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Research has shown that the lipid microenvironment surrounding colorectal cancer

(CRC) is closely associated with the occurrence, development, and metastasis of

CRC. According to pathological images from the National Center for Tumor diseases

(NCT), the University Medical Center Mannheim (UMM) database and the ImageNet

data set, a model called VGG19 was pre-trained. A deep convolutional neural network

(CNN), VGG19CRC, was trained by the migration learning method. According to the

VGG19CRC model, adipose tissue scores were calculated for TCGA-CRC hematoxylin

and eosin (H&E) images and images from patients at Zhujiang Hospital of Southern

Medical University and First People’s Hospital of Chenzhou. Kaplan-Meier (KM) analysis

was used to compare the overall survival (OS) of patients. The XCell and MCP-Counter

algorithms were used to evaluate the immune cell scores of the patients. Gene set

enrichment analysis (GSEA) and single-sample GSEA (ssGSEA) were used to analyze

upregulated and downregulated pathways. In TCGA-CRC, patients with high-adipocytes

(high-ADI) CRC had significantly shorter OS times than those with low-ADI CRC. In a

validation queue from Zhujiang Hospital of Southern Medical University (Local-CRC1),

patients with high-ADI had worse OS than CRC patients with low-ADI. In another

validation queue from First People’s Hospital of Chenzhou (Local-CRC2), patients with

low-ADI CRC had significantly longer OS than patients with high-ADI CRC.We developed

a deep convolution network to segment various tissues from pathological H&E images

of CRC and automatically quantify ADI. This allowed us to further analyze and predict

the survival of CRC patients according to information from their segmented pathological

tissue images, such as tissue components and the tumor microenvironment.

Keywords: deep learning, adipose tissue, colorectal cancer, prognosis, hematoxylin and eosin

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2022.869263
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2022.869263&domain=pdf&date_stamp=2022-05-11
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gzbeer@smu.edu.cn
mailto:zhangjian@i.smu.edu.cn
mailto:luopeng@smu.edu.cn
https://doi.org/10.3389/fnut.2022.869263
https://www.frontiersin.org/articles/10.3389/fnut.2022.869263/full


Lin et al. DL and CRC Adipose Tissue

INTRODUCTION

Colorectal cancer (CRC) is a common global disease that
is the third most common type of cancer and the second
leading cause of cancer deaths worldwide (1–4). In 2018,
there were 1.8 million new cases of CRC (1). Thus, CRC
seriously affects and threatens global health and quality
of life.

The prognosis of CRC patients depends on the tumor
node metastasis (TNM) stage of the cancer and, for patients
with early-stage CRC, whether they receive curative surgical
interventions. CRC prognosis is also influenced by epigenetics
and the TIME, both of which cause CRC heterogeneity (5).
Despite the poor prognosis and high recurrence rate of CRC,
potential biomarkers have helped to improve the prognosis of
CRCs (6–10). It has been shown that the lipid microenvironment
surrounding the tumor is associated with the occurrence,
development, and metastasis of CRC (11–13). In addition,
obesity is associated with increased incidence and mortality of
CRC (14–16). Adipocytes (ADI) in the TIME can act directly
as energy providers and metabolic regulators to promote the
proliferation, invasion, and even drug resistance of CRC (14).
However, the lipid microenvironment of CRC is complex,
and there is considerable heterogeneity among individuals;
therefore, a suitable method is needed to evaluate the lipid
microenvironment of CRC patients to more accurately predict
their prognoses.

