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Abstract

Anthropogenic activities are changing the state of ecosystems worldwide, affecting community

composition and often resulting in loss of biodiversity. Rivers are among the most impacted

ecosystems. Recording their current state with regular biomonitoring is important to assess the

future trajectory of biodiversity. Traditional monitoring methods for ecological assessments are

costly and time-intensive. Here, we compared monitoring of macroinvertebrates based on envi-

ronmental DNA (eDNA) sampling with monitoring based on traditional kick-net sampling to

assess biodiversity patterns at 92 river sites covering all major Swiss river catchments. From

the kick-net community data, a biotic index (IBCH) based on 145 indicator taxa had been estab-

lished. The index was matched by the taxonomically annotated eDNA data by using a machine

learning approach. Our comparison of diversity patterns only uses the zero-radius Operational

Taxonomic Units assigned to the indicator taxa. Overall, we found a strong congruence

between both methods for the assessment of the total indicator community composition

(gamma diversity). However, when assessing biodiversity at the site level (alpha diversity), the

methods were less consistent and gave complementary data on composition. Specifically,

environmental DNA retrieved significantly fewer indicator taxa per site than the kick-net

approach. Importantly, however, the subsequent ecological classification of rivers based on the

detected indicators resulted in similar biotic index scores for the kick-net and the eDNA data

that was classified using a random forest approach. The majority of the predictions (72%) from

the random forest classification resulted in the same river status categories as the kick-net

approach. Thus, environmental DNA validly detected indicator communities and, combined

with machine learning, provided reliable classifications of the ecological state of rivers. Overall,

while environmental DNA gives complementary data on the macroinvertebrate community

composition compared to the kick-net approach, the subsequently calculated indices for the

ecological classification of river sites are nevertheless directly comparable and consistent.
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Introduction

Human activities change natural habitats and thereby inherently affect biodiversity [1]. Fresh-

water ecosystems are among the most affected and are facing steep biodiversity declines due to

anthropogenic pressures [2]. To quantify changes in diversity and community structure of nat-

ural communities, monitoring of species is essential [3]. Over decades, ecologists have built an

understanding of the responsiveness of certain taxonomic groups to pressures based on assem-

blages of communities and changes therein [4]. The ecological knowledge of species allows for

the interpretation biodiversity pattern to assess environmental pressures and impacts on eco-

systems. Routine biomonitoring often classifies ecosystem states through biotic indices that

succinctly summarize the information of species assemblages, allowing for comparison to ref-

erence states or systems [5,6].

The classification of ecological integrity based on biotic indices is generally focused on cer-

tain taxonomic groups. In freshwater ecosystems, the most commonly used are fish, macroin-

vertebrates, macrophytes, and diatoms [7,8]. For these groups, monitoring generally involves

the capture, preservation, and morphological identification of specimens in the field or labora-

tory. This type of monitoring can be costly in terms of time and money, requiring expert taxo-

nomic skills and often missing rare, small, or elusive species [9].

In the last decade, molecular approaches have proven effectivity for the for the assessment

of distributions of individual species (species-specific approach) and community assemblages

(metabarcoding approaches). Thereby, DNA extracted from an environmental sample (so-

called environmental DNA, eDNA) provides information about the possible occurrence and

distribution of species [10–13]. Monitoring based on eDNA sampling has been explored for

different indicator taxa, including fish (e.g., [14,15]); macroinvertebrates (e.g., [16–18]); mac-

rophytes (e.g., [19,20]) and diatoms (e.g., [21,22]). In several instances, eDNA sampling was

shown to complement traditional approaches for the assessment of biological indicators and

the ecological state of ecosystems [23–25]. Most comparisons of monitoring indicator taxa

have strongly focused on reproducing diversity patterns observed by traditional approaches

and have paid less attention to possible challenges and opportunities of eDNA-based metabar-

coding [26,27].

As eDNA and kick-net sample fundamentally different units (DNA vs. specimen) [28], the

processing of samples and the interpretation of the detection cannot be compared one-to-one.

