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Telomerase is a eukaryotic ribonucleoprotein (RNP) enzyme that adds DNA repeats onto
chromosome ends to maintain genomic stability and confer cellular immortality in cancer
and stem cells. The telomerase RNA (TER) component is essential for telomerase
catalytic activity and provides the template for telomeric DNA synthesis. The biogenesis
of TERs is extremely divergent across eukaryotic kingdoms, employing distinct types of
transcription machinery and processing pathways. In ciliates and plants, TERs are
transcribed by RNA polymerase III (Pol III), while animal and ascomycete fungal TERs
are transcribed by RNA Pol II and share biogenesis pathways with small nucleolar
RNA (snoRNA) and small nuclear RNA (snRNA), respectively. Here, we report
an unprecedented messenger RNA (mRNA)-derived biogenesis pathway for the 1,291
nucleotide TER from the basidiomycete fungus Ustilago maydis. The U. maydis TER
(UmTER) contains a 50-monophosphate, distinct from the 50 2,2,7-trimethylguanosine
(TMG) cap common to animal and ascomycete fungal TERs. The mature UmTER is
processed from the 30-untranslated region (30-UTR) of a larger RNA precursor that
possesses characteristics of mRNA including a 50 7-methyl-guanosine (m7G) cap, alter-
native splicing of introns, and a poly(A) tail. Moreover, this mRNA transcript encodes a
protein called Early meiotic induction protein 1 (Emi1) that is conserved across dikary-
otic fungi. A recombinant UmTER precursor expressed from an mRNA promoter is
processed correctly to yield mature UmTER, confirming an mRNA-processing pathway
for producing TER. Our findings expand the plethora of TER biogenesis mechanisms
and demonstrate a pathway for producing a functional long noncoding RNA from a
protein-coding mRNA precursor.
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Many vital cellular processes that govern genetic information transfer from DNA to
protein rely on a vast variety of RNA molecules. These RNAs include tens of thousands
of messenger RNAs (mRNAs) that encode proteins as well as numerous noncoding
RNAs (ncRNAs) that are not translated into proteins yet form crucial ribonucleopro-
tein complexes (1). The biogenesis of these diverse ncRNAs, such as ribosomal RNAs
(rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), and small nucleolar
RNAs (snoRNAs), requires distinct RNA polymerases and diverse processing mecha-
nisms. Among the diverse types of ncRNAs, long noncoding RNAs (lncRNAs) are gen-
erally defined as ncRNA molecules larger than 200 nucleotides and mainly regulate the
expression of protein-coding genes at transcriptional, RNA processing, translational,
and posttranslational levels (2).
Telomerase RNA (TER) is a distinct class of lncRNA that functions as an integral com-

ponent of the telomerase ribonucleoprotein enzyme. TER provides a short template that is
reiteratively used by the telomerase reverse transcriptase (TERT) catalytic component to
perform de novo synthesis of telomeric DNA repeats onto telomeres at chromosome ends.
This telomere replenishment is crucial for preserving genomic stability and maintaining
cellular reproductive capacity (3). While the TERT proteins show broad evolutionary con-
servation (4), TERs are extremely divergent in sequence, length, structure, and biosynthesis
pathway (5). The computational search for TERs in distinct groups of eukaryotes is a
daunting challenge due to the lack of sequence conservation among TERs. Although
advanced bioinformatics strategies have made significant progress for specific lineages of
eukaryotes (6–8), many TERs await to be uncovered in some eukaryotic clades that are
evolutionarily distant. For these eukaryotes, biochemical purification of the telomerase
holoenzyme from cell lysates remains most effective for TER identification (9, 10).
Despite the poor conservation in primary sequence, TERs show secondary structure

conservation in two domains that are required for telomerase activity (5). The 50 proxi-
mal template-pseudoknot (T/PK) domain contains an RNA template that specifies the
telomeric DNA repeat sequence to be synthesized, followed by a conserved pseudoknot
structure that is indispensable for telomerase catalysis (11). A distal helical domain
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located downstream of the T/PK domain stimulates telomerase
activity in the presence of T/PK and can independently bind
the TERT protein (9, 12). This distal domain is known as con-
served region 4/5 (CR4/5) in most animal taxa and filamentous
fungi (6, 9, 13), eCR4/5 in other eukaryotic clades (14, 15),
and helix IV in ciliates (16). The two-domain requirement for
telomerase catalytic activity is universal and likely emerged dur-
ing early evolution of eukaryotes (14).
The biogenesis of TER has evolutionarily diversified by

employing different RNA polymerases along distinct eukary-
otic lineages. Flagellate (781-993 nucleotides [nt]), fungal
(900 to 2,400 nt), and animal TERs (239 to 609 nt) are tran-
scribed by RNA polymerase II (Pol II) (5) and predominantly
contain a 50 2,2,7-trimethylguanosine (TMG) cap (17, 18).
However, ciliate (140 to 210 nt) and plant (231 to 350 nt)
TERs are smaller and transcribed by RNA polymerase III (Pol
III) with a characteristic 50 triphosphate and 30 uridine-tail
(19–22). The intriguing diversity of TER is further exempli-
fied by the presence of lineage-specific accessory proteins that
bind the 30 region of TER to regulate 30-end maturation.
These protein repertoires mainly protect the TER 30 end from
exonucleolytic degradation. The 30 proximal region of animal
TERs contains a box H/ACA snoRNA-like domain bound by
a heterotetrameric complex of dyskerin, NHP2, NOP10, and
GAR1 proteins (6, 23, 24). Additionally in mammalian TERs,
the terminal stem-loop of this domain contains a Cajal body
(CAB) box bound by telomerase Cajal body protein
1 (TCAB1) for Cajal body localization (25, 26). In contrast,
fungal TERs from budding and fission yeasts employ the
snRNA biogenesis pathway for TER maturation by harboring
conserved Sm binding sites at 30 regions for binding the hepta-
meric Sm ring complex (27, 28).
The maturation of TER relies on a fine balance between

