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Abstract: Virtual screening (VS) is a well-established method in the initial stages of many drug and
material design projects. VS is typically performed using structure-based approaches such as molecu-
lar docking, or various ligand-based approaches. Most docking tools were designed to be as global as
possible, and consequently only require knowledge on the 3D structure of the biotarget. In contrast,
many ligand-based approaches (e.g., 3D-QSAR and pharmacophore) require prior development of
project-specific predictive models. Depending on the type of model (e.g., classification or regres-
sion), predictive ability is typically evaluated using metrics of performance on either the training set
(e.g., Q2

CV) or the test set (e.g., specificity, selectivity or Q2
F1/F2/F3). However, none of these metrics

were developed with VS in mind, and consequently, their ability to reliably assess the performances
of a model in the context of VS is at best limited. With this in mind we have recently reported the
development of the enrichment optimization algorithm (EOA). EOA derives QSAR models in the
form of multiple linear regression (MLR) equations for VS by optimizing an enrichment-based metric
in the space of the descriptors. Here we present an improved version of the algorithm which better
handles active compounds and which also takes into account information on inactive (either known
inactive or decoy) compounds. We compared the improved EOA in small-scale VS experiments with
three common docking tools, namely, Glide-SP, GOLD and AutoDock Vina, employing five molecular
targets (acetylcholinesterase, human immunodeficiency virus type 1 protease, MAP kinase p38 alpha,
urokinase-type plasminogen activator, and trypsin I). We found that EOA consistently outperformed
all docking tools in terms of the area under the ROC curve (AUC) and EF1% metrics that measured
the overall and initial success of the VS process, respectively. This was the case when the docking
metrics were calculated based on a consensus approach and when they were calculated based on
two different sets of single crystal structures. Finally, we propose that EOA could be combined with
molecular docking to derive target-specific scoring functions.

Keywords: enrichment optimization algorithm; docking; virtual screening; QSAR; Glide; GOLD;
AutoDock Vina

1. Introduction

Time and money are two of the most required resources in the design of new drugs and
materials. Several techniques are available to expedite and lower the costs of these processes,
such as functional genomics [1], high-throughput screening (HTS) [2] and combinatorial
chemistry [3]. Over the years, computational methods have demonstrated their ability to
complement and even replace experimental techniques for such tasks.

Among the computational methods, virtual screening (VS) stands out as a viable
alternative to HTS in the initial stages of drug and material design projects. VS is typically
performed using structure-based approaches employing molecular docking, and to a lesser
extent, simulation methods, or various ligand-based approaches [4–6]. Most docking tools,
scoring functions and force fields utilized in structure-based VS were designed to be as
general as possible, as evident, e.g., from the large volume of experimental data used
for their derivation [7–11], and consequently only require knowledge of the 3D structure
of the biotarget, although additional experimental information, when available, could
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be used to select the most appropriate tool(s) and to optimize their performances. In
contrast, many ligand-based approaches require the prior development of target-specific
predictive models by using information on active (and when available inactive) compounds.
Ligand-based approaches for VS are typically implemented by means of pharmacophore
models [5], 3D-QSAR [12,13] or various similarity search strategies [14,15]. Both structure-
based and ligand-based approaches have demonstrated notable success in multiple VS
campaigns [16,17].

A particularly appealing yet somewhat less common approach to virtual screening is
presented by QSAR equations derived from easy to calculate 1D, 2D and sometimes global
3D descriptors. Several such studies were reported in the literature, and in most cases, the
descriptors were calculated for the ligands in their unbound states [18–28]. Some of these
efforts were summarized in several review articles [29,30]. In other cases, ligand-based
descriptors were combined with descriptors derived from the ligands’ 3D conformations
as obtained from molecular docking [31,32] or with the docking scores themselves [33].
However, these models were typically not used for virtual screening due to the computa-
tional resources required for large scale docking. An interesting combination of QSAR and
docking for the purpose of VS was recently presented by Gentile et al., who used a deep
neural network based on molecular fingerprints to predict docking scores of >1.3 billion
compounds retrieved from the ZINC database [34]. This method was subsequently used
for the VS of a similar number of compounds against the SARS-CoV-2 main protease [35].
All in all, QSAR-based VS holds promise for handling the increasingly large collections of
commercially available or synthetically feasible compound collections offered by many ven-
dors. This is because the computational resources needed for calculating such descriptors
are significantly less than those required by other techniques.