The community recovered from an eDNA sample strongly depends on hydrological condi-

tions of the body of water (e.g., transport of DNA) and choices in the downstream processing

(e.g., the barcoding regions, primer choice). Contrastingly, traditional monitoring employs

morphologically identifiable indicator organisms, thereby often using a subset of species as a

para- or even polyphyletic group (e.g., [29]). For example, the widely used organisms belong-

ing to the “macroinvertebrates” are defined by their size and function, and not by their phylo-

genetic unity. Targeting the genetic material of these phylogenetically dispersed organisms

therefore aims for the coverage of a large portion of metazoans. It is well known that eDNA-

based metabarcoding using generic primers (e.g., targeting Cytochrome Oxidase I) often result

in limited taxonomic resolution and extensive amplification of non-target groups [30] such as

rotifers or other small eukaryotes [31].

Technical biases of the metabarcoding data (e.g., PCR bias, sequencing errors) restrict the

comparability to traditional count data [32,33] and limit the implementation in frameworks of

existing biotic indices. Novel approaches to fully exploit and interpret molecular data are thus

in demand [34,35]. A promising approach in the era of big data, machine learning has emerged

for the analysis of high-dimensional and complex data [36] and recent studies have demon-

strated the use of these approaches, such as random forest model [37], also in an ecological
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context (e.g., [38–41]). A fundamental difference is the unit of OTUs vs. species used to calcu-

late biotic indices, as not all OTUs are assigned to species. Taxonomy-free approaches account-

ing for the genetic diversity recovered in sequencing data can inform about features of

communities outside of the classical indicator species concept. Such approaches may overcome

the limitations of trying to match traditional and novel monitoring methods in a one-to-one

manner and help to explore the opportunities, but also differences, between both approaches.

Here, we used eDNA metabarcoding for the detection of macroinvertebrate indicator taxa

in a large-scale ecological assessment and addressed to which degree diversity pattern and the

respective ecological index shows convergence. Kick-net and eDNA samples collected within

the biomonitoring program for Swiss surface waters were used i) to compare community rich-

ness and composition estimates based on morphological identification versus eDNA metabar-

coding data using the same indicator taxa, and ii) to evaluate how a supervised machine

learning approach can be used for the prediction of the ecological state of rivers when also

incorporating data on taxonomic groups not considered by the traditional approaches. We

specifically focus on highly replicated and representative samplings based on a nationwide

monitoring scheme run by the Swiss Federal Agency for the Environment, in order to cover all

major river systems in Switzerland and to directly provide stakeholder-relevant conclusions.

Methods

Sample collection

The Swiss Federal Office for the Environment (FOEN) carries out routine monitoring of fresh-

water quality in Switzerland ("Nationale Beobachtung Obergewässerqualität", hereafter:

NAWA). The goal of NAWA is to gather long-term reference data of the ecological state of riv-

erine systems. Approximately 100 sites distributed over the major catchments in Switzerland

are monitored regularly. The sampling scheme involves physicochemical parameters and the

assessment of biological indicators (fish, macroinvertebrates, macrophytes, and diatoms),

whereby macroinvertebrates are sampled using a standardized kick-net approach with subse-

quent morphological identification of species (see also [42]). In 2019, along with standard

kick-net sampling, water samples for eDNA analyses were also taken at 92 of these sampling

sites and were analyzed amplifying a barcode region for macroinvertebrates (Fig 1). More

details of the sampling sites can be found in the supplements (S1 Table in S1 File), also provid-

ing information about the scores, the predictions and the classification for each site.

In brief: eDNA samples were collected in four replicates before the kick-net sampling. For

each sampling site, two filter replicates were taken per riverbank (right and left bank, respec-

tively, total n per site = 4). In these river systems, communities are not expected to systemati-

cally differ between the left and right riverbanks. Water was filtered on site (500 mL per filter,

2L per site), using a disposable sterile 60 ml syringe and Sterivex filters with a 0.22 μm pore

size (Merck Millipore, Merck KgaA, Darmstadt, Germany). A total volume of 2 L was filtered

per sampling site. Sterivex filters were then sealed with Luer caps (Merck Millipore, Merck

KgaA, Darmstadt, Germany), put in a labeled plastic bag and placed in a cool box for short-

term storage. After transport to the lab, filters were stored in the fridge at –20˚C until further

processing. After placing the eDNA samples in the cool box, kick-net samples were collected

upstream of the eDNA sampling sites in order to sample undisturbed habitats and to account

for downstream transport of DNA, following standard procedures for the sampling of river

systems [43]. The traditional sampling of macroinvertebrate groups by contractors followed

commonly used kick-net methods [44]. In brief: At each site, the benthic fauna of eight micro-

habitats were sampled with a kick-net, each microhabitat was sampled for 30 seconds by dis-

turbing the substrate by foot. Coarse organic material, sediment and gravel, and non-target
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Fig 1. Description of the study design. A) The taxonomic composition of benthic macroinvertebrates at each sampling site was assessed with two methods: Kick-net

and eDNA sampling. Subsequently, the focal index on the biological state (IBCH Index) was calculated from kick-net and eDNA data. B) Map of Switzerland showing

the spatial setup of the biomonitoring sampling sites. Sampling sites are given as black points overlaid on the main network of rivers and lakes. Different blue shading

highlights major catchments of Switzerland.