RNA processing and decay. The 50 end of fungal TER is typi-
cally protected by a TMG cap, and the 30 end undergoes com-
plex processing involving loading and unloading of protein
complexes. In Saccharomyces cerevisiae TER (TLC1), the 30-end
maturation depends on the Nrd1-Nab3-Sen1 complex–mediated
transcription termination and further stabilization by the Sm
ring complex (29). Despite sharing the Sm binding site with
S. cerevisiae, the 30 end of Schizosaccharomces pombe TER
(TER1) is generated by the first transesterification step of intron
splicing without the subsequent religation of the exons (30).
Filamentous fungal TERs undergo a similar 30-end maturation
by the spliceosomal cleavage of a terminal intron but use a dis-
tinct 50-splice site sequence (31, 32).
Here, we report a unique mRNA-derived lncRNA biogenesis

pathway for the TER identified in the model fungus Ustilago
maydis. The mature form of U. maydis TER (UmTER) pos-
sesses a 50-monophosphate and is processed from an mRNA
precursor that contains a 50 7-methylguanosine (m7G) cap, a
long 30 untranslated region (30 UTR), and a 30 poly(A) tail.
Moreover, this mRNA precursor undergoes alternative splicing
and contains an open reading frame (ORF) that encodes a con-
served protein. The processing of mature UmTER from the 30-
UTR of a protein-coding mRNA precursor is an unprecedented
mechanism for TER biogenesis.

Results

Identification and Validation of UmTER. Within the fungal
kingdom, TER has been identified and extensively studied in
Ascomycota but not in the sister phylum Basidiomycota (Fig.
1A). Past studies of telomerase using ascomycete fungal models

such as S. cerevisiae (33), S. pombe (30), and Neurospora crassa
(9) have led to many important findings in telomerase biogen-
esis mechanisms. To further explore TER biogenesis across
fungal phyla, we set out to identify basidiomycete TER from
the corn smut fungus U. maydis (Fig. 1A). To that end, we
generated a recombinant U. maydis strain expressing a
3xFLAG-tagged U. maydis TERT (3xFLAG-UmTERT) pro-
tein for affinity purification of U. maydis telomerase (SI
Appendix, Fig. S1 A and B). The recombinant U. maydis telo-
merase holoenzyme purified by anti-FLAG immunoprecipita-
tion (IP) showed significant telomerase activity detected by the
telomere repeat amplification protocol (TRAP) assay (SI
Appendix, Fig. S1C). The RNA molecules copurified with the
active telomerase holoenzyme were extracted and analyzed by
Illumina next-generation sequencing, which generated over
109 million short reads. By employing a proven bioinformatics
strategy (9, 34), we searched the U. maydis genome for TER
candidates and identified 782 genomic loci that contain puta-
tive template sequences for synthesizing the telomeric DNA
repeats (TTAGGG)n (Fig. 1B). Mapping the Illumina
sequencing reads onto these loci identified TER candidates
that were then ranked by read coverage (Fig. 1C). The top
candidate sequence with the highest read coverage was the 18S
rRNA, presumably due to its abundance in the cell (Fig. 1C).
The second TER candidate was an unannotated RNA with a
conserved homolog found in the closely related species Ustilago
bromivora. Notably, the U. bromivora homolog also contained
a conserved TER template sequence, 50-UAACCCUAA-30
(Fig. 1C). The remaining candidates lacked template-
containing homologs in U. bromivora and were not pursued
any further (Fig. 1C). Northern blot analysis verified the pres-
ence of the second TER candidate in U. maydis with a size of
∼1,300 nt (Fig. 1D), which is consistent with the length of
the locus covered by the sequencing reads (Fig. 1E).

We then mapped the 50 end of this TER candidate by a cap-
independent 50 Rapid Amplification of complementary DNA
(cDNA) Ends (50-RACE) procedure (SI Appendix, Fig. S2A-C).
For mapping the 30 end by 30-RACE, the RNA was first added
with a guanosine/inosine (G/I) tail at the 30 end, followed by an
RT reaction using an oligo-dC reverse primer for cDNA synthe-
sis and nested PCR for cDNA amplification (SI Appendix, Fig.
S2 D–F). The 50-RACE generated a major cDNA product, and
the 50 end of the TER candidate was determined by sequencing
cloned cDNA products (SI Appendix, Fig. S2 B, lane 1 and SI
Appendix, Fig. S2C). The 30 ends of this TER candidate
appeared to be slightly heterogeneous, while the majority of the
30-RACE cDNA products revealed a 30 end at position 1291 (SI
Appendix, Fig. S2 E, lanes 1 and 2, and SI Appendix, Fig. S2F).
More importantly, the RACE analyses performed on the RNA
copurified with the 3xFLAG-UmTERT also indicated the same
50 and 30 ends (SI Appendix, Fig. S2 G–K). Thus, our 50- and 30-
RACE results concluded that UmTER candidate #2 is a
UmTERT-bound RNA with a size of 1,291 nt (Fig. 1E) which
is consistent with the northern blot result (Fig. 1D).

