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Human adenovirus 52 (HAdV-52) is one of only three known HAdVs
equipped with both a long and a short fiber protein. While the long
fiber binds to the coxsackie and adenovirus receptor, the function
of the short fiber in the virus life cycle is poorly understood. Here,
we show, by glycan microarray analysis and cellular studies, that
the short fiber knob (SFK) of HAdV-52 recognizes long chains of
α-2,8-linked polysialic acid (polySia), a large posttranslational
modification of selected carrier proteins, and that HAdV-52 can use
polySia as a receptor on target cells. X-ray crystallography, NMR,
molecular dynamics simulation, and structure-guided mutagenesis
of the SFK reveal that the nonreducing, terminal sialic acid of polySia
engages the protein with direct contacts, and that specificity for
polySia is achieved through subtle, transient electrostatic interac-
tions with additional sialic acid residues. In this study, we present
a previously unrecognized role for polySia as a cellular receptor for a
human viral pathogen. Our detailed analysis of the determinants of
specificity for this interaction has general implications for protein–
carbohydrate interactions, particularly concerning highly charged
glycan structures, and provides interesting dimensions on the biol-
ogy and evolution of members of Human mastadenovirus G.
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Human adenoviruses (HAdVs) are common human patho-
gens associated with gastrointestinal, ocular, and respiratory

infections. To date, 84 different HAdV types have been identi-
fied, and they are grouped into seven species (Human mastade-
novirus A to G) (1). HAdVs are nonenveloped viruses whose
icosahedral capsid is composed of three major proteins, the fiber,
the penton base, and the hexon, all of which are known to me-
diate binding to host cells. The fiber protein, with a terminal
knob domain, binds to cellular receptors such as the coxsackie
and adenovirus receptor (CAR) (2–4), desmoglein-2 (5), CD46
(6–8), or sialic acid (Sia)-containing glycans (9–11). The penton
base interacts with cellular integrins, thereby facilitating endo-
cytosis (12, 13) and endosomal release (14, 15). The hexon
protein is the main component of the viral capsid and binds with
high affinity to coagulation factors IX and X, resulting in liver
tropism through indirect binding to heparan sulfate on hepato-
cytes (16–18), and shields the virion from neutralizing antibodies
and complement-mediated destruction (19).
HAdV-52 was isolated in 2003 from a small outbreak of gas-

troenteritis (20). The virus diverged from other HAdVs and was
classified into the new species Human mastadenovirus G (HAdV-
G), which otherwise exclusively contains Old World monkey
AdVs. HAdVs are normally equipped with only one fiber pro-
tein, but HAdV-52, along with species HAdV-F types HAdV-
40 and -41, differ from all other known HAdVs by having two
different fiber proteins, one short (coded by gene fiber-1) and
one long (fiber-2) (20–22). We showed recently that the knob
domain of HAdV-52 long fiber (52LFK) binds to CAR and that

the knob domain of the short fiber (52SFK) binds to Sia-
containing glycoproteins on target cells (23). However, the
identity and structure of the cellular Sia-containing glycans have
remained unknown.
Sia-containing glycans serve as receptors for a large number of

viral pathogens, including influenza A virus, coronavirus, rota-
virus, polyomavirus, and many others (24). Variations in Sia
specificity determine host and tissue tropism, pathogenicity,
and transmission of multiple viruses. Here, we show by glycan
microarray analysis that the 52SFK recognizes long chains of
sialic acid residues, known as polysialic acid (polySia), with
higher affinity than any other tested glycan. PolySia is a rare
posttranslational modification of only nine identified carrier pro-
teins to our knowledge; among them are the cell adhesion mol-
ecules NCAM (25) and SynCAM-1 (26) as well as Neuropilin-2
(27) and the dendritic cell chemokine receptor CCR7 (28). Pol-
ysialylation is best known as a modulator of developmental plas-
ticity in the nervous system, but more recently, additional roles in
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the development of a number of organs, such as the liver, kidney,
heart, and testes, have been unraveled (reviewed in ref. 29). In the
adult brain, polySia expression is markedly down-regulated and
only retained in few areas that maintain plasticity such as the
hippocampus, olfactory bulb, and hypothalamus (reviewed in refs.
30–32). However, polySia is not exclusively associated with the
brain. Recent studies demonstrate additional regulatory roles in
innate immune responses (28, 33–36), and in regenerative or
antiinflammatory processes (37–42). Furthermore, polySia is
found at high expression levels on several types of cancer in-
cluding glioma (43–45), neuroblastoma (46, 47), and lung
cancer (48, 49). By means of X-ray crystallography, NMR,
molecular dynamics (MD) simulation, and cellular analyses, we
reveal here a function for polySia as a cellular receptor for HAdV-
52. The 52SFK possesses a unique polySia-binding mode featuring
transient polar interactions and electrostatic contributions that
extend beyond a fixed anchoring epitope engaging the non-
reducing end of the polySia chain. We further provide an evo-
lutionary analysis of the newly found polySia binding pocket
within Human mastadenovirus G.