A common theme of all the above-mentioned literature reports is that QSAR mod-
els derived for VS were validated using metrics of performance on either a training set
(e.g., Q2

CV) or a test set (e.g., metrics derived from the confusion matrix for classification
models or Q2

F1/F2/F3 for regression models) [36]. In this respect, it is important to note the
lack of correlation between internal and external validation, a phenomenon sometimes
referred to as the “Kubinyi Paradox” [37,38]. This, together with similar observations,
have led to the realization that models should be evaluated on external test sets only [39].
However, irrespective of the exact nature of the evaluation metric, there is no reason to a
priori assume that any of these metrics could reliably assess the performances of a QSAR
model in the context of VS. This is because the task faced by VS, namely, the identification
of a set of weakly active compounds from within a large pool of diverse, mostly inactive
compounds, is quite different from the ability to qualitatively or quantitatively predict
the activities of a small set of similar compounds. Thus, we argue that the evaluation
of QSAR equations (and by extension of any computational model) should reflect their
intended usage. In particular, if QSAR equations are derived with VS in mind, they should
be evaluated in a VS scenario. Moreover, if the derivation of QSAR equations is treated as
an optimization problem in the space of the molecular descriptors, which is often the case,
then for the purpose of VS, the metric to be optimized should be VS-aware.

With this in mind, we previously presented the enrichment optimization algorithm
(EOA), which derives QSAR models in the form of multiple linear regression (MLR)
equations by optimizing an enrichment-like metric, and demonstrated its superiority
in small-scale VS campaigns over QSAR equations derived by optimizing according to a
“classical” metric (mean averaged error) [40]. Still, the original EOA algorithm suffered from
several drawbacks, and in particular from a high degree of redundancy in the optimized
metric. Thus, many QSAR equations led to identical values of the evaluation metric with
no way to further rank them.

In this work, we present an improved version of EOA and demonstrate its superior
performances in the virtual screening of five protein targets, this time in comparison with
the most common VS approach, namely, molecular docking.
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2. Results

Table 1 presents the results obtained with the EOA models for all datasets, whereas
Table 2 presents a comparison between the results obtained with EOA and all the docking
tools tested in this work for all test sets. Test set performances were evaluated using the
AUC and EF1% metrics. The docking results are based on the consensus approach across
two crystal structures for each target. The results for the individual crystal structures are
presented in Tables S4 and S5.

Table 1. EOA results obtained for all four subsets from all five datasets using 7, 10 and 13-descriptor
models. Results are provided in terms on the number and percentage (based on the total number of
actives) of active compounds appearing within the first L places of the list ranked according to the
EOA equation.

Dataset # Descriptors
# Actives = L # Actives among L Top Places

Train Validation Test Train (%) Validation (%) Test (%)

ACES-1

7

430 106 107

324 (75%) 75 (70%) 15 (14%)

10 315 (73%) 72 (67%) 28 (26%)

13 343 (80%) 84 (79%) 49 (46%)

ACES-2

7 312 (73%) 68 (64%) 42 (40%)

10 326 (76%) 72 (67%) 38 (36%)

13 357 (83%) 79 (74%) 0 (0%)

ACES-3

7 322 (75%) 78 (73%) 38 (36%)

10 319 (74%) 74 (69%) 13 (12%)

13 323 (75%) 69 (64%) 20 (19%)

ACES-4

7 331 (77%) 73 (68%) 47 (44%)

10 326 (76%) 73 (68%) 56 (53%)

13 329 (77%) 75 (70%) 5 (5%)

HIVPR-1

7

912 227 227

766 (84%) 187 (82%) 66 (29%)

10 806 (88%) 204 (90%) 49 (22%)

13 831 (91%) 202 (89%) 127 (56%)

HIVPR-2

7 742 (81%) 182 (80%) 75 (33%)

10 830 (91%) 201 (89%) 91 (40%)

13 801 (88%) 196 (86%) 38 (17%)

HIVPR-3

7 750 (82%) 192 (85%) 66 (29%)

10 800 (88%) 200 (88%) 73 (32%)

13 837 (92%) 206 (91%) 124 (55%)

HIVPR-4

7 759 (83%) 182 (80%) 61 (27%)

10 804 (88%) 197 (87%) 65 (29%)

13 807 (88%) 198 (87%) 94 (41%)
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Table 1. Cont.

Dataset # Descriptors
# Actives = L # Actives among L Top Places

Train Validation Test Train (%) Validation (%) Test (%)

MK14-1

7

608 151 152

455 (75%) 111 (74%) 41 (27%)

10 477 (78%) 116 (77%) 40 (26%)

13 464 (76%) 110 (73%) 37 (24%)

MK14-2

7 469 (77%) 106 (70%) 29 (19%)

10 471 (77%) 111 (74%) 42 (28%)

13 491 (81%) 111 (74%) 49 (32%)

MK14-3

7 421 (69%) 114 (75%) 43 (28%)

10 472 (78%) 125 (83%) 41 (27%)

13 482 (79%) 122 (81%) 48 (32%)

MK14-4

7 440 (72%) 103 (68%) 27 (18%)

10 466 (77%) 107 (71%) 34 (22%)

13 470 (77%) 109 (72%) 39 (26%)

UROK-1

7

200 49 49

192 (96%) 46 (94%) 29 (59%)

