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Abstract: Alzheimer’s disease (AD) is the most common form of cognitive decline worldwide, occur-
ring in about 10% of people older than 65 years. The well-known hallmarks of AD are extracellular
aggregates of amyloid β (Aβ) and intracellular neurofibrillary tangles (NFTs) of tau protein. The
evidence that Aβ overproduction leads to AD has paved the way for the AD pathogenesis amyloid
cascade hypothesis, which proposes that the neuronal damage is sustained by Aβ overproduction.
Consistently, AD cerebrospinal fluid (CSF) biomarkers used in clinical practice, including Aβ 1–42,
Aβ 1–40, Aβ 42/40 ratio, and pTau, are related to the amyloid hypothesis. Recently, it was suggested
that the Aβ deposition cascade cannot fully disclose AD pathogenesis, with other putative players
being involved in the pathophysiology of the disease. Among all, one of the most studied factors is
inflammation in the brain. Hence, biomarkers of inflammation and microglia activation have also
been proposed to identify AD. Among them, CX3 chemokine ligand 1 (CX3CL1) has taken center
stage. This transmembrane protein, also known as fractalkine (FKN), is normally expressed in neu-
rons, featuring an N-terminal chemokine domain and an extended mucin-like stalk, following a short
intra-cytoplasmatic domain. The molecule exists in both membrane-bound and soluble forms. It is
accepted that the soluble and membrane-bound forms of FKN evoke differential signaling within the
CNS. Given the link between CX3XL1 and microglial activation, it has been suggested that CX3CL1
signaling disruption could play a part in the pathogenesis of AD. Furthermore, a role for chemokine
as a biomarker has been proposed. However, the findings collected are controversial. The current
study aimed to describe the cerebrospinal fluid (CSF) levels of CX3XL1 and classical biomarkers in
AD patients.

Keywords: Alzheimer’s disease; fractalkine; amyloid β; tau

1. Introduction

Alzheimer’s disease (AD) is the most common form of cognitive decline worldwide,
occurring in about 10% of people older than 65 years [1,2]. AD patients experience loss of
memory and cognitive function impairment due to severe and progressive neuronal damage.

The well-known hallmarks of AD are extracellular aggregates of amyloid β (Aβ)
and intracellular neurofibrillary tangles (NFTs) of tau protein. The evidence that Aβ

overproduction leads to AD has paved the way for the AD pathogenesis amyloid cascade
hypothesis, which proposes that the neuronal damage is sustained by Aβ overproduction.
However, it has been suggested that the amyloid cascade hypothesis cannot fully disclose
AD pathogenesis [3]. Hence, different processes, separate from and interacting with the
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amyloid cascade, have been deemed to be involved in AD pathophysiology; one of the most
studied is inflammation in the brain [4–7]. Termed neuroinflammation, this phenomenon
relies on the activation of microglia and is related to many neurodegenerative diseases [2,7].
Evidence supporting a link between microglial activation and AD pathogenesis includes the
following observations: (i) a correlation between plaque burden and microglial activation
in mouse models; (ii) activated microglia surrounding plaques; (iii) high proinflammatory
marker levels in AD patients; (iv) persistent activation of microglia during AD even when
the plaque burden decreases, indicating chronic activation of microglia; (v) correlation
of AD risk genes with native immunity [2,7,8]. Theoretically, activation of microglia is a
transient and protective mechanism, occurring after a pathogenic stimulus has evoked a
response for the first time. It is accompanied by the release of anti-inflammatory molecules
to avoid sustained inflammation, which can lead to neuronal dysfunction and loss [7].
However, some physiological and pathological conditions, including aging and baseline
inflammation, can transform microglia toward a less protective phenotype, resulting in a
more persistent and aggressive response to injury. This represents the so-called “priming”
of the microglia and occurs upon repeated stimulation [2].

Neuroinflammatory mechanisms may differ between AD and other tauopathies [9–11].
CX3 chemokine ligand 1 (CX3CL1), also known as fractalkine (FKN), is a transmembrane
protein normally expressed in neurons featuring an N-terminal chemokine domain and an
extended mucin-like stalk, following a short intra-cytoplasmatic domain [2,12]. Throughout
the central nervous system (CNS), FKN is mainly expressed in the hippocampus [13], where
it interacts with its receptor CX3CR1, which is expressed by microglia and neurons [14].
CX3CL1 reduces microglial activation and inhibits proinflammatory gene expression and
cytokine (IL-1 β, IL-6, and TNF-α) synthesis [15]. This maintains the hippocampus mi-
croenvironment in a quiescent/anti-inflammatory state, which is fundamental for neuronal
progenitor cells (NPSs) of the neurogenic niche to drive neurogenesis [16–18].