https://doi.org/10.1371/journal.pone.0257510.g001
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organisms such as fish or amphibians were removed from the sample on site. The remaining

sample was preserved with 95% ETOH on site. In the laboratory, macroinvertebrate specimens

were sorted and classified into 145 pre-defined taxonomic indicator groups (S2 Table in S1

File). These groups were mostly at the family level, except for Porifera, Bryozoa, and Cnidaria,

which were only grouped at the phylum level.

eDNA sample processing

The extraction of the eDNA samples took place in a specialized laboratory following clean lab

procedures [45]. The DNA was extracted by using the Qiagen PowerWater Sterivex Extraction

Kit (Qiagen, Germany) following the manufacturer’s protocol. Extractions took place in

batches of twelve samples. Field filter controls served as negative extraction controls and were

extracted randomly among the samples. The extracted DNA was eluted in 100 μl elution buffer

and stored at –20˚C until further processing.

Library preparation

Samples were amplified using a 313 bp fragment of the COI marker. The primer pair used was

mICOIintF and jgHCO2198 [46,47] with a modification to include the Nextera1 transposase

sequences (S3 Table in S1 File). All samples, negative and positive controls (the latter being a

synthetic oligo, see S3 Table in S1 File) were randomized over four 96-well PCR plates. The

first PCR was carried out in a total volume of 25 μL containing polymerase AmpliTaq Gold

360˚ (1.25 U/μL), 0.5 μM each of each primer, 1x Buffer I (Thermo Fisher Scientific, MD,

USA), BSA (0.1 mg/μL), dNTP (0.2 mM), MgCl2 (1 mM), SigmaFree water and 2 μL of DNA

template was added per reaction. The PCRs were performed on a thermal cycler (Biometra T1

Thermocycler, Analytik Jena GMBH, Ge) using the following touchdown protocol: initial

denaturation at 95˚C for 10 min, the first 25 cycles started with the denaturation at 95˚C for 15

s, annealing at 62˚C for 30 s, followed by extension at 72˚C for 30 s. After this the cycler per-

formed 16 cycles where the annealing temperature was reduced by one degree each cycle, per-

forming the last cycle at a temperature of 45 degrees. Final extension was performed at 72˚C

for 5 min before the plates were cooled down to 10˚C. All samples were tested for amplification

success with the AM320 method on the QiAxcel Screening Cartridge (Qiagen, Germany). First

step PCR products were cleaned with the ZR DNA Sequencing clean-up Kit (Zymo Research,

USA) following the manufacturer’s protocol with the minor modification by which the elution

step was prolonged to 2 min. at 4000 g.

The clean amplicons were indexed using the Illumina Nextera XT Index Kit A and D fol-

lowing the manufacturer’s protocol (Illumina, Inc., San Diego, CA, USA). A reaction con-

tained 25 μL 2x KAPA HIFI HotStart ReadyMix (Kapa Biosystems, Inc., USA), 5 μL of each of

the Nextera XT Index adaptors, and 15 μL of the DNA templates. The second reaction had the

following PCR protocol: initial activation at 95˚C for 10 min, thermal cycling following a dena-

turation at 95˚C for 30 s; annealing at 55˚C for 30 s; extension 72˚C for 30 s. After 8 cycles of

final extension at 72˚C for 5 minutes, they were cooled to 10˚C and stored in the fridge at 4˚C

for downstream application. PCR products were then cleaned using the Thermo MG Magjet

bead clean-up kit and a customized program for the KingFisher Flex Purification System

(Thermo Fisher Scientific Inc., MA, USA) to remove excessive Nextera XT adaptors. The

cleaned product was then eluted 50 μl in a fresh plate and stored at 4˚C.

