows the mean of583

the cross-validation of the accuracy for the test dataset.584
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The results confirm that no conditions other than the constraints η1 − η2 ≤ 0.017 and νmax < 0.013 robustly585

characterize prime-first preference domains.586

FIG. 12. Decision tree analysis for dataset B. Cross-validation: Large spread between training accuracy (green curve)
and balanced accuracy (orange) for all depths indicate poor learning performance regarding a possible subtree structure of
prime-boost samples but excellent class prediction. High values of accuracy results from excellent prediction for prime-first
samples (majority 13724) while prediction of prime-boost is poor (1276 false negatives, 0 true negatives in confusion matrix).
Confusion matrix: Number of instances for predicted and true (ground truth) labels, for prime-first and prime-boost. Upper left:
True positives, Upper right: False positives, Lower left: False negatives, Lower right: True negatives. Notation: Positives are
prime-first, negatives prime-boost. Decision tree: (Value) denotes the number of samples in class “prime-first” (left part) and
class “prime-boost” (right part), respectively, for the given branch (brackets), while samples denote the total sum of samples at
the given branch. Left branches satisfy the displayed condition (“yes” branch), right descendants are “no” branches. Notation:
betap = β?, diff eta = η1 − η2, beta 2/beta 1 = β2/β1, I0 = I(0). Shown depth = 3. Resulting tree of depth = 3 is essentially
equivalent to always prime-first, leading to an accuracy of 92%. With increasing depth balanced accuracy (and recall) increase
only slightly.
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