Some stimuli and conditions, including Aβ extracellular accumulation and activation
of inflammation, can modify CX3CL1/CX3CR1 signaling [7]. Notably, it has been reported
that, during AD, some changes in the chemokine activity can occur according to the stage
of the disease [19]. Furthermore, it has been suggested that dysfunctional FKN signaling
could favor microglia priming after activation [2]. These data have led to a hypothetical
role for this chemokine as a biomarker. Classical CSF biomarkers for AD include Aβ 1–42,
Aβ 1–40, Aβ 42/40 ratio, and pTau, and their clinical usefulness for identifying the disease
is well established. Conversely, little evidence exists on the role of FKN as a diagnostic tool
in AD, mainly because studies measuring CSF levels of CX3XL1 in AD patients are lacking
compared to those on classical biomarkers.

The current study was aimed at describing the CSF of CX3XL1 in AD patients along
with classical biomarkers.

2. Materials and Methods
2.1. Selection of Patients and Groups

For this study, we selected 28 patients affected by AD and a control group of 18 subjects
affected by cognitive decline not related to AD. AD patients were diagnosed according to
current criteria (Albert, 2011; MacKahnn, 2011) [20,21]. All patients were recruited from the
Clinic for Cognitive Decline, Dementia, and Parkinsonism of the University Hospital Paolo
Giaccone Palermo, Italy and underwent a general and neurological examination, cognitive
evaluation, brain MRI, and FDG-PET, as well as a lumbar puncture, during the diagnostic
work-up. Then, all patients were classified according to the AT (N) biomarker classification
(Clifford R. Jack, Jr., 2018) [22]. Group A (mean age 70 ± 8; F/M = 0.75) consisted of
patients categorized as “Alzheimer’s continuum”, containing only A+ T± (N+) patients;
Group B (n = 18; mean age 66.7 ± 10; F/M = 0.83) consisted of A− T− (N+) patients
(i.e., “non-AD pathological changes”). Inclusion criteria for Group A were as follows:
diagnosis of mild cognitive impairment due to AD (Albert, 2011) [20] or probable AD
dementia with evidence of AD pathophysiological process (McKhann, 2011) [21], as well
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as being part of “Alzheimer’s continuum” according to AT (N) classification. Exclusion
criteria for Group A were as follows: any other medical condition explaining cognitive
decline, including other degenerative diseases, cerebrospinal disease, metabolic disease,
and substance abuse. CSF was collected during morning hours in polypropylene tubes,
centrifuged at 2000 rpm for 20 min, and stored at −80 ◦C until analysis [23]. All patients
gave their written informed consent, and all procedures were conducted in accordance
with the Declaration of Helsinki. The study protocol was approved by the EC of University
Hospital “Paolo Giaccone Palermo” (Institutional Ethic Commettee Palermo1 No. 07/2017).

2.2. Evaluation of Aβ 1–40, Aβ 1–4, Tau-Total and Tau-Phosphorylated Using Chemiluminescence
Enzyme Immunoassay (CLEIA) in Selected Groups

CSF CLEIA evaluation of all the patients under examination for the concentration of
amyloid fibers, Aβ 1–40 and Aβ 1–42, and tau protein, both the hyperphosphorylated form
(Tau-phosphorylated) and the total (Tau-total), was performed. In particular, we used the
following markers in the identification of different molecules: Lumipulse G β-amyloid
1–40, Lumipulse G β-amyloid 1–42, Lumipulse G Total Tau, and Lumipulse Gp Tau 181 (in
hyperphosphorylated Tau identification), from Fujirebio Inc. Erope, Gent, Belgium on a
fully automated platform (Lumipulse G1200 analyzer Fujirebio Inc. Erope, Gent, Belgium)
according to the manufacturer’s instructions.