DNA quantification and normalization

Clean PCR products were quantified using the Qubit BR DNA Assay Kit (Life Technologies,

Carlsbad, CA, USA). DNA of samples and the standard dilution series were quantified in

PLOS ONE eDNA-based biomonitoring of rivers

PLOS ONE | https://doi.org/10.1371/journal.pone.0257510 September 21, 2021 5 / 19

https://doi.org/10.1371/journal.pone.0257510


replicates on a Spark Multimode Microplate Reader (Tecan, US Inc., USA). Samples were

united in a normalization step into equimolar pools, according to their respective concentration

using the BRAND Liquid Handling Station (BRAND GMBH + CO KG, Wertheim, GE). Nega-

tive extraction and PCR controls were added according to their concentration. The final library

was cleaned using SPRI beads (0.8 x) twice. Library concentration was quantified by the Qubit

with the HS Assay Kit and amplicon size was verified on the Agilent 4200 TapeStation (Agilent

Technologies, Inc., USA). The Nextera XT library prep Kit (Illumina, Inc. San Diego, CA, USA)

was used before loading the library onto the flow cell with a 16 pM target concentration and

10% PhiX. Paired-end sequencing using v3 chemistry was performed on an Illumina MiSeq

(Illumina, Inc. San Diego, CA, USA) at the Genetic Diversity Center (ETH, Zurich).

Bioinformatic amplicon sequence analysis and quality filtering

The bioinformatics workflow for post-sequencing data processing used the following

approach: the data quality of the demultiplexed reads was checked using FastQC [48]. Raw

reads were first end-trimmed; merged and full-length primer sites removed using usearch

(v11.0.667_i86linux64) [43]. The merged and primer trimmed reads were quality filtered

using prinseq-lite (v0.20.4). The UNOISE3 (usearch v10.0.240) [44] method with an additional

clustering at 99% identity was applied to obtain error corrected and chimera-filtered sequence

variants (zero-radius OTUs) [45]. The invertebrate mt code was used to check for stop codons

in sequences; retained were zOTUS (OTUs hereafter) with open reading frames. These OTUs

were mapped against a customized COI reference for taxonomic assignments (S6 Information

in S1 File). A more detailed workflow report file including parameter settings and document-

ing data loss are specified in the supplements (S7 Information in S1 File).

Statistical analysis

All analyses were performed in R (v3.6.0) [49]. The data were imported using the package

(v1.28.0) [50]. In the first step, raw data were filtered based on the detection of OTUs in negative

and positive controls. For this, a read threshold of OTU detected in controls was calculated and

subsequently subtracted from every sample. The threshold was based on the number of reads in

controls versus the overall number of reads in all samples for this species, so for every OTU we

calculated a minimum number of reads in a sample to count as a detection, lower read numbers

were removed. Further, we checked the read depth of samples compared to controls. To reduce

spurious and stochastically detected OTUs, the filter replicates per site were used to establish

stringency filters. With the least stringent filter, an OTU had to be detected in 1 out of the 4 fil-

ters to be retained. Increasing stringency kept only OTUs detected in at least 2, 3, or 4 out of 4

filter replicates in the data. Here, we used the data with an OTU detection of 2 out of 4 filters.

We tested the sensitivity of our results with respect to the two out of four threshold, and found

that the results are qualitatively and quantitatively consistent with a less stringent threshold. To

compare the detection of indicators from the kick-net and the eDNA data, a taxonomic filter

removed non-target OTUs as defined by the monitoring framework (S2 Table in S1 File).

After those filter steps, spatial patterns of indicator group richness based on presence-

absence of indicators were plotted using Swissriverplot (v1.28.0) [51]. In a second step, the tax-

onomic composition was compared using ggalluvial (v0.12.0) [52] and ggplot2 (v3.3.2) [53].

For eDNA metabarcoding data, the proportion of a taxon was calculated as “reads of all OTUs

within one indicator group/total number reads”. For kick-net-samples, proportions are

“counts within one indicator group/total number of counts”.

Under the framework of the Swiss-wide NAWA biomonitoring, the ecological state of riv-

ers is evaluated based on the calculation of a biotic index from kick-net data [42]. The index
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accounts for taxa diversity and taxa indicator values and is represented as a numerical score

from 0 to 20. The higher the score, the less anthropogenic influence is recognizable at a site.