10 193 (97%) 48 (98%) 30 (61%)

13 191 (96%) 47 (96%) 34 (69%)

UROK-2

7 194 (97%) 47 (96%) 22 (45%)

10 193 (97%) 47 (96%) 30 (61%)

13 195 (98%) 46 (94%) 29 (59%)

UROK-3

7 192 (96%) 46 (94%) 27 (55%)

10 180 (90%) 42 (86%) 25 (51%)

13 193 (97%) 47 (96%) 34 (69%)

UROK-4

7 194 (97%) 46 (94%) 21 (43%)

10 195 (98%) 46 (94%) 25 (51%)

13 194 (97%) 46 (94%) 33 (67%)

TRY1-1

7

504 125 126

445 (88%) 100 (80%) 75 (60%)

10 460 (91%) 109 (87%) 81 (64%)

13 438 (87%) 105 (84%) 55 (44%)

TRY1-2

7 449 (89%) 116 (93%) 74 (59%)

10 465 (92%) 111 (89%) 84 (67%)

13 456 (90%) 114 (91%) 71 (56%)

TRY1-3

7 463 (92%) 113 (90%) 83 (66%)

10 465 (92%) 113 (90%) 86 (68%)

13 461 (91%) 110 (88%) 77 (61%)

TRY1-4

7 455 (90%) 111 (89%) 87 (69%)

10 453 (90%) 105 (84%) 79 (63%)

13 464 (92%) 110 (88%) 79 (63%)
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Table 2. EOA and docking results for all test sets expressed in terms of AUC and EF1% values. The
docking results are presented as consensuses of two crystal structures per target. For each dataset,
the best result is highlighted. We note that EF1% values are indifferent to the order of the active
compounds within the first 1% of the library, and it was therefore not unlikely to obtain identical
EF1% values from different methods.