2.3. CX3CL1 Evaluation Using Enzyme Linked Immunosorbent Assay (ELISA) in CSF Patients

To evaluate the amount of human fractalkine (chemokine CX3CL1, soluble form) in the
CSF of analyzed patients, a sandwich enzyme-linked immunosorbent assay was applied.
In particular, the Wuhan Fibe Biotech Co., Ltd. (Wuhan, China) was used, according to
the manufacturer’s instructions. Briefly, the CSF obtained from patients (as previously
described in Section 2.1) was converted into liquid form by cold thawing and then returned
to room temperature, before mixing 1:1 in dilution buffer (f.v. 100 µL). Samples were
incubated together with standards and background controls for 90 min at 37 ◦C, washed
and incubated with biotin-labeled antibody for 60 min at 37 ◦C, and then washed and
incubated with 3,3′,5,5′-tetramethylbenzidine (TMB) for 10–20 min at 37 ◦C. Colorimetric
reactions were stopped by adding Stop Solution and analyzed using a spectrophotometer
(microplate reader DU-730 Life Science spectrophotometer (Beckman Coulter, Milan, Italy))
at an OD of 450.

2.4. Statistical Analyses

The data obtained were evaluated for normality by applying the Shapiro–Wilk test. The
variance found between samples, as a function of the analyzed variables, was determined
according to one-way ANOVA (p-value).

Given the limited number of subjects analyzed (a canonical Student’s t-test was not
applicable) for the presence of different molecules in the CSF, for the statistical analysis of
the data, we applied the Mann–Whitney U test (nonparametric test). Specifically, the ratio
of the mean of the medians between non-AD and AD subjects was evaluated. The null
hypothesis (H0—equality of the values of the two groups) was rejected for p < 0.05.

3. Results
3.1. Patient Classification into Groups

The recruited patients, as reported in Section 2, were divided into two groups ac-
cording to the AT (N) biomarker classification: “Alzheimer’s continuum“ (Group A) and
“non-AD pathological changes” (Group B). Group B comprised seven patients with vascular
dementia (38.8%), two patients with Lewy bodies (11.1%), four patients with frontotem-
poral dementia (22.2%), one patient with Parkinson’s disease (5.5%), one patient with
subjective cognitive decline (5.5%), two patients with corticobasal degeneration (11.1%),
and one patient with paraneoplastic syndrome (5.5%).
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As shown in Figure 1, the CSF of the subjects was evaluated by CLEIA for the
quantity of Aβ 1–42 (Figure 1A) and Aβ 1–40 (Figure 1B), as well as the Aβ 42/40 ra-
tio (Figure 1C). Moreover, the expression of tau, as illustrated in Figure 2, was quantified in
terms of Tau-total (Figure 2A) and Tau-phosphorylated (Figure 2B). In Figures 1 and 2, the
p-values report the significance of differences in the population comparison. Tables 1 and 2
show the average values of the different variables, together with the p-value (one-way
ANOVA), in the two groups of subjects with respect to the total population to determine
the non-randomness of the values obtained. In support of the results, Figures S1 and S2
show the values measured in the CSF for all patients in terms of the following vari-
ables: Aβ 1–42 (Figure S1a), Aβ 1–40 (Figure S1b), Aβ 42/40 ratio (Figure S1c), Tau-total
(Figure S2a), and Tau-phosphorylated (Figure S1b). Therefore, the two groups were deter-
mined as follows: Group A included subjects who showed values outside the norm for
all variables; Group B (control group) included healthy subjects in which all values of the
analyzed variables fell within the norm.

Figure 1. Subdivision of patients into two groups regarding the expression of Aβ 1–42 (A) and Aβ

1–40 (B), and the Aβ 42/40 ratio (C). The dotted line represents the threshold for a subject to be
considered AD or non-AD; the arrow indicates the direction of values for which the subjects are
affected by AD. Group A is depicted in light gray, and Group B is depicted in dark gray.

Figure 2. Subdivision of patients into two groups regarding the expression of Tau-total (A) and
Tau-phosphorylated (B). The dotted line represents the threshold for a subject to be considered AD or
normal; the arrow indicates the direction of values for which the subjects are not affected by AD. All
groups were evaluated for significance according to Student’s t-test (p < 0.01). Group A is depicted in
light gray, and Group B is depicted in dark gray.
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Table 1. Average values recorded for each variable. The minimum and maximum values are shown
in parentheses; σ2 is the variance of the values according to “one-way ANOVA”.