The numerical scores are then categorized into five categories “bad” to “very good”. For the

calculation of the index, specimens captured in kick-net samples had been sorted, identified to

phylum or family level (S2 Table in S1 File), and counted. The calculation is based on the

diversity and indicator value of the taxa [44]. The eDNA data were also analyzed to predict the

biotic index, using a supervised random forest model. In order to run the random forest

model, we included only indicator macroinvertebrate groups, therefore we subset the eDNA

data to the OTUs assigned to the following phyla: Arthropoda, Cnidaria, Porifera, Bryozoa,

Mollusca. The presence-absence data of OTUs were used to train a random forest model based

on a taxonomy-free approach [39]. A grid search was performed in caret (v6.0.86) [54] to

establish the optimal value for the parameters mtry (n/3), node size (3), and ntrees (500). A

random forest model with those optimal parameters was fitted for every sample using ranger

(v0.12.1) [55]. Based on a random subset of the samples (mtry = n/3), the random forest classi-

fier was trained using OTUs of indicator taxa as predictive features and the index score calcu-

lated from kick-net as the response variable. The classifier subsequently predicted the biotic

index of a sample based on the OTU composition. This biotic index was predicted for every

sample iteratively in ranger. The relationship between the observed and the predicted score

was evaluated based on the adjusted R2 of a linear model and the goodness of fit based on

Cohen’s Kappa κ [56]. The level of agreement is described for all values as: κ< 0.05: no agree-

ment, 0.05< κ< 0.20: very poor, 0.20< κ< 0.40: poor, 0.40< κ< 0.55: fair, 0.55< κ<
0.70: good, 0.70 < κ< 0.85: very good, 0.85< κ< 0.99: excellent, and κ = 1: perfect.

Results

Summary of raw amplicon sequencing data

Next generation sequencing of eDNA generated 26.64 million reads of which 24.60 million

passed the quality filter. After bioinformatic processing, 15.8 million reads were left for down-

stream analysis. The average sequencing depth per sampling site (4 filter replicates pooled)

was 166,827 reads (range: 30,543–660,048), covering in total 7,231 OTUs. After removal of

weak samples and cleaning of the raw data based on positive and negative controls, only OTUs

detected in at least 2 out of 4 filter replicates per sampling site were retained in the data. This

step decreased the mean read depth per sampling site to 147,913 reads (range: 40,891–602,621;

Fig 2A) and the mean number of OTUs per sampling site to 835 (range: 118–1698; Fig 2B). In

total 4,599 OTUs were retained after this “2 out of 4” filter step, and of those, 205 OTUs were

assigned to the 145 taxonomic levels of indicator groups used for the calculation of the biotic

index. The read abundance distribution indicates that the indicator OTUs generally have a rel-

atively high read coverage but were also interspersed by non-target OTUs (Fig 2C). In the

kick-net sampling, a total of 145 possible indicator taxa were assessed (S2 Table in S1 File), of

which 98 were detected in this monitoring campaign.

Local diversity pattern (alpha diversity)

To compare the alpha diversity pattern of macroinvertebrates from kick-net with eDNA sam-

pling, indicator group richness was mapped for all 92 sampling sites in Switzerland (Fig 3).

The observed mean richness at a site derived from kick-net was 23 indicator taxa (range: 11–

41). Constraining the sequencing data to OTUs assigned to all possible indicator taxa, the

eDNA approach led to the detection of 205 OTUs in 21 families (OTUs assigned to family,

genus or species levels). A large portion of OTUs was not considered for the downstream anal-

ysis, either belonging to non-indicator taxa or lacking taxonomic assignments. The observed
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mean richness of indicators by eDNA sampling was 9 indicator taxa (range: 2–18, Fig 3). A lin-

ear model showed little agreement in local richness pattern (adj. R2 = 0.026, p = 0.08) detected

by the two methods (S5 Fig in S1 File). However, eDNA detected significantly fewer indicator

taxa at a site level (p< 0.001).

Overall diversity pattern (gamma diversity)

The overall composition of indicator taxa (gamma diversity) detected by the two methods cor-

responded adequately for common groups (i.e., Diptera, Ephemeroptera, Plecoptera, Amphi-

poda). Abundances of indicators were rendered comparable by using read and count data on a

log-transformed proportional scale (Fig 4). Abundant indicator taxa in the kick-net sampling

were also identified as common groups derived from eDNA. The most frequently detected

indicator taxa were Diptera, Ephemeroptera, Plecoptera, Trichoptera, and Amphipoda. Of

those, Diptera and Ephemeroptera ranked equally in kick-net and eDNA data. Proportionally,

Trichoptera was more abundant than Plecoptera in kick-net samples, but this ranking was

reversed in eDNA data. For less frequently observed groups in the community, their relative

rank varied between the two methods (e.g., Cnidaria, Isopoda, Coleoptera, Oligochaeta, Mol-

lusca, or Gastropoda) (S4 Table in S1 File).