Set Method
AUC EF1%

ACES HIVPR MK14 UROK TRY1 ACES HIVPR MK14 UROK TRY1

1

EOA-7 0.862 0.775 0.905 0.997 0.979 36.449 3.965 40.132 77.551 73.810

EOA-10 0.886 0.946 0.947 0.997 0.996 26.168 20.705 39.474 81.633 80.159

EOA-13 0.899 0.977 0.927 0.996 0.986 58.879 59.471 25.658 81.633 58.730

AD Vina 0.764 0.747 0.737 0.749 0.806 10.280 7.048 10.526 4.082 4.762

GOLD 0.739 0.726 0.676 0.830 0.861 30.841 13.656 12.500 32.653 15.873

Glide 0.735 0.678 0.743 0.801 0.847 14.953 11.454 15.789 40.816 35.714

2

EOA-7 0.808 0.813 0.902 0.986 0.958 8.411 14.097 20.395 69.388 75.397

EOA-10 0.885 0.955 0.914 0.978 0.982 43.925 21.586 41.447 81.633 79.365

EOA-13 0.921 0.927 0.925 0.987 0.966 9.346 19.383 37.500 73.469 71.429

AD Vina 0.760 0.754 0.753 0.766 0.795 12.150 3.965 8.553 2.041 4.762

GOLD 0.719 0.687 0.686 0.785 0.849 28.972 12.335 9.868 28.571 23.810

Glide 0.693 0.612 0.729 0.816 0.832 14.019 8.370 18.421 36.735 42.857

3

EOA-7 0.896 0.918 0.894 0.955 0.982 42.991 9.692 25.000 79.592 76.984

EOA-10 0.860 0.946 0.891 0.956 0.980 7.477 34.802 23.684 75.510 79.365

EOA-13 0.895 0.882 0.918 0.959 0.981 21.495 31.718 27.632 89.796 73.016

AD Vina 0.762 0.769 0.768 0.777 0.786 10.280 7.048 9.868 6.122 3.968

GOLD 0.710 0.715 0.686 0.866 0.849 27.103 17.621 9.868 34.694 26.190

Glide 0.687 0.667 0.753 0.840 0.857 14.953 10.132 23.026 42.857 44.444

4

EOA-7 0.859 0.915 0.892 0.980 0.983 14.019 16.300 21.711 61.224 80.159

EOA-10 0.919 0.922 0.934 0.986 0.982 58.879 13.656 23.026 67.347 76.190

EOA-13 0.945 0.978 0.934 0.983 0.983 13.084 51.542 36.184 79.592 79.365

AD Vina 0.796 0.740 0.766 0.765 0.809 8.411 5.727 5.921 6.122 7.143

GOLD 0.736 0.722 0.663 0.818 0.854 28.972 13.656 7.895 26.531 25.397

Glide 0.691 0.646 0.728 0.818 0.860 10.280 12.335 16.447 40.816 46.825

The EOA results presented in Table 1 demonstrate the expected yet small decrease
in performance when going from the training sets to the validation sets (overall averaged
percentages of active compounds found within the first L places of the ranked list of 85%
and 82%, for the training sets and validation sets, respectively). A much larger decrease
occurred for the test sets (average percentage = 41%), which could be attributed to the
much smaller percentage of active compounds in these sets (see Materials and Methods
section). In terms of the number of descriptors, we note a slight increase in performance
when going from 7-descriptor to 10-descriptor and to 13-descriptor models. However, this
increase was consistent across training, validation and test sets: The averaged percentages
of active compounds found within the first L places of the ranked list were 83%, 86%, and
87% for training sets calculated with 7, 10 and 13-descriptor models. The corresponding
scores for the validation sets were 81%, 83% and 84%; and for test sets, 40%, 42% and 42%.
Taken together, these results suggest that our models are unlikely to be over-fitted. We
note that in all cases, the number of descriptors in the final models was well below the
number of compounds used for model derivation (see Table 1). Finally, in terms of the
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different protein targets, the best results were obtained for UROK and TRY1, followed by
HIVPR, whereas models derived for ACES and MK14 gave overall poorer results (averaged
percentages of active compounds found within the first L places of the ranked list obtained
for training, validation and test sets were: UROK: 96%, 94%, 58%; TRY1: 91%, 88%, 62%;
HIVPR: 87%, 86%, 34%; ACES: 76%, 69%, 28%; MK14: 76%, 74%, 26%). A list of the most
common descriptors appearing in all EOA equations derived for each dataset together with
the number of occurrences and a short explanation is provided in Table S2. A complete list
of descriptors is provided in Table S3.

The results of the VS are presented in Table 2. Similarly to Table 1, we see a slight
increase in EOA performance when going from 7-descriptor to 10-descriptor models but
no further increase when going to 13-descriptor models (averaged AUC and EF1% values
across all EOA models across all datasets and subsets for 7, 10 and 13-descriptor models
were 0.91 and 42.4; 0.94 and 48.8; and 0.95 and 49.0, respectively). In terms of the different
protein targets, the best average AUC and EF1% values were obtained for UROK and TRY1,
followed by the other protein targets (UROK: 0.98 and 76.5; TRY1: 0.98 and 75.3; MK14:
0.91 and 30.2; ACES: 0.89 and 28.4; HIVPR: 0.91 and 23.2). This trend is similar although
not identical to that observed in Table 1.

Most significantly, the results in Table 2 clearly indicate that the EOA algorithm
outperformed all docking programs tested in this study across all subsets and datasets in
terms of both AUC and EF1% values, even when the latter were based on the consensus
approach (averaged AUC across all EOA models across all datasets and subsets: 0.93;
averaged AUC across all docking tools across all datasets and subsets: 0.76 for the consensus
approach, 0.73 based on the DUD-E associated structures (Table S4) and 0.74 based on the
alternative structures (Table S5); the corresponding EF1% values are 46.7, 17.8, 15.3, and
16.2 for EOA, consensus docking, DUD-E associated structures and alternative structures,
respectively). Thus, while using a consensus approach across two structures improved
the docking results relative to using a single structure, the performances of EOA were still
better.

Finally, while a comparison between the different docking algorithms was not the
focus of this study, we note that in terms of AUC values and using the consensus approach,
AD Vina performed the best for ACES, HIVPR and MK14. For UROK and TRY1, the
results are test set-dependent, with Glide and Gold outperforming AD Vina. In terms
of EF1%, GOLD performed the best for ACES and HIVPR, whereas Glide performed the
best for MK14, UROK and TRY1. Thus, no clear-cut trends were observed. A comparison
of Table 2 with Tables S4 and S5 suggests that out of the five targets considered in this
work, the largest increases in AUC and EF1% upon moving from single crystal-based VS to
consensus-based VS occurred for the TRY1 dataset docked with Glide, and for the MK14
dataset also docked with Glide, respectively.

Figure 1 presents, for each dataset, the EOA and docking-generated ROC curves, based
on the consensus approach. As noted in the Materials and Methods section, each dataset
gave rise to four subsets which led to four corresponding test sets. Thus, for each dataset,
we chose as a reference the test set that yielded the best ROC curve for any of the docking
programs and compared the results obtained with the other docking tools and with the
EOA algorithm to it. A similar analysis based on using as a reference the test set that yielded
the best ROC curve across the two crystal structures (DUD-E-associated and alternative
structures) and the four test sets is presented in Figure S1. The complete set of ROC curves
for both sets of structures and for the consensus approach is provided in Figures S2–S16.
These results reinforce those presented in Table 2, Tables S4 and S5—namely, that for this set
of targets, the EOA algorithm performed the best. Note that this is the case even though the
EOA algorithm is not necessarily represented by its best result. For example, for the UROK
case we chose to present the results obtained for set 3, since for this set, we obtained the
best results from among the docking tools with GOLD (AUC = 0.86). The results obtained
with the EOA algorithm for this set were AUC = 0.96. However, the results obtained with
EOA for set 1 of this target were slightly superior, at 0.997.
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Figure 1. ROC curves for the best-performing docking method based on the consensus approach
compared with EOA and the other docking methods (see text for more details). In all cases, the EOA
performed better than all docking methods.