Variable Patients Tot
(n = 46)

Group A
(n = 28)

Group B
(n = 18) σ2 *

Aβ 1–42
(pg/mL)

707
(190–1512)

479
(190–676)

1063
(440–1512) 0.78

Aβ 1–40
(pg/mL)

10,877
(4407–19,441)

11,840
(7184–19,441)

11,086
(4407–14,490) 0.05

Aβ 42/40
ratio

0.07
(0.03–0.011)

0.04
(0.03–0.06)

0.10
(0.07–0.11) 0.03

* One-way ANOVA.

Table 2. Average values recorded for each variable. The minimum and maximum values are shown
in parentheses; σ2 is the variance of the values according to “one-way ANOVA”.

Variable Patients Tot
(n = 46)

Group A
(n = 28)

Group B
(n = 18) σ2 *

Tau-total 470
(140–1561)

770
(477–1561)

278
(173–390) 0.45

Tau-phossphorilated
(181)

63
(11–232)

111
(64–232)

29
(11–43) 0.71

* One-way ANOVA.

However, as shown in Figure S2a,b, the expression analysis of Tau-total and Tau-
phosphorylated for some patients belonging to Group A showed values closer to non-AD
subjects (Group B), even if the clinical parameters and conditions were reflective of AD.
For a better comparison regarding the presence of CX3CL1 in the cerebrospinal fluid of all
analyzed subjects, we split group A into two subgroups according to AT (N) classification
as follows: Group A’ (16 patients; A1–A16; A+ T+ N+) and Group A” (12 patients; A17–A28;
A+ T− N+). The expression of Aβ 1–42 and Aβ 1–40, and the Aβ 42/40 ratio in the CSF
are shown in Figure 3 and summarized in Table 3; both subpopulations (A’ and A”) had
Aβ values canonically attributable to AD patients.

Figure 3. Subdivision of patients into Groups A’, A”, and B according to the expression of
Aβ 1–42 (A) and Aβ 1–40 (B), and the Aβ 42/40 ratio (C). The dotted line represents the thresh-
old for a subject to be considered AD or normal; the arrow indicates the direction of values for which
the subjects are affected by AD. Group A’ is depicted in light gray, Group A” is depicted in medium
gray, and Group B is depicted in dark gray.
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Table 3. Average values recorded for each variable, Aβ 1–42, Aβ 1–40 and Aβ 42/40 ratio. The
minimum and maximum values are shown in parentheses; σ2 is the variance of the values according
to “one-way ANOVA”.

Variable Patients Tot
(n = 46)

Group A’
(n = 16)

Group A”
(n = 12)

Group B
(n = 18) σ2 *

Aβ 1–42
(pg/mL)

707
(190–1512)

479
(190–676)

480
(378–630)

1063
(440–1512) 0.56

Aβ 1–40
(pg/mL)

10,877
(4407–19,441)

11,840
(7184–19,441)

9279
(5698–11,716)

11,086
(4407–14,490) 0.29

Aβ 42/40
ratio

0.07
(0.03–0.011)

0.04
(0.03–0.06)

0.05
(0.04–0.09)

0.10
(0.07–0.11) 0.52

* One-way ANOVA.

Table 3 shows the average values of the different variables, together with their p-value
(one-way ANOVA), for a comparison of Groups A’, A”, and B. In support of these data,
Figure S3 show the values measured for all analyzed subjects (Groups A’, A”, and B) in
terms of Aβ 1–42 (Figure S3a), Aβ 1–40 (Figure S3b), and the Aβ 42/40 ratio (Figure S3c).

The behavior differed as a function of Tau-total and Tau-phosphorylated. As shown
in Figure 4 and Table 4, the population of Group A’ showed values ascribable to AD for
both markers (Aβ, Tau-total, and Tau-phosphorylated); on the other hand, in Group A”,
the values of Tau-total and Tau-phosphorylated were within normal limits, i.e., similar to
patients of Group B, the non-AD subjects.

Figure 4. Subdivision of patients into Groups A’, A”, and B according to the expression of Tau-
total (A) and Tau-phosphorylated (B). The dotted line represents the threshold for a subject to be
considered AD or normal; the arrow indicates the direction of values for which the subjects are not
affected by AD. Group A’ is depicted in light gray, Group A” is depicted in medium gray, and Group
B is depicted in dark gray.