Fig 2. Filtering of raw sequencing data. Distribution of A) mean read number per sampling site and B) mean OTU number per sampling site using thresholds based on

detection rate in the four field filter replicates. In the violin plots, the black dots indicate A) the mean read number over all sampling sites and B) the mean number of

OTUs over all sites, the black vertical lines span the 95%-quantiles of all values. The detection rate is given with increasing stringency: Detection of an OTU in at least 1, 2,

3, or 4 out of 4 filter replicates per site, respectively. C) Read abundance distribution of OTUs (n = 4599) detected in at least 2 out of 4 replicates per site. Read abundances

of OTUs that were taxonomically assigned to indicator taxa are highlighted in green.

https://doi.org/10.1371/journal.pone.0257510.g002
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Inference of the biotic index from eDNA data

The biotic index is calculated based on two components: one is the taxa richness, the other one

is the occurrence of indicators groups. Kick-net and eDNA sampling methods picked up

diverging richness patterns of indicator taxa, but largely showed a similar composition of indi-

cator communities. The realized biotic index score was on average 13.3 (range: 8–17). The ran-

dom forest model predictions were highly correlated with the biotic index scores observed

from kick-net sampling (R2 = 0.61, p< 0.001) (Fig 5).

Similar to the kick-net assessment, most predictions of the index were centered on the cate-

gories “intermediate” to “good”, and only a few were predicted to fall into the categories “bad”

or “very good” (Fig 6A). The majority of the predictions (72%) classified the ecological state of

Fig 3. Spatial richness pattern. The taxonomic richness of indicator groups in Swiss rivers at each sampling site based

on A) kick-net monitoring and B) eDNA monitoring. For the latter, only macroinvertebrates also considered in the

traditional biological assessment are included. The color gradient is adjusted to the respective range of indicator

richness values.

https://doi.org/10.1371/journal.pone.0257510.g003
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sampling sites correspondingly to the traditional kick-net-based estimates, and maximally

diverged by one category (Fig 6B).

Discussion

Molecular surveys for traditionally established bioindicators

Despite the demonstrated suitability of eDNA for the survey of species and communities in

aquatic ecosystems [10–13], routine implementation of molecular approaches in

Fig 4. Overall diversity pattern. Proportions of indicator groups detected by kick-net versus eDNA monitoring. The stacked bars indicate

proportions of indicator groups inferred by the two methods (proportion of counts for kick-net and of reads for eDNA). For the most

common indicator groups, names are given. The flows between the two stacked bars connect families within indicator groups between the

methods. A change in flow width indicates a change in proportion depending on the method used.

https://doi.org/10.1371/journal.pone.0257510.g004
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biomonitoring such as water quality assessments remains scarce. Here, we demonstrated

the utility of water eDNA sampling for the assessment of macroinvertebrate-based ecologi-

cal indicators on a national scale with a comparison to the traditional kick-net approach.

Overall, the most common indicator taxa detected by eDNA were equally well covered by

kick-net sampling at the national level (gamma diversity). However, local richness patterns

(alpha diversity) were less consistent between the two methods, as eDNA samples on aver-

age detected fewer indicator taxa at the site level. Nevertheless, the composition of indicator

OTUs at a site effectively informed about the ecological state, when using a machine learn-

ing algorithm. This study shows that eDNA is a valuable resource for the detection of

macroinvertebrate indicator taxa and subsequent calculation of biotic indices, and it can be

implemented for the ecological assessment of rivers.