In recent years, the rise of the CNN in the artificial
intelligence field has allowed for extraction of pathological
image features by automatic model extraction as opposed to
traditional manual design (17–19). Furthermore, the CNN
has promoted quantitative analysis of pathological images, as
opposed to only qualitative analysis. When quantitative image
data is combined with accurate clinical data and follow-up
information, a systematic model of prognosis and survival can
be constructed, and the postoperative status of patients can be
predicted to develop a personalized treatment plan (20, 21).
Kather et al. (22) used a CNN to study the auxiliary diagnoses
of CRC pathological sections and extract texture features from
a large number of H&E sections. The features were then input
into a classifier to predict the tissue type. Using this approach,
recognition accuracy could exceed 94%. Xu et al. (23) trained a
deep learning CNN model on ImageNet, and it was superior to
manual classification and segmentation of colon cancer (CRC)
histopathological images. Deep learning can further predict the
survival status of patients by counting the number of mitotic
cells in the CRC image, quantifying immune cell infiltration,
evaluating the degree of tumor differentiation, and characterizing
the surrounding tissues (24–32).

In the present study, we segmented various tissues from
H&E-stained pathological images of CRC by constructing a deep
convolution network. We used this network to further analyze
and predict the survival status of CRC patients according to
their segmented pathological tissue image information, including
TIME composition. We recommend that quantified image
features are useful for predicting CRC patient prognosis and
informing treatment plans.

METHODS

Construction of the Neural Network Model
According to published literature, we used a data set containing
more than 100,000 H&E image patches and corresponding
categories, which we obtained by non-overlapping slicing
of pathological images in the NCT and UMM databases.
Patches of histological images of CRC were divided into
nine categories: adipose tissue (ADI), background (BACK),
debris (DEB), hematoxylin-eosin (HE), lymphocytes (LYM),
mucus (MUC); smooth muscle (MUS), National Center for
Tumor Diseases (NCT), normal colon mucosa (NORM),
cancer-associated stroma (STR), and colorectal adenocarcinoma
epithelium (TUM) (22, 33). Based on this data set and
the VGG19 model that was pre-trained on the ImageNet
data set (www.image-net.org), we trained a deep CNN by
migration learning. We preliminarily constructed a classifier
called VGG19CRC based on histological images of CRC, and we
used this classifier to classify tumor and non-tumor sections of
colorectal tissue. The classifier obtained an accuracy of 97.3%
on the classification of the verification set; therefore, use of this
classifier allowed for rapid organization of CRC images into the
aforementioned categories.

TCGA-CRC Queue
The 862 H&E images of COAD and READ patients (Stages: I-
IV) were downloaded from the Genomic Data Commons (GDC)
database. To study the CRC queue, we combined the TCGA-
COAD queue and the TCGA-READ queue into the TCGA-CRC
queue. Because the size of full slice images in the TCGA-CRC
queue is very large, the full slice images cannot be directly used
as inputs for the neural network (22). Therefore, we cut the full
slice images into image blocks with a resolution of 224 pixels x
224 pixels for verification and testing. Tomaintain similar feature
distributions for the 100,000 pathological image blocks used for
training VGG19CRC, we chose 0.5 as the microns per pixel (mpp)
for generating pathological image blocks, which allowed each
pathological section to generate tens to thousands of pathological
blocks. The cuts were then carried out as follows: 1) Cuts with too
large of a background proportion were removed. For this step,
each image block sized 224 pixels x 224 pixels was pooled into a 1
x 1 image block by global average, and the gray matrix of the 1 x
1 pixel after pooling was determined. If the red green blue (RGB)
value of the pixel gray matrix was >200, the corresponding 224
pixel x 224 pixel was considered background and eliminated
from the block generated from the pathological section. 2) Color
normalization: Here, we used the “normalize” method in the
torchvision framework to pool the gray matrix of the input cut
data into a distribution similar to that of the training data. This
allowed us to identify similar feature distributions and to improve
VGG19CRC’s discrimination accuracy for tumor and non-
tumor tissues. The preprocessed slices were then input into the
VGG19CRCmodel, and the category of each slice was the output.
Finally, we calculated the proportions of the nine tissue categories
in each patient’s H&E image. Detailed clinical information for
TCGA-CRC is provided in Supplementary Table 1.
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External Validation Set Queues and ADI
Calculations
H&E images of 660 CRC patients were collected from Zhujiang
Hospital of Southern Medical University; these patients were
referred to as “Local-CRC1”. Detailed clinical information for
Local-CRC1 is provided in Supplementary Table 2. We also
collected H&E images of 164 CRC patients from First People’s
Hospital of Chenzhou; these patients were referred to as “Local-
CRC2”. Detailed clinical information for Local-CRC2 is provided
in Supplementary Table 3. For the local queues, we adopted the
same image preprocessing method as we did for the TGCA-
CRC queue. The H&E images were applied to the trained
VGG19CRC model, and we obtained the proportions of the nine
tissue categories in each patient’s H&E image. Details of patient
recruitment for the two independent cohorts are provided in the
“Supplementary Methods.”