The homologs of the UmTER candidate #2 RNA were found
by a bioinformatic search using the Basic Local Alignment Search
Tool (BLAST) across three fungal taxonomy orders, namely,
Ustilaginales, Urocystidales, and Violaceomycetales, and located
between two protein-coding genes with a conserved gene synteny
(SI Appendix, Fig. S3). To determine if UmTER candidate #2 is
truly a telomerase component, we generated a UmTER gene
knockout (ΔUmter) U. maydis strain with the 1,291-bp UmTER-
encoding genomic region replaced by a hygromycin resistance
gene cassette (SI Appendix, Fig. S4A) (35). Hygromycin-resistant
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ΔUmter clones were identified and verified by Northern blot analy-
sis (SI Appendix, Fig. S4B). Two independent ΔUmter clones were
analyzed by Terminal restriction fragment length (TRF) assay and
showed progressive telomere shortening over 200 generations, while

the wild-type (WT) strain was able to maintain telomere length
during successive passages (SI Appendix, Fig. S4 C and D). Thus,
UmTER candidate #2 is essential for telomere maintenance and
indeed the authentic TER component of U. maydis telomerase.

Phylum Sub-phylum
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Fig. 1. Identification of UmTER. (A) Fungal TERs identified in phylum Ascomycota. A simplified tree of three fungal phyla, namely, Ascomycota, Basidiomy-
cota, and Zygomycota, is shown. The numbers of TERs identified in each subphyla of the Ascomycota are shown. The basidiomycete model fugus U. maydis
used in this study is indicated in red. Branch lengths are not proportional to evolutionary distance. (B) Screening strategy for the identification of UmTER
candidates. RNA molecules bound to 3xFLAG-UmTERT after anti-FLAG IP were extracted and analyzed by Illumina next-generation sequencing. Sequencing
reads were mapped to U. maydis genomic loci containing putative template sequences, and the top five loci with the highest numbers of mapped reads
were selected for further analysis. (C) Sequence analysis and characterization of five top-ranking candidate loci. (D) Northern blot analysis of candidate
#2 RNA. Total RNA (10 μg) of U. maydis was analyzed by Northern blot and probed with a radiolabeled riboprobe targeting candidate #2 sequence. RNA
size markers (M) are shown to the Left. (E) Coverage map of Illumina short reads on candidate #2 (UmTER) locus. Positions of UmTER structural elements
(template, TBE, pseudsoknot, P6, and P6.1) and essential regions (green) are shown below the coverage map.
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UmTER Contains Two Structural Domains Essential for
Telomerase Function. The core telomerase enzyme consists of
the catalytic TERT protein and the TER subunit that provides
the template for DNA synthesis. As a prelude to performing
detailed functional dissections of UmTER, we assembled in vitro
transcribed UmTER with the in vitro synthesized recombinant
UmTERT protein and successfully reconstituted telomerase activ-
ity (SI Appendix, Fig. S5A). In vitro reconstituted U. maydis
telomerase was analyzed by direct primer extension assay and
showed activity of template-directed DNA synthesis (SI Appendix,
Fig. S5A, Bottom, lanes 1 and 6). The in vitro reconstituted
U. maydis telomerase was not processive and capable of adding
only a single repeat (SI Appendix, Fig. S5A, Bottom). This is in
contrast to the ladder of bands observed using the TRAP activity
assay with the telomerase holoenzyme from U. maydis cell lysate
(SI Appendix, Fig. S1C, lane 1). We suspect that additional factors
in the U. maydis telomerase holoenzyme may be responsible for
the different telomerase processivity observed (36).
TERs from all major eukaryotic groups contain two structural

domains essential or crucial for telomerase catalysis (14). To
identify structural domains within UmTER necessary for reconsti-
tuting telomerase activity, we carried out a series of truncation
analyses on UmTER (SI Appendix, Fig. S5 B and C) and identi-
fied two minimal UmTER fragments, nt 171 to 861 and nt
1,042 to 1,141, which can assemble in trans with UmTERT to
reconstitute activity (SI Appendix, Fig. S5C). It was noted that the
longer 5F2 RNA fragment reconstituted a lower activity than the

5F3 RNA fragment (SI Appendix, Fig. S5C, Bottom Right, lanes
5 and 6), which could be due to a suboptimal folding of fragment
5F2 with an extended 50 region compared to fragment 5F3
(SI Appendix, Fig. S5C, Left). The two minimal UmTER domains
that bind UmTERT independently were consistent with the two
regions covered by most sequencing reads from the Illumina RNA
sequencing analysis of the RNA extracted from the purified
U. maydis telomerase holoenzyme (Fig. 1E). More importantly,
based on a phylogenetic comparative analysis of 18 Basidiomycota
fungal TER homolog sequences (SI Appendix, Fig. S6 A and B),
these two structural domains of UmTER fold into TER-specific
structural domains, i.e., the T/PK and the template-distal CR4/5,
which are commonly present in both animal (6) and Ascomycota
fungal (9) TERs (Fig. 2A). Deletion analysis on these two struc-
tural domains further minimized the T/PK and CR4/5 core
domains required for telomerase activity (Fig. 2 B–D), which
include functionally crucial elements, such as the putative template
boundary element (TBE) in the T/PK domain and the P6.1
stem-loop in the CR4/5 domain (Fig. 2A) (6, 9). An activity assay
of telomerase reconstituted from the truncated T/PK and CR4/5
fragments identified the minimal fragments, namely, T/PK-Δ4
with three regions deleted and CR4/5(1046-1135)-D3 with most
of the P6b stem deleted (Fig. 2B, lane 7, Fig. 2C, lane 5, and
Fig. 2D, lane 3). Notably, telomerase reconstituted from one of
the truncated T/PK fragments, namely, T/PK-Δ2 with only the
region 723 to 784 deleted, showed significantly higher activity
than T/PK-Δ4 (Fig. 2B, lanes 5 and 7), which was likely due to
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and P3; TBE; and template. The CR4/5 domain includes the P6, P6a, P6b, and P6.1 stems. Invariant nucleotides (red) or nucleotides with ≥75% identity (green) are
indicated. The regions without a secondary structure determined are indicated by lines. Nucleotide positions corresponding to the 50 and 30 ends of minimal T/PK
and CR4/5 fragments are shown in blue. Regions dispensable for in vitro telomerase activity are indicated (delta symbol). (B–D) Activity assay of telomerase recon-
stitution with UmTER T/PK and CR4/5 fragments. The length of the T/PK and CR4/5 fragments analyzed are shown to the Top Right of the gels. Truncations are indi-
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tetraloop. The numbers of nucleotides (+4 or +10) added to the substrate primer are indicated to the Right of the gel. All two fragment activity assays are com-
pared to that of full-length (FL) UmTER. A radiolabeled oligo identical to the +4 band is added as a marker (M). A 32P end-labeled oligonucleotide is added to each
reaction as the recovery control (r.c.) prior to ethanol precipitation of DNA products. The minimal fragments tested are indicated in blue.
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higher enzyme turnover. However, the underlying mechanism
for such higher activity from a truncated T/PK domain remains
to be explored. Taken together, our results identified the mini-
mal regions required for enzymatic activity, which is consistent
with the structural domains essential for telomerase function
and conserved between animal and fungal TERs (6, 9).