To further check that the results obtained with the EOA algorithm were not chance-
correlated, we performed Y-scrambling. For this purpose, the training set that gave rise to
the best EOA model from among the four subsets for each of the five parent datasets was
scrambled five times. Each scrambling was performed by tagging all active compounds as
inactive and by randomly tagging the appropriate number of inactive compounds as active.
Next, EOA models were derived from the scrambled datasets using 10 descriptors for the
ACES, HIVPR and TRY1 datasets, and 13 descriptors for the MK14 and UROK datasets,
and were applied to the test sets. The resulting ROC curves are presented in Figure 2 and
demonstrate performances well below random selection. Thus, the original models derived
from the unscrambled dataset are likely not chance-correlated.
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Figure 2. ROC curves obtained from the EOA models derived from the scrambled sets. In all cases
AUC values are below 0.5, indicating performances lower than random.

3. Discussion

In this work we present an improved version of our recently reported enrichment
optimization algorithm (EOA). EOA derives QSAR models by optimizing an enrichment-
like function, specifically by ranking a set of L active and O inactive compounds using an
MLR equation and by maximizing the number of active compounds within the top L places
of the ranked list. In this version we have augmented the scoring function by a secondary
score which favors solutions in which active compounds, if found beyond the first L places,
and inactive compounds, if found within the first L places, occupy positions as close as
possible to position L. However, we deliberately restricted this secondary score to take
values in the range of (0, 1). This effectively means that solutions that introduce more active
compounds into the first L places of the list will always be preferred irrespective of the
positions of the other active/inactive compounds. We argue that this is a viable strategy for
virtual screening, wherein the purpose is to maximize the number of active compounds
at the top of a list ranked by some scoring function, although other strategies could also
be considered. From within solutions with equal numbers of active compounds in L, the
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secondary score favors those that “push” inactive compounds towards the bottom of the L
(active) list and active compounds towards the top of the O (inactive) list.

Using the new algorithm, EOA models were derived according to common best
practices [41–43]. Specifically, models were derived using a training set and validated
on independent validation and test sets. All divisions into training/validation/test sets
were performed at random and repeated four times. The only difference between the
validation and test sets were the proportions between active and decoy compounds, tests
sets being constructed with a small percentage of active compounds (i.e., 0.5–0.7%) which
is the common case for datasets used in virtual screening [44,45]. To make sure that
our models are not over-fitted we derived 7, 10 and 13-descriptor models and compared
their performances. To make sure our models are not chance-correlated, we performed
y-scrambling.

The results section suggests that the EOA models derived in this work are able to
retrieve on average > 80% of the active compounds from training and validation sets and
over 40% of the active compounds from test sets designed to include only a small fraction
of active compounds, typical of VS campaigns. Importantly, these EOA models are unlikely
to be chance-correlated or over-fitted. Looking at the most common descriptors appearing
in the EOA equations derived for the different datasets (Table S2), we note that many of
them are directly relevant to the ligand-protein recognition process (e.g., number of N-H
groups, number of hydrogen donor groups, electrotopological state indices, molecular
charge descriptors) whereas others are more related to ligands’ ADME properties (e.g.,
ALOGP) or overall structure (e.g., Balaban index, Sum of topological distances between all
nitrogen atoms in the molecule). All in all, the presence of these specific descriptors in the
final EOA equations makes physical sense.

Having identified the most common descriptors, we wanted to see whether better
EOA models could be developed using a subset of them and in particular such that em-
phasize protein-ligand interactions and key ADME ligand properties. For this purpose, we
focused on a subset of seven descriptors, namely, PEOE3, HBD, MR1, ALOGP2, ALOGP7,
ssCH2_Cnt and aaCH_Cnt (see Table S2 for a short explanation on their meaning) and
constructed five EOA models, one for each target, using a total of three descriptors selected
from this pool. The results are presented in Table 3 and are overall poorer than those
obtained with the 7, 10 and 13-descriptor models (except of the 7-descriptors model for set
1 of the HIVPR target).

Table 3. Test set AUC and EF1% values obtained for 3-descriptors EOA models.