Results
HAdV-52 Short Fiber Knob Binds to PolySia. We showed previously
that the binding of HAdV-52 to human epithelial cells is sialic
acid dependent and occurs via the SFK (23). To date, the precise
compositions and structures of glycans that can be optimally
engaged by 52SFK remain unknown. We performed glycan

microarray analysis of 52SFK with 128 different sialylated gly-
cans, in an attempt to characterize the glycan receptor of HAdV-
52. Very strong binding signals were observed with 52SFK for a
group of linear α-2,8-linked oligoSia that represent fragments of
naturally occurring polySia (Fig. 1 and Table S1). The maximal
response was observed at a degree of polymerization (DP)
greater than 3 (DP5 to -9). This binding was much greater than
for α-2,3- and α-2,6-linked sialic acids in the array. The relatively
weak binding detected with the probe oligoSia DP3 is likely to be
due to the ring-opened status of the core monosaccharide as a
consequence of the reductive amination procedure used for
preparing the neoglycolipid probe (50). This suggests that the
high-affinity interaction with 52SFK requires at least three in-
tact α-2,8-linked sialic acid residues. To confirm the ability of
52SFK to interact with polySia and to evaluate the specificity of
this interaction, we developed an ELISA with immobilized,
Escherichia coli-derived polySia (colominic acid; DP ∼ 80–100)
and analyzed the binding of recombinant knob domains from
HAdV-52 short fiber, the Sia-binding HAdV-37 fiber (37FK),
and the CAR-binding HAdV-5 (5FK) and HAdV-52 long fiber
(52LFK). The 52SFK bound efficiently to polySia, while the two
CAR-binding FKs did not show any binding to this compound
(Fig. 2A). 37FK, which binds with relatively high affinity to the
branched, disialylated GD1a glycan using a different binding site
(11, 23), bound less strongly to polySia than 52SFK. We there-
fore conclude that HAdV-52 is able to interact preferentially

Fig. 1. Glycan array analysis of HAdV-52 SFK interactions with sialylated glycans. The microarray consists of lipid-linked oligosaccharide probes; the se-
quences are listed in Table S1. The probes are arranged according to terminal sialic acid linkage, oligosaccharide backbone chain length, and sequence. The
various types of terminal sialic acid linkages are indicated by the colored panels as defined at the Bottom of the figure. Numerical scores for the binding
intensity are shown as means of fluorescence intensities of duplicate spots at 5 fmol/spot. Error bars represent one-half of the difference between the two
values. The three probes that are most strongly bound are DP5–DP9 = α-2,8-linked sialic acids with a degree of polymerization (DP) between 5 and 9 (from
Left to Right, in steps of 2). Inlay: structure of polySia, depicted are up to n = ∼100 sialic acid residues that are linearly connected via an α-2,8-linkage (orange).
Blue, nonreducing end; pink, reducing end.
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with polySia via the knob domain of its short fiber while having
low affinities for a number of monosialylated glycans.