Evaluation of ADI Prognostic Value
In the TCGA-CRC, TCGA-COAD, TCGA-READ, TCGA-CRC-
Male, and TCGA-CRC-Female queues, the “surv_cutpoint”
function in the R package “survminer” was used to divide the
patients in each queue into high-ADI and low-ADI groups based
on their median ADI values. We then used the Kaplan-Meier
(KM) analysis method to compare the OS of patients in the
high-ADI group and the low-ADI group.

Immune Infiltration Analysis
In the TCGA-CRC cohort, we used the xCell (34) and MCP-
Counter (35) algorithms to evaluate the patients’ immune cell
scores based on the expression data. We obtained the immune
scores of the TCGA-CRC patients from published literature (36).

Statistical Analysis
We used RNA-seq data for the TCGA-CRC queue downloaded
from the Genomic Data Commons (GDC) database (https://
portal.gdc.cancer.gov/) and the GO-BP, GO-CC, GO-MF, KEGG,
and REACTOME gene sets downloaded from the Molecular
Signatures Database (MsigDB) (37). We then used the R package
“clusterprofiler” to perform the GSEA on the TCGA-CRC
gene expression data (38). We expressed the upregulation or
downregulation of each pathway by the enrichment fraction,
and statistical differences were communicated using P-
values. P-values < 0.05 indicate significant upregulation or
downregulation. For the KM analyses, the log-rank P-value
was used to express statistical differences. We also used the R
package “ComplexHeatmap” (39) to visualize the heat map and
the R packages “survival” (40) and “survminer” (41) for the
survival analysis. For the ssGSEA (42), which is an extension of
GSEA and standardizes the ranks of gene expression values for
given samples, the empirical cumulative distribution function
was used to calculate enrichment scores (ESs). We used the R
package “GSVA” to perform the ssGSEA on the expression profile
data of the TCGA-CRC patients (42). In the present study, all
analyses were conducted in Python (Version 3.6) or R software
(Version 3.6.3).

RESULTS

Non-tumor Multi-Tissue Type
Decomposition of CRC Pathological
Images Based on a Deep Convolution
Neural Network
Based on the methods of Kather et al. (22), we extracted 100,000
H&E images (http://dx.doi.org/10.5281/zenodo.1214456) and
corresponding data sets from 86 CRC tissue slices in the NCT
and UMM databases. We then pre-trained the VGG19 algorithm
on the ImageNet data set (www.image-net.org) and Kather
data set. From this, we obtained the classification levels of
nine organization categories. We then trained a CNN through
transfer learning to classify different tissue types in pathological
CRC images (VGG19CRC). We next used the preliminarily
constructed VGG19CRC to segment whole-slide images (WSIs)
from the TCGA-CRC, Local-CRC1, and Local-CRC2 queues into
several 224 x 224 images, and these image blocks were input into
the VGG19CRC model to generate prediction probability. The
final classification of each image block was set as the organization
category with the maximum probability. Further details on this
process are provided in Figure 1.