Target AUC EF1%

ACES 0.825 24.299

HIVPR 0.860 18.943

MK14 0.807 13.158

UROK 0.897 20.408

TRY1 0.932 24.603

Next, we wanted to test whether the performances of EOA-based models are correlated
in any way with the ease of differentiating between active and decoy compounds in the
different datasets. As a surrogate to ease of separation, we chose to look at average
distances between actives and decoys. Since actives/decoys distances depend on the
specific compounds and on the descriptors used to characterize them, different distances
are expected for each of the three EOA models derived for each of the four subsets from
each target. Thus, for each target we calculated distances based on the descriptors selected
for the best 10-descriptors EOA model. This is because for three out of the five targets
(MK14, UROK, TRY1), EOA models based on ten descriptors performed the best, in terms
of the AUC metric, across all four subsets. Furthermore, since EOA models were derived
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using normalized descriptors, for the purpose of relevant comparison, distance calculations
also employed the normalized descriptors. For ease of calculation, Euclidian distances
were calculated using all principle components derived from principle component analysis
(PCA) performed with the WEKA program [46]. The results of our calculations together
with the corresponding AUC values are presented in Table 4 and suggest that: (1) The
average distances calculated for the different subsets are not significantly different from
one another and (2) Overall, there is no correlation between the actives/decoys distances
and model performances. Thus, it seems that the better performances observed, e.g., for
the UROK and TRY1 sets are not necessarily the result of a larger separation between active
and decoy compounds.

Table 4. Averaged ± SD Euclidean distances between active and decoy compounds for subsets
used to derive the best 10-descriptor models for each target. Distances are based on all principle
components obtained from PCA.

Target Set # Descriptors Euclidean Distances
(Average ± Standard Deviation) AUC

ACES 4 10 4.34 ± 1.41 0.885

HIVPR 2 10 4.10 ± 1.23 0.955

MK14 1 10 4.90 ± 1.59 0.947

UROK 1 10 4.59 ± 1.30 0.997

TRY1 1 10 4.72 ± 1.32 0.996

Finally, when compared against three common docking-based virtual screening tools,
namely, Glide-SP, GOLD and AutoDock Vina EOA performances where significantly better
both in terms of the AUC which informs on the overall success of the process and in terms
of EF1% values which inform on the success of the process in its initial stages. This was the
case both when docking metrics were calculated based on the consensus approach or based
on two different single crystal structures.

The comparison between EOA and docking requires some discussion. Cleves et al.,
have advocated the usage of multiple crystal structures for virtual screening, demonstrat-
ing a modest increase in performances relative to the usage of a single crystal structure
(averaged AUC increased from 0.81 ± 0.11 to 0.84 ± 0.09 for 92 targets [47]). Admittedly,
some of the targets in the DUD-E+ database (including two utilized in this study, ACES
and MK14) greatly benefited from the inclusion of multiple protein structures. In the case
of ACES, we observed no increase in AUC on going from single structure-based VS to
the consensus and only a small increase in EF1% (average AUC across the three docking
programs, four datasets and two single structure-based VS is 0.73 ± 0.05; the average
AUC across the three docking programs and the four data sets for the consensus approach
is 0.73 ± 0.06. The corresponding numbers for EF1% are 16.2 ± 8.2 and 17.6 ± 8.7). This
could be attributed to the smaller number of structures used in our consensus (two vs. five).
We note however, that the average AUC and EF1% values obtained in this study for single
structure-based VS, 0.73 and 16.2, are significantly higher than the numbers obtained by
Cleves et al. for single structure-based VS (0.53 and 3) and in fact closely match the results
of the five-structures consensus (0.74 and 19). Thus our single structure-based results leave
much less room for improvement. The average (across all models and datasets) AUC and
EF1% values obtained by EOA are significantly higher at 0.89 ± 0.03 and 28 ± 19. In the
case of MK14, we observed small increases in both AUC and EF1% on going from single
structure-based VS to the consensus (AUC: 0.68 ± 0.07 and 0.72 ± 0.04, respectively; EF1%:
8.9 ± 2.3 and 12.4 ± 5.0, respectively). For this target, the lowest AUC value was obtained
with Glide using the alternative crystal structure (0.55 ± 0.01). This number significantly
increased to 0.74 ± 0.01 upon going to the two structure-based consensus. Cleves et al.
reported a similar increase from 0.66 to 0.89 using a five-structure consensus. Still, our
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EOA results are significantly higher at 0.92 ± 0.02 and 30.2 ± 8.1 for the AUC and EF1%,
respectively. Finally, we note that while a consensus approach may benefit docking-based
VS, in many projects, single structure-based VS is still the method of choice, either because
of limited computational resources or because of lack of multiple crystal structures for the
target of interest [34,35,48–55].

A possible explanation for the improved performances of EAO over docking is that
none of the docking tools we used were specifically trained on any of the specific targets,
whereas the EOA models were. Thus, the better performances obtained with EOA could be
regarded as another manifestation of the superiority of local over global models. While we
cannot forego this argument, we note that in our previous work we demonstrated that, in
the context of VS, EOA-derived models outperformed other regression and classification
models trained on the same set of data [40]. Thus, using an enrichment-aware function for
model derivation clearly has merit for the purpose of virtual screening.