UmTER Contains a 50 Monophosphate. Animal and Ascomycota
yeast TERs are transcribed by RNA Pol II followed by hyper-
methylation of the 5’ m7G cap by the TGS1 hypermethylase to
generate a TMG cap (17, 18). The 50 end of Trypanosoma TER
is processed by transsplicing with a unique cap chemistry (37).

To determine the 50-end structure of UmTER, we first treated
U. maydis total RNA with a decapping enzyme, namely, RNA
50 pyrophosphohydrolase (RppH) (38), that removes the 50-cap
from the RNA Pol II transcripts leaving a 50 monophosphate
group that can then be ligated to an RNA adapter (Fig. 3A).
The adapter-ligated RNA transcripts were then analyzed by a
standard RNA ligase-mediated RACE (RLM-RACE) procedure
using UmTER-specific reverse primers to amplify the 50 cDNA
of the UmTER transcripts (Fig. 3A). Intriguingly, the RppH
decapping and RLM-RACE analysis detected multiple UmTER-
related transcripts with various lengths. It appeared that the longer
UmTER transcripts contain a 50 cap and require RppH treatment
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Fig. 3. The 50-end structure of mature and precursor UmTER transcripts. (A) Schematic of RLM-RACE. Total RNA was treated with the decapping enzyme
RppH to remove the 50 cap and ligated to an RNA adapter, followed by RT-PCR to amplify the adapter-ligated UmTER transcripts. RACE cDNA products were
cloned and sequenced. (B) Gel electrophoresis analysis of RLM-RACE PCR products. Bands that correspond to RppH-dependent (blue dots) and RppH-
independent (green triangles) RACE cDNA products are indicated. (C) Detection of 50 monophosphate in UmTER. The schematic shows that the RNA adapter
for RLM-RACE can be ligated only to the RNA with a 50-monophosphate (UmTER or 18S rRNA) but not to the 5S rRNA with a 50 triphosphate. Gel electropho-
resis analysis of RLM-RACE cDNA products distinguishes RNAs with 50 monophosphate or triphosphate after treatments with CIP to remove all 50

phosphates and/or T4 PNK to add 50 monophosphate. (D) UmTER is sensitive to terminator exonuclease (Exo) that degrades RNA with 50-monophosphate.
U2 snRNA contains a 50- TMG cap and is resistant to terminator exonuclease. UmTER and U2 snRNA treated with (+) or without (�) Exo are quantitated by
RT-qPCR and normalized by the level of GAPDH mRNA in each total RNA sample. (E) Northern blot analysis of distinct UmTER transcripts. (Top) The schematic
shows the genomic coordinates of the Umter gene and transcription products, precursor (blue dots), and mature UmTER (green triangle). Target sites of
northern blot probes (P1 to P4) detecting specific transcripts are indicated. (Bottom) Northern blot of UmTER transcripts detected with specific probes
(P1 to P4). Northern blot shows the detection of mature UmTER (green triangle) by probe P1 (lane 1) and precursor (blue dots) by probes P1-P4
(lanes 1 to 4). Positions of RNA size (Kb) markers are indicated on the Left. (F) IP analysis of RNAs with 50 m7G or TMG cap. RT-qPCR was performed to
quantitate specific RNA transcripts enriched by IP using specific antibodies against either 50 m7G or TMG cap or IgG as a negative control. Enrichment of
each transcript by each antibody is normalized to the RNA level in the IgG-IP sample.
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to be detected by RLM-RACE (Fig. 3B, compare lanes 8 and 10
with R1 primer). In contrast, the short UmTER transcript con-
tains a 50 monophosphate and can thus be ligated to the RNA
adapter for RACE detection with or without RppH treatment
(Fig. 3B, compare lanes 8 and 10 with R1 primer). Moreover, the
sequencing results of the PCR DNA product confirmed that the
50 end of the short UmTER transcript is identical to the 50 end of
the mature UmTER determined previously by cap-independent
template-switching RACE (SI Appendix, Fig. S2 A–C). We further
confirmed the presence of a 50 monophosphate in mature UmTER
by treating the RNA with calf intestinal alkaline phosphatase
(CIP) to remove 50 phosphates. Upon CIP treatment, mature
UmTER and 18S rRNA that also contains 50-monophosphate can-
not be detected by RLM-RACE (Fig. 3C, lane 5), which can then
be rescued by T4 polynucleotide kinase (PNK) treatment to add
back the 50-monophosphate (Fig. 3C, lane 7). The 5S rRNA con-
tained a 50 triphosphate and was resistant to RLM-RACE
(Fig. 3C, lanes 1 and 3), unless treated with CIP and T4 PNK
sequentially to generate a 50 monophosphate (Fig. 3C, lane 7).
Furthermore, we confirmed the presence of a 50 monophosphate
in mature UmTER by treating the RNA with Terminator exonu-
clease that degrades specifically the RNAs with 50 monophosphate
such as rRNA but not the 50-capped RNAs such as mRNA or
snRNAs (Fig. 3D, Top). The RT-qPCR analysis of the Terminator
exonuclease-treated RNA showed significant degradation of
UmTER but not the U2 snRNA (Fig. 3D, Bottom). These results
collectively confirm the presence of a 50 monophosphate in the
mature UmTER.