Table 4. Average values recorded for each variable, Tau-total and Tau-phosphorilated. The minimum
and maximum values are shown in parentheses; σ2 is the variance of the values according to
“one-way ANOVA”.

Variable Patients Tot
(n = 46)

Group A’
(n = 16)

Group A”
(n = 12)

Group B
(n = 18) σ2 *

Tau-total 470
(140–1561)

770
(477–1561)

359
(140–473)

278
(173–390) 0.67

Tau-phosphorilated
(181)

63
(11–232)

111
(64–232)

50
(18–63)

29
(11–43) 0.60

* One-way ANOVA.
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Table 4 shows the average values of the different variables, together with their p-value
(one-way ANOVA), for a comparison of Groups A’, A”, and B. In support, Figure S4
show the values measured for all subjects analyzed in terms of Tau-total (Figure S4a) and
Tau-phosphorylated (Figure S4b).

3.2. CX3CL1 Expression in the Different Patient Groups

The CSF of patients belonging to Groups A’, A”, and B (classified as decribed in
Section 2) was compared using ELISA for the presence of CX3CL1. As shown in Figure 5,
the level of CX3CL1 differed quantitatively, with Group A’ and Group A” having 33% and
40% greater levels of CX3CL1, respectively, compared to Group B. Table 5 shows a
comparison the average values of CX3CL1 for each group together with the σ2 value
(one-way ANOVA).

Figure 5. CX3CL1 in the CSF of subjects belonging to Groups A’, A”, and B. Group A’ is depicted in
light gray, Group A” is depicted in medium gray, and Group B is depicted in dark gray.

Table 5. Average values recorded for CX3CL1. The minimum and maximum values are shown in
parentheses; σ2 is the variance of the values according to “one-way ANOVA”.

Variable Patients Tot
(n = 46)

Group A’
(n = 16)

Group A”
(n = 12)

Group B
(n = 18) σ2 *

CX3CL1 0.43
(0.25–0.76) ± 0.15

0.47
(0.28–0.75) ± 0.03

0.50
(0.13–0.76) ± 0.03

0.35
(0.25–0.74) ± 0.04 0.46

* One-way ANOVA.

Figure S5 reports the amount of CX3CL1 in the CSF of each patient.
According to the analysis of the values in Groups A and B, Figure 6 reveals that

CX3CL1 was present in the CSF of all subjects; however, Group A had a 36% greater level
of CX3CL1 compared to Group B.

Furthermore, Table 6 compares the average values of CX3CL1 for each group together
with the p-value (one-way ANOVA). Figure S6 reports the amount of CX3CL1 in the CSF of
patients in Group A and Group B.
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Figure 6. CX3CL1 in the CSF of subjects belonging to Groups A and B. The significance of the
differences was evaluated using Student’s t-test (p < 0.01). Group A is depicted in light gray, and
Group B is depicted in dark gray.

Table 6. Average values recorded for CX3CL1. The minimum and maximum values are shown in
parentheses; σ2 is the variance of the values according to “one-way ANOVA”.

Variable Patients Tot
(n = 46)

Group A
(n = 28)

Group B
(n = 18) σ2 *

CX3CL1 0.43
(0.25–0.76) ± 0.15

0.47
(0.28–0.75) ± 0.03

0.35
(0.25–0.74) ± 0.04 0.01

* One-way ANOVA.

3.3. Statistical Evaluation According to Mann–Whitney Test

Table 7 reports the statistical analysis of the results according to the Mann–Whitney
U-test, as described in Section 2. It is suggested that the null hypothesis could be rejected
in most cases.

Table 7. Mann-Whitney medians’ media evaluation test. The ratio of the mean of the medians of
Group B respect the values of each Group A (A, A’ and A”) was evaluated together with the p-value.
For the hypothesis H0 = Null hypothesis (equality of the values of the two analyzed groups) this was
rejected for p < 0.05.

Group A Group A’ Group A” Group B

Aβ 1–42

Median value 508.50 573.98 477.33 1064.5

Median value
GroupB/Median

group value
2.09 1.87 2.23

p-value 4.09 × 10−9 3.0 × 10−5 2.24 × 10−4

*H0 RH0 RH0 RH0

Aβ 1 = −40

Median value 13,539 14,319 9611.8 11,669

Median value
GroupB/Median

group value
0.86 0.81 1.21

p-value 5.26 × 10−2 4.60 × 10−1 2.23 × 10−1

*H0 NRH0 NRH0 NRH0
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Table 7. Cont.