Despite its good performances, two limitations of EOA and in fact of all ligand-based
approaches for virtual screening should be noted: (1) Such approaches require information
on active (and preferably also on inactive) compounds in order to derive and validate the
models. While pharmacophore models could be developed using a rather small dataset,
QSAR-based models typically require larger sets. EOA is no exception; however, since the
method can utilize qualitative activity data, it has an advantage in this respect compared
to regression-based models. In contrast, molecular docking could be performed with no a
priori knowledge of active or inactive compounds. However, to validate and/or fine-tune
the docking procedure for a specific target, this information is mandatory. In this respect,
the difference between docking-based and EOA-based virtual screening is how to use
available information, namely, for method validation and fine-tuning only (docking) or
for method development and validation (EOA). (2) Ligand-based methods do not provide
information on binding modes. EOA per se cannot overcome this limitation. However, in
cases where information on active and inactive compounds is available, combining EOA
with docking presents an appealing strategy whereby the components that make up the
scoring function could be used as descriptors for the derivation of EOA-based models.
This amounts to re-adjusting the weights of these components in a target-specific, virtual
screening-aware manner. Depending on the specific docking tool, the new weights could
be used either for pose re-scoring or even for the docking itself. In addition to providing
target-specific scoring functions, this approach will also serve to more reliably compare
between the performances of EOA and docking and to unveil the true advantage in using
an enrichment-aware metric for model derivation by segregating the effect of the optimized
function from that of model locality/generality. Work along these lines is currently being
conducted in our laboratory.

Despite these limitations, we view EOA-based models as viable and practical tools for
virtual screening. While model derivation might be time consuming, particularly for large
datasets characterized by multiple descriptors, using such models for virtual screening
is highly efficient in terms of computational resources. Thus, such models can easily
handle the currently available large collections of commercial and proprietary screening
compounds, thereby increasing the probability of identifying good starting points for drug
and material design efforts.

4. Materials and Methods
4.1. Datasets

Datasets for five protein targets, namely, acetylcholinesterase (ACES), human immun-
odeficiency virus type 1 protease (HIVPR), MAP kinase p38 alpha (MK14), urokinase-type
plasminogen activator (UROK) and trypsin I (TRY1), were retrieved from the DUD-E
database [56]. These targets represent four different protein families according to the
Pfam classifier [57] (carboxylesterase, retroviral aspartyl protease and P-kinase for ACES,
HIVPR and MK14, respectively; and trypsin for UROK and TRY1). All datasets contain
compounds which were experimentally determined to be active or decoy compounds. The
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PDB structures associated with each target in the DUD-E database are: 1e66, 1xl2, 2qd9,
1sqt and 2ayw, respectively. In addition, for each target we selected an alternative structure
as suggested by the DUD-E+ database [47], namely, 1acj, 2pwc, 3o8t, 4fue and 3rxl. PDB
codes, and the numbers of active and decoy compounds for each target are listed in Table 5.

Table 5. Descriptions of the five datasets used in this work, including the numbers of active and
decoy compounds in training, validation and test sets. The UROK dataset had fewer active/decoy
compounds listed in DUD-E in comparison with all other datasets.

Dataset PDB Codes # Active # Decoy
Training Validation Test

# Active # Decoy # Active # Decoy # Active # Decoy

ACES 1e66, 1acj 643 24,161 430 3333 106 832 107 19,996

HIVPR 1xl2, 2pwc 1366 35,071 912 3333 227 832 227 30,906

MK14 2qd9, 3o8t 911 34,896 608 3333 151 832 152 30,731

UROK 1sqt, 4fue 298 9262 200 1666 49 416 49 7180

TRY1 2ayw, 3rxl 755 24,760 504 3333 125 832 126 20,595

All compounds and proteins considered in this work were prepared by Schrodinger’s
LigPrep program [58] and the Protein Preparation Wizard program [59], respectively. Pro-
tein preparation consisted of addition of hydrogen atoms, completion of missing side
chains/residues and assignment of correct protonation states for ionizable residues. Ligand
preparation consisted of obtaining reliable conformations, tautomeric forms and protona-
tion states (at pH = 7).

Next, 1-dimensional and 2-dimentional (1D and 2D) molecular descriptors for all
compounds from all datasets were calculated by the Canvas program [60,61]. The resulting
~750 descriptors (see Table S1 for a listing of the main descriptor types) were preprocessed
by removing correlated (r2 > 0.7), constant and nearly constant (i.e., constant over 70%
of the compounds) descriptors. The remaining descriptors were normalized using z-score
scaling.

For the purpose of developing enrichment optimizer algorithm (EOA) models (see
below), four subsets, each consisting of active and decoy compounds, were randomly
selected from each parent dataset. These subsets were randomly divided into training and
validation sets in an 80%/20% ratio, and the unselected compounds served as test sets. As a
result of this selection procedure, the test sets contained much smaller percentages of active
compounds (0.5–0.7%). This was done on purpose in order to mimic real VS campaigns.
The compositions of all datasets are listed in Table 5.