The Large UmTER Precursor Transcripts Contain a 50-m7G Cap.
The presence of a 50 monophosphate suggests that mature
UmTER is posttranscriptionally processed at the 50 end from
larger precursors, likely from the 50-capped UmTER transcripts
detected by RLM-RACE in the RppH-treated sample (Fig. 3B,
lanes 7 and 8). As expected, sequencing analysis of these longer
cDNA products revealed a distinct 50 end located further
upstream of the 50 end of mature TER (Fig. 3E). To directly
detect the longer UmTER precursor transcripts, we performed
Northern blot analyses with probes targeting specific regions in
either the precursor or mature UmTER transcripts (Fig. 3E,
Top). The radiolabeled riboprobe P1 detected the template
region of UmTER, while the other three riboprobes P2, P3,
and P4 targeted only the precursor transcripts at three different
regions, i.e., near the transcription start site (TSS), upstream of
the mature UmTER, and downstream of the mature UmTER,
respectively (Fig. 3E, Top). The northern blot probed with the
P1 riboprobe revealed a strong band of ∼1,300 nt RNA corre-
sponding to the mature TER and a weak band of RNA with
higher molecular weight (Fig. 3E, Bottom, lane 1). All three
precursor-specific probes, namely, P2, P3 and P4, detected only
the larger RNA, confirming the presence of the larger UmTER
precursor transcripts (Fig. 3E, Bottom, lanes 2, 3, and 4). Inter-
estingly, probe P4 targeting the region downstream of mature
UmTER detected additional faint bands with smaller sizes (Fig.
3E, Bottom, lane 4), indicating that the 50-end processing of the
UmTER precursor likely precedes the 30-end processing.
To determine the identity of the 50-cap structure of the larger

UmTER transcripts, we performed 50-cap specific RNA IP using
anti-m7G, anti-TMG, or immunoglobulin G (IgG) antibodies, and
we detected the affinity-purified RNA targets by RT-qPCR with
primer sets specific to GAPDH mRNA, UmTER, or U2 snRNA.
The results showed that the anti-m7G IP significantly enriched the
GAPDH mRNA and UmTER precursor transcripts over the IgG
antibody negative control, supporting the presence of 50 m7G in the

UmTER precursor transcripts, while the anti-TMG IP enriched
only the 50 TMG-capped U2 snRNA (Fig. 3F). A minor cross-
reactivity of anti-m7G IP to the 50 TMG of U2 snRNA was
observed as previously reported (Fig. 3F) (39). Our results indicated
that the UmTER-encompassing long transcripts are 50-m7G capped.

In addition to the presence of 50-m7G cap, the promoter
regions upstream of the UmTER precursor sequences were
identified in 17 Ustilaginomycetes species and shared a con-
served 50-ACGCGAA-30 sequence (SI Appendix, Fig. S7). This
conserved promoter sequence was previously identified as a
top-ranked binding site for the transcription factor Swi4 in a
yeast chromatin IP study (40). The Swi4 transcription factor is
part of a complex that activates mRNA transcription of multi-
ple protein-coding genes involved in cell cycle regulation (41).
Thus, the transcription of the UmTER precursor transcript may
be regulated developmentally along the life cycle of U. maydis.

The UmTER Precursor Transcript Undergoes Alternative Intron
Splicing. Sequencing analysis of the 50-RACE DNA products
indicated the presence of introns in the larger 50 m7G-capped
UmTER transcripts of various sizes (Fig. 3B, lanes 7 and 8). To
analyze these UmTER isoforms quantitatively, we performed
Nanopore long-read sequencing on a cDNA library enriched
with the UmTER precursor transcripts (Fig. 4A). Briefly, we
performed the RT reaction using a reverse primer targeting
a region immediately downstream of the mature UmTER
sequence to generate cDNA products of the precursor tran-
scripts. Two rounds of nested PCRs were performed to enrich
specifically the UmTER-containing sequences (Fig. 4A and SI
Appendix, Materials and Methods). Nanopore sequencing of the
UmTER-enriched library successfully generated 2.6 million
valid long reads. Mapping and isoform analysis of these long
sequencing reads revealed five isoforms, namely, A to E, of the
UmTER precursor transcripts (Fig. 4B). All five isoforms
encompass the mature UmTER sequence (Fig. 4B, Top) and
could potentially serve as precursors for producing mature
UmTER. Isoform A represented the unspliced UmTER precur-
sor transcript and accounted for 57.5% of the reads (Fig. 4B,
Bottom). Isoforms B, C, D, and E represented products of alter-
native intron splicing at two 50- and two 30-splice sites, each of
which accounted for 14.6%, 9.7%, 9.7%, and 8.4% of the
total reads, respectively (Fig. 4B, Bottom). The introns removed
from each of the four spliced isoforms contain the canonical 50
splice site, branch site, and 30 splice site sequences (SI Appendix,
Fig. S8A) that are universally conserved in fungal introns
(42–44). The branch-site sequence, 50-UGCUAAGA-30 (branch
point underlined), in the intron is conserved (42) and could base
pair with the U. maydis U2 snRNA to form an adenosine bulge
(SI Appendix, Fig. S8B).