Fig 5. Biotic index based on bioindicators. Comparison of the index on the biological state (IBCH index) based on kick-net-derived scores (IBCH index

observed) versus the predicted index derived from eDNA data. The predictions are the output from a random forest model deriving IBCH index scores using OTU

presence-absence as input. A linear regression model gives the relationship between observed and predicted values (adjusted R2 = 0.61, p-value< 0.001). The

colored boxes summarize the numerical index scores ranging from 5 to 20 into categories ranging from “unsatisfactory” to “very good”.

https://doi.org/10.1371/journal.pone.0257510.g005
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Local and overall diversity patterns

Diversity patterns of macroinvertebrate communities in this study were restricted to the indi-

cator groups as defined by the 145 taxonomic levels in the biotic IBCH index only. Signifi-

cantly fewer indicator taxa were detected by eDNA sampling on a site level, although the

ranking of the indicator taxa based on their overall relative abundance (proportions) in the

community was similar for the most common groups. Diversity assessments of macroinverte-

brate communities through COI metabarcoding have often reported similar or higher num-

bers of taxa compared to traditional methods (e.g., [17,18,57]), however, only a proportion of

all reads are assigned to macroinvertebrates and even less to indicator taxa [58,59]. Arthropods

are essential to the biotic assessment based on macroinvertebrates, and were the most domi-

nant group among the OTUs assigned to bioindicators. These were consistently detected by

eDNA and kick-net, with Diptera as the most common order, followed by orders with high

indicator values, namely Ephemeroptera, Plecoptera, Trichoptera. However, some target

groups were starkly underrepresented by eDNA, namely Hemiptera, Arachnida, and Coleop-

tera. The ecology of the target species delivers a possible explanation, e.g., their hydrophobic

exoskeletons and the lower DNA shedding rates of these organisms [60], impairing these spe-

cies’ detection [61].

In river systems, DNA fragments are transported with the water flow [62,63], potentially

mixing signals of locally occurring species as well as species only occurring further upstream.

Thus, the two methods differ in the kick-net method being a truly local assessment, while the

eDNA approach also integrating information on the communities along the stream [64]. The

detection probability of target taxa can thus be influenced by the sampling strategy [65,66],

and should generally consider the dendritic network structure of rivers [67]. This difference

Fig 6. Distribution of predicted classifications of the biotic state. Comparison of the biological state of sampling sites when comparing

classifications based on kick-net or random forest predictions. A) The density distributions for the observed (kick-net-based, grey) and the

predicted (eDNA-based, green) IBCH index scores. The x-axis indicates the range of the biological index from 5 to 20. B) Barplot showing

the percentage of sites that fell in the same (x = 0) or different (x 6¼ 0) category by the random forest predictions based on eDNA data

compared to the kick-net-based classifications. The majority of sampling sites were classified in the same category (72%). All other sites

(28%) were maximally deviating by one category.

https://doi.org/10.1371/journal.pone.0257510.g006
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may be explaining the partial mismatches of local richness or identity of organisms measured

with the eDNA method compared to the kick-net approach, and result in more complemen-

tary than directly comparable diversity and composition estimates.

Another factor affecting the comparison between molecular and traditional methods is

the taxonomic range of bioindicators used. The macroinvertebrate indicator groups used in

the calculation of the biotic index are selected due to their known biotic responses to stress-

ors and their size and are not a monophyletic group. In order to target those metazoans tra-

ditionally surveyed, the metabarcoding approach relies on highly degenerate primers [68],

which amplify a wide range of non-target DNA fragments from eDNA samples. This

approach has the drawback of unspecific amplification of non-target organisms at the cost

of target organism sequences [30]. Therefore, for the comparison of diversity with the tradi-

tional approach, only a small fraction of the eDNA reads corresponding to macroinverte-

brate indicator taxa are used in the biotic index. In combination with the high diversity

detected with degenerate primers, this might hamper the detection of less abundant taxa at

a site [16], as many reads are assigned to non-target taxa. As a possible solution, local rich-

ness measures may be improved by using more recently developed group-specific primers

(e.g., [69]) or a combination of multiple markers for multiple groups [70]. With this, the

eDNA metabarcoding would be more targeted towards the classical macroinvertebrate indi-

cator taxa without the drawback of amplifying non-target taxa and lost read depth. Alterna-

tively, the taxa considered could be extended and also include the many invertebrates

amplified but not considered in the kick-net-based indices.