Group A Group A’ Group A” Group B

Aβ 42/40
ratio

Median value 0.0364 0.0408 0.0532 0.0909

Median value
GroupB/Median

group value
2.49 2.23 1.71

p-value 4.88 × 10−2 1.84 × 10−2 2.39 × 10−2

*H0 RH0 RH0 RH0

Tau-total

Median value 893.48 752.2 313.59 312.66

Median value
GroupB/Median

group value
0.35 0.42 0.99

p-value 1.05 × 10−5 1.24 × 10−9 5.6 × 10−3

*H0 RH0 RH0 RH0

Tau-
phosphorilated

Median value 125.64 94.373 48.674 32.879

Median value
GroupB/Median

group value
0.26 0.34 0.67

p-value 2.23 × 10−6 2.26 × 10−9 2.19 × 10−6

*H0 RH0 RH0 RHO

CX3CL1

Median value 0.4789 0.5568 0.4326 0.3195

Median value
GroupB/Median

group value
0.67 0.57 0.74

p-value 1.05 × 10−2 3.75 × 10−2 6.75 × 10−1

*H0 RH0 RH0 NRH0
*H0 = Null hypothesis; RH0 = Reject null hypothesis; NRH0 = Don’t reject null hypothesis.

4. Discussion

The current evaluation of CX3CL1 levels in the CSF of AD patients is one arm of a
larger study investigating the role of CX3CL1/CX3CR1 signaling in the pathogenesis of
AD. In vitro (neuron–glia coculture) and in vivo (AD rat models) systems were used to
evaluate the changes in the intracellular expression and localization of CX3CL1, as well as
some transcription factors involved in its signaling cascade, including p38 and β catenin.
The project’s final goal is to identify possible targets for novel treatment strategies among
the molecules involved in the CX3CL1 pathway, including many transcription factors
and metalloproteinases. To reach this goal, it is mandatory to evaluate the activation (or
response) of the microglia with respect to various stimuli, including Aβ and Tau protein,
considering their different effects. For instance, Aβ fibrils vs. Aβ oligomers and Aβ aggre-
gates vs. tau aggregates elicit diverse activation mechanisms in the microglia, resulting in
different phenotypes or subsets of these cells. It is well known that some phenotypes and
mechanisms, i.e., “primed” microglia, are strongly associated with the progression of the
disease, representing a critical element within the pathophysiology of AD [2]. In the current
study, CSF specimens were investigated for the different AT (N) characteristics with the
aim of evaluating possible responses evoked by the microglia. Significant changes in the
expression of transcription factors in the in vivo system were found, being overexpressed
in the coculture for group A’ patients (data not shown). Differences in Groups A’ and A”
according to the AT (N) classification reveal the extent to which Aβ and pTau can elicit
different response in the microglia within the coculture and AD rat model.

In the present study, high CX3CL1 concentrations were found in the CSF of AD patients
compared to non-AD patients. Similar results in other studies have been achieved, although
a few analyses reported opposite findings. For example, Nordengen et al. [24] performed an
analysis of 61 AD patients divided into four subgroups according to the AT (N) classification:
A+ T+ (N+), A+ T− (N+), A+ T− (N−), and A− T− (N−). The authors found significantly
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higher CX3CL1 levels in the CSF of A+ T+ (N+) and A+ T− (N+) groups compared to
subjects in the A+ T− (N−) group and healthy controls (A− T− (N−)) [21]. Despite the
similarity in the results between Nordengen et al. and the present study, it should be
noted that, in the current analysis, A− T− (N+) subjects were considered as controls
(non-Alzheimer’s pathophysiology (SNAP) according to the NIA-AA classification) [22],
whereas, in Nordengen et al.’s study, they were included among the patients (MCI group
and subjective cognitive decline (SCD) group), instead using the A− T− (N−) CSF pattern
to represent the healthy controls.

Kulczynska-Przybik et al. [25] also found similar findings when performing CX3CL1
measurements in the CSF of 42 AD and 18 MCI patients. The authors found CX3CL1 to be
higher in MCI and AD patients as compared to the healthy controls. However, the study
group was not categorized according to the NIA-AA biomarker classification, making it
difficult to compare the results with the current study [22].