In addition to the presence of splicing isoforms, the UmTER
precursor transcripts contain a 30-poly(A) tail. The G/I tailing-
mediated 30-RACE located the 30 end of the larger UmTER
precursor transcripts at position 2295 from the TSS or 186 nt
downstream of the 30 end of the mature UmTER (SI Appendix,
Fig. S9). Sequencing analysis of the cDNA product indicated
the presence of a poly(A) tail with approximately 20 adenosine
residues (SI Appendix, Fig. S9). In summary, the larger UmTER
precursor transcripts showed hallmark characteristics of mRNA
transcripts including a conserved mRNA promoter element, a
50-m7G cap, alternative intron splicing, and a poly(A) tail.

A Recombinant UmTER Precursor Transcript Yields Mature
UmTER. To directly determine if the UmTER precursor is
indeed processed to produce mature UmTER, we generated a
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Fig. 4. Analysis of UmTER transcript isoforms by Nanopore long-read sequencing. (A) Schematic shows the procedure of UmTER transcript-enriched cDNA-
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in a template-switching RT reaction using a template switch oligo (TSO). The nested-PCR–enriched cDNA library was sequenced using the FLO-MIN106D flow
cell on a minION device. (B) Coverage map of UmTER sequencing reads. The Nanopore long reads were mapped to the UmTER genomic locus. A portion of
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replaced with a complementary sequence (purple) to serve as a marker in sequencing analysis. The template sequence is indicated in red. Total RNA
extracted from this recombinant U. maydis strain was subject to Northern blot analysis and Nanopore sequencing. (D) Northern blot analysis of recombinant
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nant UmTER transcripts. Coverage maps of UmTER sequencing reads are shown with the 50 and 30 ends of the recombinant UmTER precursor (red dot) and
processed (red triangle) transcripts indicated. The numbers of reads with 50 or 30 ends at each specific position are shown in the bar graphs. The expected
50 or 30 end of the respective transcripts are indicated in red nucleotides.
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U. maydis strain that expresses a recombinant UmTER precur-
sor transcript from a Pol II mRNA promoter (Fig. 4C). This
recombinant gene construct contains the hsp70 promoter to
transcribe the first 390 nt of the U. maydis GAPDH protein-
coding sequence, followed by the mature UmTER sequence
with 200 bp upstream and 264 bp downstream flanking
sequences, and the hsp70 terminator (SI Appendix, Fig. S10A).
To differentiate the recombinant UmTER from WT UmTER,
a 112-bp marker sequence was engineered to replace the region
(257 to 368) (SI Appendix, Fig. S10A), which is located within
a functionally dispensable region (208 to 440) (Fig. 2A).
Following PCR validation of desired transformants (SI Appendix,
Fig. S10 B and C), Northern blot analyses were performed using
radioactive probes that detect either the engineered marker or
WT sequence to confirm the expression of the recombinant
UmTER transcript (Fig. 4C). The Northern blot showed the
presence of the recombinant UmTER precursor transcript
(Fig. 4 D, lane 4, red circle) and the processed mature UmTER
(Fig. 4 D, lane 4, red triangle), suggesting that the expressed
recombinant UmTER precursor can be processed to produce
mature UmTER. The bands above the processed recombinant
UmTER were likely transcripts partially processed at either the
50 or 30 end, but not both (Fig. 4D, lane 4).
To quantitate the distribution of the recombinant precursor

and mature UmTER transcripts, we performed Nanopore long-
read sequencing using a similar strategy described in Fig. 4A
but with a reverse primer targeting both the mature and precur-
sor transcripts (Fig. 3C). More than one million (1,042,646)
valid reads were obtained and 99% of the reads were mapped
to the recombinant UmTER sequence with less than 0.5% of
the reads mapped to the WT sequence. This dramatic mapping
disparity is due to the overexpression of the recombinant
UmTER compared to the WT UmTER gene (Fig. 4D, lane 4,
black triangle). The mapping of the recombinant UmTER
sequencing reads confirmed that the 50-end position of the
recombinant mature UmTER (Fig. 4E, red triangle) is identical
to the 50 end of the WT mature UmTER (SI Appendix, Fig. S2I).
Similarly, we performed Nanopore sequencing to determine

the 30 ends of processed recombinant UmTER (Fig. 4F). Data
analysis from over one million (1,175,036) valid reads con-
firmed the correct 30-end processing of the recombinant mature
UmTER (Fig. 4F, red triangle and SI Appendix, Fig. S2K). Fur-
thermore, the 30 end of the recombinant precursor transcript
has the poly(A) tail at the same position as the WT precursor
(Fig. 4F, Right and SI Appendix, Fig. S7). However, it was
noticed that some RNA molecules smaller than the processed
recombinant UmTER were detected in the Northern blot anal-
ysis (Fig. 4D, lane 4) but absent in the Nanopore sequencing
analysis. We suspected these smaller RNAs were products of
RNase degradation that possess a 30 phosphate and thus were
resistant to enzymatic G/I-tailing during Nanopore library
preparation (Fig. 4D, lane 4). Overall, our result showed that a
recombinant UmTER precursor expressed from a Pol II mRNA
promoter can be correctly processed to generate mature
UmTER.

The UmTER Precursor Is a Protein-Coding mRNA. Isoforms A,
C, and E of the UmTER precursor transcripts contain an ORF
that encodes a hypothetical protein, UMAG_03168 (NCBI
RefSeq - XP_011389625.1). Protein BLAST searches using
UMAG_03168 as a query identified homologs in both Basidiomycota
(SI Appendix, Table S1) and Ascomycota (SI Appendix, Table
S2) phyla. The homolog identified in S. cerevisiae with a BLAST
E-value of 10�5 is a protein called Early meiotic induction

protein 1 (Emi1). This Emi1 protein appears to induce the
expression of a transcription factor called Inducer of meiosis
(Ime1) during meiosis initiation in yeast (45, 46).