Inference of the biotic index from eDNA data

Although eDNA unraveled lower indicator taxa richness locally, the overall community com-

position was similar for both methods and is thus promising for the implementation of

eDNA-based biotic indices for water quality assessments. However, reads from a metabarcod-

ing approach cannot be translated into species counts [32,33], and thus we could not directly

calculate the IBCH index based on specimen counts for eDNA reads. As molecular monitoring

provides different data than traditional surveys, novel approaches to fully exploit the eDNA

derived community assemblages are needed [34,35]. Here, a supervised machine learning algo-

rithm, i.e., random forest [71], was used to predict the biotic index based on the composition

of indicator OTUs as predictive features of the ecological state of a site. This data-driven

approach allows for the inclusion of the comprehensive list of indicator OTUs, as in contrast

to the one-to-one filtering for the diversity measures, it is not based on taxonomically assigned

OTUs as features. Instead of restricting the input data to the taxonomic levels of the biotic

index (n = 205 OTUs), the machine learning algorithm included all OTUs belonging to sur-

veyed macroinvertebrate phyla (n = 693 OTUs). That is, the machine learning approach was

based on the OTU-level diversity of aquatic communities at a site. By this, we were able to

include multiple OTUs previously united at family level, thus describe the community on a

more nuanced level and therefore extract information not considered by the traditional index

calculation. In the kick-net-based index calculations, only organisms captured by kick-net

sampling, identified to family level at best and known to be responsive to stressors are

included, whereas the eDNA survey is not restricted to these groups.

The incorporation of the OTU-level information resulted in highly comparable predictions

of ecological status of the individual river sites, despite the previously described mismatch of

local richness patterns. It showed that the great majority of predictions on the state of the river

at a site corresponded with the classic approach, and maximally one category divergence

between these two methods was observed. Importantly, a mismatch between the two methods
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does not necessarily mean that the eDNA-based approach is less accurate, as both approaches

are proxies (each with their inherent error) of a true state to be estimated.

The random forest model is well-suited to deal with high dimensional data [37] such as the

community composition (observed OTUs) at each site. Using the kick-net-based observed

ecological state as the response variable, the model is trained on a random subset of sites. After

the training phase, it is then applied in order to infer the ecological state of any site based on

the composition community, without the need of pre-assigning indicator values to the OTUs.

This opens up the opportunity to use the information of metabarcoding more comprehen-

sively and to shift away from the limited range of previously established indicator taxa.

Machine learning as a data-driven approach could thus be used to identify sensitive taxa that

were, due to limitations of the traditional methods, previously out of scope for ecological

assessments. However, the predictive power of data-driven approaches is limited by the range

of data. In this study, the values of the biotic index for most study sites were centered on the

categories of “intermediate” and “good”; fewer observations were available to train models for

moderate or very good sites, while none of the sites were classified as “poor”. With a better cov-

erage of all the possible categories of the index, the predictive power of the machine-learning

algorithm could increase, as the distribution of averaged prediction from regression trees is

narrower than the observed range of values [72]. Furthermore, the inference of causal links

with random forest is limited. The data-driven predictions and the resulting classifications do

not provide a mechanistic understanding of the biotic index calculation. The interpretation of

misclassifications relies on the ecological understanding of the importance of input features,

i.e. OTUs for the prediction. Despite these limitations, machine learning approaches have

shown similar applicability for other biotic indicator taxa such as diatoms [24], macroinverte-

brates [73], and taxonomy-free based approaches on prokaryotic and eukaryotic communities

[39]. Overall, supervised machine learning can offer complementing or novel insights for the

interpretation of big data in an ecological context, especially in the context of biotic indices

when the like-for-like comparison is hindered by methodological differences.

Conclusion

By carrying out a comparison of eDNA sampling with kick-net samples on a large scale, we

take a crucial step in advancing the use of molecular methods for direct application in the

assessment of the ecological state in routine monitoring programs. This study shows that

eDNA sampling from water compared to kick-net data can give different estimates for the

composition and diversity of macroinvertebrate communities at a local scale. Importantly,

however, when assembling the community data on the level of the biotic states of river systems,

both, kick-net and eDNA data indicate very comparable classifications of the ecological state.

Thus, while the two methods are complementary at the level of biodiversity estimates, they still

give comparable results at the level of ecological indices. Especially for biomonitorings, where

the data on community composition and diversity is summarized into a biological index,

eDNA can thus be a valid method to recover comparable assessments of ecological integrity.
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43. Pawlowski J, Apothéloz-Perret-Gentil L, Mächler E, Altermatt F. Environmental DNA applications in bio-

monitoring and bioassessment of aquatic ecosystems. Guidelines. Federal Office for the Environment,

Bern. Environmental Studies. 2020; 71 pp.

44. Stucki P. Methoden zur Untersuchung und Beurteilung der Fliessgewässer: Makrozoobenthos Stufe F.
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