To determine adipose scores for H&E images using the
VGG19CRC model, the following process was applied. H&E
stained images in the TCGA-CRC, Local-CRC1, and Local-
CRC2 queues were cut into several fixed-size slices, and
these slices were applied to the trained VGG19 model to
classify the slice type. The ADI score was then determined
based on the proportion of slices that were characterized
as ADI by the trained VGG19CRC model. For example,
if a single patient had 1,000 slices, and 200 slices were
classified as ADI by the VGG19CRC model, this patient’s
ADI would be 0.2. In addition, the VGG19CRC.model
could segment H&E images well. Representative examples
of segmentation for when the VGG19CRC model was
applied to high-ADI and low-ADI samples are shown in
Figures 2A–C (Figure 2A: TCGA-CRC; Figure 2B: Local-CRC1;
Figure 2C: Local-CRC2).

BMI Is Not Associated With CRC Patient
Prognosis
Adipose tissue is an important component of obesity. To explore
the relationship between adipose tissue scores in H&E images
and corresponding Body Mass Indices (BMI), we performed a
correlation analysis. We found that there was no statistically
significant correlation between ADI and BMI in TCGA-CRC (R
= 0.021; P= 0.72) (Figure 2D). Some studies have suggested that
obesity is a risk factor for CRC recurrence and death (43–45).
In the TGCA-CRC cohort, we divided the patients into groups
according to the WHO definition of obesity (46) (obesity: BMI
> 25; normal: BMI ≤25). We then used KM analysis to compare
the differences in OS between obese patients and normal patients.
We found that there was no significant difference in OS between
obese patients and normal patients in the TCGA-CRC cohort
(Figure 2E).
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FIGURE 1 | Study design for the development and application of the CNN model. CNN, convolutional neural network; H&E, hematoxylin and eosin; WSI, whole-slide

image; ADI, adipose; BAC, background; DEB, debris; LYM, lymphocyte aggregates; MUC, mucus; MUS, muscle; NOR, normal mucosa; STR, stroma; and TUM,

tumor epithelium.

Higher ADI Is Associated With Worse OS in
CRC Patients
In the TCGA-CRC queue, patients with high-ADI CRC had
significantly shorter OS times (log-rank P = 0.015; HR =

1.54; 95%Cl: 1.08–2.19; Figure 3A), compared to those with
low-ADI CRC. To further verify the predictive effect of ADI
on CRC prognosis, we also retrospectively collected H&E
images from the Local-CRC1 and Local-CRC2 verification
sets. In the Local-CRC1 cohort, CRC patients with high-
ADI (n = 330) had worse OS than CRC patients with
low-ADI (log-rank p = 0.047; HR = 1.36; 95%Cl: 1–1.84;
Figure 3B). In the Local-CRC2 queue, patients with low-
ADI CRC (n = 82) had significantly longer OS time (log-
rank P = 0.044; HR = 1.83; 95%Cl: 1–3.35; Figure 3C)
than those with high-ADI CRC. These results suggest that
ADI is a potential biomarker for predicting the prognosis of
CRC patients.

ADI Is Associated With the Prognosis of
CRC Subgroup Patients
We then explored the predictive effect of ADI on the prognosis of
CRC subgroup patients, includingmales, females, and the COAD
and READ CRC subtypes.

In the TCGA-COAD queue, patients with high-ADI COAD
had significantly lower OS time than those with low-ADI COAD
(log-rank P = 0.042; HR = 1.5; 95%Cl: 1–2.24; Figure 3D). In
the TCGA-READ queue, however, we found no differences in
OS time between patients with high-ADI READ and patients
with low-ADI READ (log-rank P = 0.119; HR = 1.81; 95%Cl:
0.81–4.05; Figure 3E).