To determine if UMAG_03168 is truly a homolog of yeast
Emi1, we performed multiple sequence alignments of Basidio-
mycete homologs of UMAG_03168 (SI Appendix, Fig. S11A)
and Ascomycete homologs of yeast Emi1 (SI Appendix, Fig.
S11B) independently, which revealed two similar consensus
sequences. A phylogenetic analysis of the aligned sequences for
both UMAG_03168 and Emi1 homologs inferred a phyloge-
netic tree consistent with the established relationships between
the two fungal phyla (SI Appendix, Fig. S11C), supporting the
sequence homology between U. maydis UMAG_03168 and
yeast Emi1 protein. In addition, we found the presence of
highly conserved twin Cx9C motifs in both U. maydis UMAG_
03168 and the yeast Emi1 protein sequence (Fig. 5A). Each
Cx9C motif harbors a pair of cysteine residues spaced by 9
amino acids with positions 4 and 7 being predominantly
hydrophobic (Fig. 5A) (47).

In addition to the sequence analysis, we performed structure
predictions of UMAG_03168 and yeast Emi1 protein sequen-
ces using Alphafold2 (48), which inferred two similar structures
(SI Appendix, Fig. S11 D and E). These two structures clearly
showed a high degree of structural homology with a similar
positioning of the universally conserved residues in 5 alpha
helices (α1 to α5) (SI Appendix, Fig. S11 D and E). In both
predicted structures, the twin Cx9C motifs stabilize two antiparal-
lel α-helices, namely, α2 and α4, through forming intramolecular
disulfide bridges (Fig. 5 B and C). This type of hairpin-like
arrangement has been observed in other proteins with the same
twin Cx9C motifs (47). The conserved positions of the twin
Cx9C motifs and the similar hairpin structure support structural
homology between UMAG_03168 and the yeast Emi1 protein.

Based on sequence and structural homology, we renamed
UMAG_03168 as the U. maydis Emi1 protein (UmEmi1).
However, UmEmi1 is likely to be encoded only in isoform A.
Other alternatively spliced isoforms have much lower abun-
dance (Fig. 4B) and would produce proteins with altered
sequence and structure in helix α5 (SI Appendix, Fig. S11F).
Although we suspect that UmEmi1 may play a role in meiosis
induction in U. maydis (49), its exact function would require
further functional studies.

To experimentally confirm the expression of the 15.2-kDa
UmEmi1 protein in U. maydis cells, liquid chromatography-
tandem mass spectrometry analysis was performed. Briefly,
U. maydis cell lysate was resolved on a sodium dodecyl-sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) gel, and three
gel slices covering three protein size ranges, namely, 14 to 16,
16 to 18, and 18 to 20 kDa, were excised and analyzed sepa-
rately. Following in-gel trypsinization and mass spectrometry
analysis, two tryptic peptides unique to UmEmi1, namely,
ESAENVWELR and ESAENVWELRR, were detected with
100% and 92% probabilities, respectively (Fig. 5D and SI
Appendix, Fig. S12A and Table S3). Protein BLAST analysis
against the U. maydis proteome independently confirmed that
both peptides are unique to UmEmi1. These two peptides dif-
fered by only one arginine at the C terminus, which was likely
due to partial trypsin digestion. Importantly, both peptides
were detected from only the SDS-PAGE gel slice covering pro-
tein sizes between 14 and 16 kDa and not from the other two
gel slices, supporting that they were derived from the 15.2-kDa
UmEmi1 protein.

To further confirm the mass spectrometry results, we expressed
a recombinant 3xFLAG-UmEmi1 protein in U. maydis cells
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(Fig. 5E). The expression of the recombinant protein was con-
firmed by anti-FLAG Western blot analysis (Fig. 5F). The recom-
binant 3xFLAG-UmEmi1 protein was then affinity purified by
anti-FLAG IP and analyzed by the same mass spectrometry
approach. From the purified 3xFLAG-UmEmi1 protein sample,
three unique tryptic peptides, namely, YEQYVAEDVAYHK
(×7), ESAENVWELRR (×3), and ESAENVWELR (×2), cover-
ing two separate regions of the UmEmi1 protein were detected
multiple times (Fig. 5 G–I and SI Appendix, Fig. S12B and Table
S3). Reproducible detection of the two peptides, ESAENV-
WELR and ESAENVWELRR, in both native UmEmi1 and the
purified recombinant 3xFLAG-UmEmi1 protein samples vali-
dated the methodology employed and confirmed the expression
of the UmEmi1 protein in U. maydis cells. Noticeably, spectra
of the peptide fragment ESAENVWELRR from both native
and recombinant UmEmi1 predominantly showed doubly

protonated y ions (SI Appendix, Fig. S12), which was likely due
to the protonation of both the arginine residues in the peptide
(50). Collectively, the mass spectrometry-based detection of
UmEmi1 in U. maydis cells supports the expression of the
UmEmi1 protein and that the UmTER precursor is indeed a
protein-coding mRNA.