Van Ton et al. [26] recently evaluated the CSF expression of many proteins, including
FKN, in AD patients, reporting that the chemokine is upregulated in AD patients. De-
spite the similarity in the results obtained, it is worth noting that Van Ton et al. used a
proximity extension assay (PEA) to measure CSF protein levels, whose analytical features
(sensitivity, specificity, and accuracy) are distinct from those of the methods used in the
current study [23]. Furthermore, Van Ton et al.’s selection of patients was slightly different
from that in the present study, since cognitive decline was defined according to the Clin-
ical Dementia Rating Scale (CDRS) and the patient group included both mild cognitive
impairment (MCI) and AD patients.

Perea et al. [27] achieved opposite findings, reporting decreased CX3CL1 levels in the
CSF of AD patients. Once more, the patients were not comparable as Perea et al. did not use
the AT (N) biomarker pattern classification to define MCI and AD patients. Furthermore,
the sample size was relatively small (42 CSF specimens in total from healthy controls, MCI
subjects, and AD subjects).

The increase in CX3CL1 in the CSF of AD patients is not surprising. The influence of
CX3CL1 on Aβ clearance and Tau phosphorylation is well established. Briefly, CX3CL1
typically inhibits tau phosphorylation, but promotes Aβ accumulation, since Aβ clearance
requires a proinflammatory behavior of the microglia, whereas CX3CL1 signaling maintains
the microglia in a resting state [15]. Hence, the disruption of CX3CL1 signaling results in
enhanced Tau phosphorylation and reduced Aβ accumulation. It has been hypothesized
that the accumulation of Aβ at the very early stage of disease results in dysfunctional
CX3CL1/CX3CR1 signaling, thus increasing Tau phosphorylation and Aβ clearance by the
microglia [28].

A significant issue regards the difference in CX3CL1 levels in the CSF of subjects
with and without neurodegeneration, as defined by the NIA-AA criteria. Given that
neurodegeneration pathophysiology features an inflammatory basis, it is reasonable to ask
why this chemokine does not show an increase in patients with SNAP. However, the role of
CX3CL1 in microglial activation, along with its contradictory Janus behavior with respect to
Aβ accumulation and Tau phosphorylation, could explain why AD but not SNAP patients
showed altered levels of CX3CL1 in the CSF.

5. Limitations

The current study had some limitations, such as its observational design, small sample
size, and single-center nature, as well as the absence of plasma level measurements of
chemokine, and the absence of in vivo and in vitro analysis results (ongoing) supporting
and explaining the present findings.

6. Conclusions

AD is the most common form of dementia, representing a major health burden world-
wide. The diagnosis of AD benefits from the biochemical measurement of CSF proteins that
are required to define AD. However, determination of these biomarkers is time-consuming
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and expensive, requires analytical methods and specialized equipment, and is not yet
adapted for point-of-care (POC) diagnostics. Novel potential biomarkers to identify pa-
tients within the AD continuum include inflammatory markers and chemokines, due to
the undeniable role of neuroinflammation and microglia activation in AD pathogenesis.
The research on this topic has recently focused on a specific target to be studied for clinical
and therapeutic purposes, i.e., the CX3CL1/CX3CR1 axis, whose signaling maintains the
microglia in a resting state and favors the formation of memories within the hippocampus.
The main goal is the identification of biomarkers with good diagnostic and prognostic value,
which undergo changes on the basis of the AD continuum in the preclinical, prodromal, and
dementia phases. Lastly, it is worth mentioning that extensive evidence supports the role of
CX3CL1/CX3CR1 axis disruption in neuronal damage leading to cognitive impairment and
dementia in AD patients. Hints for future research in this field include the identification
of molecules (ligands, receptors, and transcription factors) within the CX3CL1/CX3CR1
signaling pathway that can be used as targets for treatment strategies. FKN signaling
defines the baseline inflammation in the brain, which influences how microglia shift toward
different phenotypes. CX3CL1/CX3CR1 dysfunction could favor microglia priming, which
is a key element making the brain microenvironment more prone to developing chronic
neuroinflammation. Targeting molecules of the CX3CL1/CX3CR1 signaling pathway could
help in the discovery novel treatment strategies for AD.
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