To further verify the predictive effect of ADI on the prognosis
of CRC subtype patients, we analyzed CRC patients from
the independent verification sets Local-CRC1 and Local-CRC2.
According to histological type and gender, we divided the two
independent verification sets into Local-COAD1, Local-COAD2,
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FIGURE 2 | The association between BMI and clinical prognosis of TCGA-CRC patients. Examples of high-ADI and low-ADI H&E-stained WSIs and corresponding

segmented results from the TCGA-CRC cohort (A), Local-CRC1 (B), and Local-CRC2 (C). (D) The correlation between BMI and ADI in the TCGA-CRC cohort

(Spearman correlation). (E) Overall survival for subjects grouped according to BMI subclass (obese and normal). H&E, hematoxylin–eosin; WSI, whole-slide image; and

ADI, adipose.
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FIGURE 3 | The association between ADI and OS of CRC patients. Overall survival for subjects grouped according to ADI subclass (high-ADI and low-ADI) in the

TCGA-CRC cohort (A), Local-CRC1 (B), Local-CRC2 (C), TCGA-COAD (D), TCGA-READ (E), Local-COAD1 (F), and Local-COAD2 (G).
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Local-READ1, Local-READ2, Local-CRC1-Female, and Local-
CRC1-Male. In Local-COAD1, we found that patients with high-
ADI tended to have shorter OS times than patients with low-
ADI, although this difference was not statistically significant
(log-rank P = 0.095; Figure 3F). Similarly, in Local-COAD2,
compared with low-ADI patients, high-ADI patients tended to
have shorter OS times (log-rank P = 0.112; Figure 3G). In local-
READ1 and local-READ2, we found no significant difference in
OS time between the high-ADI patients and the low-ADI patients
(Figure 4A: log-rank P = 0.613; Figure 4B: log-rank P = 0.579).

Within the TCGA-CRC cohort, we analyzed the relationship
between ADI and prognosis for male and female patients. As
shown in Figure 4C, ADI had no predictive effect on OS time
in TCGA-CRC female patients (log-rank P = 0.123). The male
patients with high-ADI had significantly shorter OS times than
those with low-ADI (log-rank P = 0.04; HR = 1.63; 95%Cl:
1–2.66; Figure 4D). In the Local-CRC1-Female subgroup, we
found that patients with high-ADI had significantly lower OS
times than patients with low-ADI (Figure 4E: log-rank P =

0.04; HR = 1.6; 95%Cl: 1.02–2.52). However, within the Local-
CRC2-Female subgroup, there was no statistically significant
difference in OS time between the high-ADI and low-ADI
patients (Figure 4F; log-rank P = 0.377). In the Local-CRC1-
Male subgroup, there was no statistically significant difference in
the OS times of high-ADI and low-ADI patients (Figure 4G; log-
rank P = 0.817). In the Local-CRC2-Male subgroup, the clinical
prognosis of patients with high-ADI was significantly worse than
that of patients with low-ADI (Figure 4H).

Immune Infiltration Differences Between
High-ADI and Low-ADI CRC Patients
To further explore differences in the TIMEs of high-ADI and
low-ADI CRC patients, we used the xCell and MCP-Counter
algorithms to evaluate gene expression in the TIME. As shown
in Figure 5A, CD8+ T cells were significantly enriched in the
immunemicroenvironments of low-ADI patients compared with
those of high-ADI patients. M2 macrophages were significantly
enriched in the TIMEs of high-ADI patients compared to those
of low-ADI patients. Results from MCP-Counter (Figure 5B)
showed that the high-ADI group had significantly fewer activated
lymphocytes, such as T cells, neutrophils, and monocytes, than
the low-ADI group. We then further explored the relationship
between ADI and immune infiltration scores. We found
significant negative correlations between ADI and BCR Shannon,
lymphocyte infiltration signature score, and TIL regional fraction
(Figure 5C; all P < 0.05; all R > 0).