Discussion

The remarkable mRNA-derived biogenesis pathway employed
by UmTER further demonstrates the incredible diversity of
TER biogenesis across major eukaryotic kingdoms (Fig. 6). In
most eukaryotic lineages including the basal branching trypano-
some, TERs are predominantly transcribed by RNA Pol II (5),
while ciliate and plant TERs are transcribed by RNA Pol III
(7, 19–22). This dramatic Pol II-Pol III switch of TER
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transcription machinery presumably occurred early in eukary-
otic evolution prior to the branching of two supergroups,
namely, TSAR (Telonemia, Stramenopila, Alveolata, and Rhiza-
ria) that includes ciliates and Archaeplastida (Chloroplastida) that
include land plants (51, 52). Metazoa and fungi belong to the
same supergroup Opisthokonta and use RNA Pol II for TER
transcription. While it remains speculative which apparatus for
TER transcription is employed in early eukaryotes, the Trypano-
soma brucei TER being a Pol II transcript suggests that the RNA
Pol II is the ancestral machinery for TER transcription (Fig. 6).
The use of different transcription machinery inevitably led to

distinct TER biogenesis mechanisms (Fig. 6). For example, the
Pol III–transcribed TERs are relatively smaller in size and
possess a 50 triphosphate and a 30 poly(U) tail that is typically
bound and protected by an accessory protein with a La motif
(53). In contrast, the Pol II–transcribed TERs from metazoa
and fungi are significantly larger and possess a hypermethylated
50-TMG cap and a processed 30 end (Fig. 6). The 30 ends of
metazoan and ascomycete TERs are defined through snoRNA-
and snRNA-like structural elements, respectively, and are proc-
essed by exosome-mediated exonucleases (Fig. 6). The UmTER
precursor is transcribed by RNA Pol II as a typical mRNA tran-
script but then undergoes an unusual maturation process pre-
sumably through endonucleolytic cleavages in the 30 UTR
region to release the mature UmTER with a 50 monophosphate

(Fig. 6). In the absence of a protective 50 cap, the mature
UmTER would rely on stable RNA structural elements and/or
protein binding (54–56) to protect the 50 end from 50-to-30
degradation by exonucleases such as XRN1 (57).

The 30 end of ascomycete yeast TER contains an Sm binding
site that is bound by the heptameric Sm ring protein complex
to protect the 30 end from 30-to-50 exonuclease degradation
(27, 30). The 30 region of mature UmTER also contains
a putative Sm-binding site, 50-AUUUUU-30, located 9 nt
upstream of the 30 end (SI Appendix, Fig. S13), which suggests
UmTER may undergo a 30-end maturation process similar to
the yeast TER. The S. pombe and N. crassa TERs employ a
unique spliceosomal cleavage reaction to generate the 30 end
(30–32). We did not find any potential 50 splice site at or near
the 30 end of the mature UmTER. Thus, the UmTER 30-end
maturation may not employ a terminal intron splicing but rather
rely on an endonucleolytic mechanism that is yet to be identified.

This mRNA-derived biogenesis of UmTER may have origi-
nated through either chromosomal translocations, inversions,
or deletions that merged the Umter gene with the 30 UTR of
an mRNA gene, creating a unique polycistronic mRNA-
lncRNA fusion gene (58). The conserved ORF in the UmTER
precursor mRNA encodes a protein homologous to the yeast
Emi1 protein (Fig. 5A-C and SI Appendix, Figs. S10 and S11).
Yeast Emi1 is required for up-regulation of Ime1 that is the
master regulator of yeast meiosis and is activated during early
meiosis (45, 46). As U. maydis does not appear to harbor an
Ime1 ortholog (49), the target genes of the UmEmi1 protein
are yet to be identified. Since the UmEmi1 protein and UmTER
are produced from the same polycistronic gene, the processing of
UmTER from the mRNA precursor would presumably result in
mRNA degradation and affect UmEmi1 protein expression. Thus,
it remains to be explored if the UmTER biogenesis plays a role in
U. maydis meiotic induction. Furthermore, disrupting the
UmTERT coding gene (trt1) was shown to impair U. maydis telio-
spore production (59), a crucial step in the meiotic phase of U.
maydis life cycle, which suggests telomerase may play a role in U.
maydis meiosis. Elucidation of the detailed mechanism and regu-
lation of this mRNA-derived UmTER biogenesis would bring
more insights to RNA and telomere biology.

Materials and Methods

The identification of UmTER was carried out through affinity purification of recom-
binant U. maydis telomerase, TRAP telomerase activity assay, Illumina next-
generation sequencing of TERT-bound RNA, and bioinformatics search of UmTER
candidates. The validation of UmTER was performed via RNA secondary structure
determination by phylogenetic comparative analysis, in vitro reconstitution of
U. maydis telomerase activity, and TRF telomere length analysis of ΔUmTER
strains. The analysis of UmTER biogenesis employed Northern blot analysis, spe-
cific enzymatic treatments, 50-cap-specific IP, RT-qPCR analysis, and Nanopore
long-read sequencing of both WT and recombinant UmTER precursor. The analysis
of UmEmi1 protein expression employed in-gel trypsinization of native or recombi-
nant UmEmi1 proteins and mass spectrometry analysis of tryptic peptides. Details
of all materials and methods are available in SI Appendix,Materials and Methods.

Data, Materials, and Software Availability. The UmTER gene sequence
has been deposited in GenBank (accession no. ON015423) (60), and all other
TERs identified in this work have been deposited in GenBank Third Party Annota-
tion (TPA) database (accession no. BK061232–BK061250) (61, 62). Next-
generation sequencing data generated in this study have been deposited in the
Sequence Reads Archive (SRA) database, https://www.ncbi.nlm.nih.gov/sra (Bio-
Project identifier PRJNA817681) (63).
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Fig. 6. Distinct mechanisms of TER biogenesis. The phylogenetic tree of
major eukaryotic lineages shown is based on recent phylogenomic analy-
ses (51). The representative species and its corresponding TER length are
shown above and below the branch, respectively. Branch lengths do not
correspond to evolutionary distances. Branches and nodes are colored
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