4.2. Enrichment Optimizer Algorithm (EOA) Algorithm

In our previous work, we presented a novel algorithm for the derivation of multiple
linear regression (MLR) equations suitable for usage in virtual screening, based on the
optimization of an enrichment-like objective function. We termed the new algorithm
enrichment optimizer algorithm (EOA) [40]. Briefly, EOA accepts as input a set of L active
compounds together with a set of O inactive (either known inactive or decoy) compounds
characterized by a set of N molecular descriptors. The algorithm then derives an MLR
equation to rank the compounds, counts the number of active compounds within the first
L places of the ranked list and then uses a Monte Carlo/simulated annealing (MC/SA)
optimizer to maximize this number in the space of the descriptors and their weights.

One drawback of the original EOA algorithm was the very limited range of values
the objective function could take. This led to a high degree of redundancy manifested as
multiple MLR equations leading to the same final value of the objective function with no
means to further rank them. To address this problem, we introduced a post processing
mechanism whereby redundant solutions with the highest value for the objective function
were further scored based on the positions of active compounds that were ranked beyond
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the first L places and of inactive compounds that were ranked within the first L places.
Higher (i.e., better) scores were allocated to solutions where both types of compounds had
ranks closer to L.

In the present study we generated a new scoring function by combining the number of
active compounds located within the first L places of the ranked list (primary score) with the
results of the above-described post processing mechanism (secondary score). The secondary
score was normalized to be within the range of 0–1 by means of an inverse sigmoid function.
This was done in order to give preference to solutions (i.e., MLR models) that gave rise
to the maximal number of active compounds within the first L places, irrespective of the
precise locations of other active or inactive compounds. As before, the new scoring function
was optimized using MC/SA in the space of the descriptors and their weights. Figure 3
presents the flowchart of the modified algorithm, and a detailed description is provided in
the Supporting information.

Figure 3. A flowchart of the modified enrichment optimizer algorithm (EOA). See the Supporting
information for more details.

For each of the four subsets selected from each of the five parent datasets, three EOA
models were derived using 7, 10 and 13 descriptors. In addition, we developed five more
models, one for each target, using three descriptors selected from an initial pool of seven
descriptors. This was done in order to test whether good models could be generated
from a more limited set of descriptors which focuses on the description of protein–ligand
interactions and key ligand ADME properties. The specific descriptors for the initial
pool were selected based on the data in Table S2 (descriptors occurrences) and included
PEOE3, HBD, MR1, ALOGP2, ALOGP7, ssCH2_Cnt and aaCH_Cnt (see Table S2 for short
explanations of these descriptors). Thus, a total of 5 × 4 × 3 + 5 = 65 EOA models were
derived in this work. A typical MC/SA run for the derivation of an EOA model consisted
of 1,000,000 MC steps. Simulated annealing was implemented by means of a saw-tooth
procedure whereby repeated annealing cycles were performed. In each cycle the RT term
was linearly decreased from 1 to 0.01 in 0.01 intervals, running 400 MC steps per interval.
The range of values of the RT term led to an acceptance rate of roughly 2–6%.

4.3. Molecular Docking

We chose to compare the EOA algorithm with some of the docking tools commonly
used for VS, including AutoDock Vina [10] using the PyRx platform version 0.9 [62], Glide-
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SP [9] and GOLD [63]. All docking calculations were performed with default parameters.
More specifically: For Glide, input conformations for docking were generated using the
“Canonicalize input conformation” option, and the energy window for ring sampling was
set to 2.5 kcal/mol. The best 400 poses per ligand were kept for energy minimization
using the OPLS3e force field and the pose with the lowest, standard precision Glide gscore
was kept. For GOLD, the population size for the genetic algorithm was set to 100 and the
maximal number of operations per ligand to 100,000. The pose with the lowest CHEMPLP
value was kept. For AD Vina, the exhaustiveness argument was set to 8, and the maximum
number of binding modes to generate was set to 9. The pose with the highest Vina score
was kept.

In the interest of performing a fair comparison, docking was performed on those
compounds included in the test sets used for the evaluation of the EOA models. For each
target, all test sets were docked against the two crystal structures (see Table 5).

4.4. Evaluation Metrics

The performances of EOA and of the different docking methods were evaluated using
two common metrics, namely, area under the ROC curve (AUC) and enrichment at 1% of
the library (EF1%). AUC measures the overall performances of the VS procedure, whereas
EF1% measures performances at early stages of the screening process. In the case of docking,
for each target, the two metrics were calculated for each PDB structure separately. In
addition, we implemented a consensus approach whereby each ligand was ranked based
on its best docking score across the two structures and the metrics calculated from this
consensus ranking.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.
3390/ijms23010043/s1.
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