Differences in Signaling Between High-ADI
and Low-ADI CRC Patients
To explore differences in the activity of pathological signaling
pathways between the high-ADI low-ADI groups, we used the
GSEA algorithm to calculate and compare enrichment scores
(ESs) of pathological pathways. In both the training set and
verification set of TCGA-CRC, we found that the following
pathways were significantly downregulated in the high-ADI
group compared to the low-ADI group: immune activation;

lymphocyte activation; leukocyte migration; B cell activation;
regulation of activated T cell proliferation; positive regulation
of T cell receptor signaling; positive regulation of anti-tumor
immunity; and B cell receptor signaling (P < 0.05, ES < 0;
Figure 6A; Supplementary Table 1). We also used the ssGSEA
algorithm to calculate the activity of signaling pathways of
each patient in the TCGA-CRC queue. For this, we analyzed
differences between the high-ADI and low-ADI groups in the
TCGA-CRC queue using the “limma test” method. We found
that the following pathways were significantly downregulated in
the high-ADI group compared to the low-ADI group: cytokine
production, chemokine signaling, TCR and BCR signaling,
negative regulation of lymphocyte apoptosis, negative regulation
of fibroblast growth factor receptor (FGFR) signaling, negative
regulation of angiogenesis, negative regulation of reactive oxygen
species (ROS) synthesis, and negative regulation of JAK/STAT
signaling (Figure 6B). On the contrary, the MAPK signaling
pathway was significantly upregulated in the high-ADI group due
to fatty acid oxidation (Figure 6B).

DISCUSSION

Understanding and characterizing CRC is very important
for evaluating the prognosis of patients and informing
treatment decisions (47). Previous studies have shown that
clinical variables, histopathological parameters, and molecular
characteristics are associated with the clinical prognosis of
patients (48, 49). For example, Wulczyn et al. constructed a deep
learning system (DLS) score that can predict the disease-specific
survival (DSS) of stage II and stage III CRC patients by analyzing
H&E images. They found that CRC patients with higher DLS
scores had significantly shortened DSS times (47). In addition,
Zhao et al. (50) trained a CNN model using transfer learning
and quantified the tumor-stroma ratio (TSR) after segmenting
H&E images of CRC patients. They found that the OS time of the
high-TSR group was significantly lower than that of the low-TSR
group (P < 0.001, HR = 1.79). In the present study, we used
a CNN model to segment CRC images from the TCGA-CRC
queue and two Local-CRC queues and automatically quantified
the adipose tissue scores of the H&E images. Further analysis
showed that the ADI score constructed by the CNN could
predict the OS of CRC patients. CRC patients in the high-ADI
group had significantly lower OS times than patients in the
low-ADI group. In the subgroup analysis, ADI could also be
used as a prognostic marker for COAD, READ, CRC-Male, and
CRC-Female patients. Across these groups, patients with lower
ADI had significantly improved OS times. To our knowledge,
this is the first study to establish a deep learning model based
on WSI for automatic quantification of ADI. We have verified
the predictive effectiveness of ADI on prognosis in several
independent queues. Our method can quantify ADI from
H&E-stained histological images efficiently and accurately, thus
eliminating deviation caused by traditional visual evaluation and
reducing the workload for pathologists.

The role of adipose tissue in the occurrence, development,
invasion, and metastasis of CRC is receiving increased research
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FIGURE 4 | The association between ADI and OS of CRC subgroups. Overall survival for subjects grouped according to ADI subclass (high-ADI and low-ADI) in the

queues Local-READ1 (A) and Local-READ2 (B), TCGA-CRC-Female (C), TCGA-CRC-Male (D), Local-CRC1-Female (E), Local-CRC2-Male (F), Local-CRC1-Female

(G), and Local-CRC2-Male (H).
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FIGURE 5 | Comparison of immune infiltration between the high-ADI and low-ADI groups. (A) Comparison of immune cell infiltration estimated by xCell between the

high-ADI and low-ADI groups. (B) Comparison of immune cell infiltration estimated by MCP-Counter between the high-ADI and low-ADI groups. (C) Comparison of

immune-related signature scores between the high-ADI and low-ADI groups. (*P < 0.05 Mann-Whitney U test). ns: not significant.
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FIGURE 6 | Differentially enriched biological functions of the high-ADI and low-ADI groups of the TCGA-CRC cohort, identified by transcriptome analysis. (A) The

results of the GSEA. The color of the curve corresponds to the font color of each pathway. GSEA of hallmark gene sets were downloaded from the Molecular

Signatures Database (MSigDB). Each run was performed with 1,000 permutations. Enrichment results with significant differences between the high-ADI and low-ADI

tumors are shown. (B) Boxplot depicting the significant mean differences in ssGSEA scores between the high-ADI and low-ADI tumors in the TCGA-CRC queue.
*P < 0.05; **P < 0.01; ***P < 0.001.
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FIGURE 7 | Potential mechanism underlying the prognostic value of high-ADI.

attention (14). In addition to constructing a biomarker, ADI,
that can predict CRC patient prognosis, we hope to clarify the
molecular mechanisms by which high-ADI negatively impacts
patient prognosis (Figure 7). GSEA and ssGSEA were used to
compare the upregulation or downregulation of pathological
pathways between high-ADI and low-ADI CRC patients.
We found that anti-tumor immunity pathways, including
cytokine production, chemokine signaling, TCR signaling, BCR
signaling, and negative regulation of lymphocyte apoptosis, were
significantly downregulated in the high-ADI group (51, 52).
Kawamura et al. (53) have shown that cytotoxic T lymphocyte
(CTL) responses to peptide vaccines can predict the survival
time of patients with stage III colorectal cancer. Shibutani et al.
(54) examined the infiltration of tumor infiltrating lymphocytes
(TILs) in the primary tumors of patients with stage IV CRC,
according to the method proposed by the international TILs
working group. They found that patients with high TILs had
a higher response rate to chemotherapy than patients with low
TILs (79.3% vs. 48.1%, respectively, P < 0.025). Furthermore,
patients with high TILs had higher OS times than those with
low TILs (median survival time 35.5 months and 22.4 months
respectively, P < 0.0221). In addition, Emile et al. (55) discussed
the prognostic value of TILs in 1,220 patients with stage III CRC
who received folinic acid, fluorouracil, and oxaliplatin (FOLFOX)
chemotherapy. They found that the recurrence rate of the high
TILs group was 14.4%, whereas the recurrence rate of the low
TILs group was 21.1% (P = 0.020). Patients with high TILs
had higher OS and disease-free survival (DFS) than patients
with low TILs. Thus, the level of lymphocyte infiltration into

the tumor microenvironment may affect the efficacy treatment
regimens and can predict the prognosis of CRC patients to an
extent. M1 macrophages secrete tumor necrosis factor-α (TNF-
α), which can kill and inhibit the growth of tumor cells. M1
macrophages highly express major histocompatibility complex
(MHC) class I and class II molecules, which present tumor-
specific antigens and indirectly inhibit the growth of tumor
cells (52). Therefore, differences in M1 macrophage levels could
explain why patients with high-ADI CRC have significantly
shortened OS times. In addition, we found that the activity of
some carcinogenesis pathways, such as fibroblast growth factor
signaling, angiogenesis, ROS synthesis processes, JAK/STAT
signaling, and IL-1 production, was significantly upregulated in
the high-ADI group compared to the low-ADI group (56–58).
The activated MAPK and PI3-K pathways have been shown to
regulate gene expression and protein expression, thus promoting
cell growth and proliferation and reducing apoptosis (56). IL-1
and IL-6 have been shown to havemultiple effects onmultiple cell
types, and these cytokines participate in various stages of tumor
formation, invasion and metastasis. IL-1 and IL-6 can regulate
the carcinogenic transcription factors NF-κB and STAT3, which
play important biological functions and can accelerate tumor
growth and progression (59). In addition, IL-6 can promote
platelet production (60), and activated platelets can act as
chemotactic agents for tumor cells, promoting the formation of
metastatic lesions and increasing the level of circulating tumor
cells (57, 58). High levels of VEGF can promote the growth,
angiogenesis, and metastasis of tumor cells (61–63). A chronic
inflammatory microenvironment can promote cell proliferation
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and cause uncontrolled growth, which leads the formation of
tumors. Inflammation can also promote tumor progression
through genomic instability, initial infiltration, and metastasis
(64). In addition, studies have shown that fibroblast growth
factor-2 (FGF-2) regulates tumor angiogenesis (65). Tumors
often originate from sites of chronic inflammation or infection,
and large numbers of phagocytes can induce oxidative stress
by producing ROS and reactive nitrogen species (RNS) after
infiltrating the site of inflammation, thus causing DNA damage
in the host tissues. Therefore, persistent inflammation can
promote the accumulation of mutations (66–68). For this reason,
significant upregulation of carcinogenesis-associated pathways
in high-ADI patients could explain their significantly shortened
OS times.

In the present study, we found that high-ADI may worsen
the prognosis of CRC, and there was no correlation between
BMI and prognosis of TCGA-CRC (Figure 2D; log-rank P >

0.05). In the correlation analysis, we found that there was no
significant relationship between ADI and BMI (Figure 2C, P >

0.05). At present, there is controversy about the relationship
between BMI and patient prognosis (69). Many studies have
shown that there is no significant relationship between BMI
and prognosis (70–72); however, some studies have shown that
BMI is positively correlated with mortality (4, 44). Therefore,
we suspect that BMI may have a different effect than adipose
tissue on the occurrence and progression of CRC. Adipose tissue
is an important endocrine organ that can induce and secrete a
variety of endocrine factors and fat factors, thus exerting anti-
inflammatory and pro-inflammatory functions (73). Moreover,
obese patients often have increased leptin, decreased adiponectin,
and increased pro-inflammatory adipokines (74). Leptin activates
the JAK/STAT pathway by binding its receptor (OB-R) and
thereby promotes the adhesion and invasion of colorectal cancer
cells (75). On the other hand, adiponectin can inhibit the
proliferation of cancer cells and induce apoptosis (76).

In the present study, ADI obtained from deep learning
analysis of CRC patient H&E images could be used as a potential
biomarker for the clinical prognosis of a CRC patient. However,
there were limitations in the present study. First, when training
the model, many samples needed to be included, and the
samples needed to be cut into many small squares; therefore,
building the model required considerable computer space and
operation time. However, when the completed model was used
to interpret a patient’s H&E slice, only a few seconds were needed
to obtain classification results. Second, large images require
large amounts of memory, and consequently, calculations are
complicated and slow. For this reason, we segmented images
into smaller pictures. When segmenting images, we tried our
best to ensure accuracy, but some errors may still have occurred.
Accuracy will therefore be improved if a pathologist performs
secondary screening based on the small cut pictures. Third, the
ADI constructed by the CNN model is only aimed at predicting
OS, but not other prognosis metrics, such as progression-free
survival (PFS), disease-free survival (DFS), and DSS. Fourth,
we could not assess the association between ADI and known
prognostic factors, such as tumor budding, number of lymph
nodes, tumor location, microsatellite instability, TILs, mutations
(such as BRAF and KRAS), or histological subtypes. Fifth, in the

two independent verification sets, the predictive value of ADI for
subgroup prognosis was not entirely consistent. Therefore, future
studies should include a larger sample of queues for verification.

CONCLUSIONS

In the present study, we used a CNN model to automatically
quantify ADI for H&E-stained CRC images. Furthermore,
we found that ADI may predict OS in CRC patients
and their subgroups (COAD, READ, CRC-Female and
CRC-Male). The present study shows that automatic
histopathological image analysis can be achieved through
a deep learning model. The quantified image features
could assist with predicting patient prognosis and guide
clinical decision-making.
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