HAdV-52 Binds to PolySia on Human PolySia-Expressing Cells. To test
the relevance of polySia recognition by HAdV-52 in a cellular
context, we used the human polySia-expressing neuroblastoma
cell line SH-SY5Y and its polySia-lacking parental cell line SK-
N-SH as models for virus binding and infection (51). The levels
of polySia on these cells were confirmed by flow cytometry using
the anti-polySia antibody mAb735 (Fig. S1). 52SFK gave five
times higher binding signals with polySia-expressing SH-SY5Y
cells compared with the control cell line, whereas none of the
control knobs, including 37FK, showed a comparable interaction
pattern (Fig. 2B). Next, we used monosialic acid-binding lectins
to evaluate the relative levels of glycans with terminal sialic acids
on the two cell lines to exclude the possibility that the higher
52SFK binding to SH-SY5Y was due to a higher level of glycans
with terminal monosialic acids on these cells rather than pref-
erential binding to polySia. All three lectins tested, Maackia
amurensis I and II (MAL I and II; binds to α-2,3-linked Sia),
Sambucus nigra lectin (SNA; binds to α-2,6-linked Sia), and
wheat germ agglutinin (WGA; binds to terminal sialic acid as
well as to N-acetyl-D-glucosamine) bound stronger to SK-N-SH
cells than to SH-SY5Y cells (Fig. S1), indicating that the pa-
rental, polySia-negative SK-N-SH cells have a higher total den-
sity of terminal sialic acids. Furthermore, preincubation of
52SFK with soluble oligoSia (DP5) reduced 52SFK binding to
SH-SY5Y cells up to 75%, while no effect was observed on 37FK
binding (Fig. 2C). Preincubating the whole HAdV-52 virions
with oligoSia (DP5) also efficiently reduced binding to and in-
fection of SH-SY5Y cells, whereas sialic acid monosaccharide
(DP1) did not have as much of an effect (Fig. 3 A and C).
Neither of the two glycans tested reduced HAdV-5 binding to or
infection of SH-SY5Y cells (Fig. 3 B and D). Based on these
results, we conclude that HAdV-52 virions show a clear prefer-
ence for polySia-expressing cells over cells lacking polySia, that
this feature is not shared by monosialic acid- or CAR-binding
HAdVs, and that the interactions with polySia are mediated by
the 52SFK.

PolySia Is Engaged at the Nonreducing End, Similarly to Monosialylated
and Disialylated Glycans. Using 2-O-methyl-sialic acid as a ligand,
we previously identified a sialic acid-binding site on the lateral side
of 52SFK (23). This binding site includes a stretch of three adja-
cent residues that together form a prominent RGN motif (R316–
G317–N318). This site is located on a different part of the knob
from the binding site of 37FK, which engages sialic acid near its
threefold axis. The features responsible for the increased affinity
for polySia are unknown, and it seems plausible that additional
contacts or an additional epitope that went undetected in earlier
studies are formed between 52SFK and polySia. Consequently, we
solved the complex crystal structures of 52SFK with three oligoSia
glycans (DP3, -4, or -5) as well as the GD3 glycan (Neu5-
NAcα2,8Neu5NAcα2,3Galβ1,4Glc, representing a disialic acid
motif). All complex structures produced similar results, as shown
exemplary for DP3 in Fig. 4. Surprisingly, well-defined electron
density was found only for a single sialic acid moiety in the ca-
nonical binding pocket in all cases. The electron density around
O8 and its direction relative to the protein clearly indicate that it is
the nonreducing end of the glycan chain that is engaged, and the
observed binding mode is identical to the one observed for
monosialic acid. In all cases except for GD3, we observed addi-
tional electron density for a second sialic acid moiety projecting
from the pocket toward the solvent. The overall density for this
moiety is weaker, deteriorating from the glycerol group to the
pyranose ring and indicating increased flexibility. All structures
showed similar angles for the α-2,8-glycosidic linkage (Fig. S2).
Interestingly, the second sialic acid moiety does not seem to

Fig. 2. HAdV-52 SFK binds to polySia. (A) HAdV FK binding to immobilized
E. coli-derived polySia (colominic acid, DP ∼ 80–100). Relative absorbance is
shown. (B) Flow cytometry-based quantification of HAdV FK binding to
human neuroblastoma cells expressing (SH-SY5Y) or lacking (SK-N-SH)
polySia. (C) Flow cytometry-based quantification of 52SFK and 37FK binding
to SH-SY5Y cells after FK preincubation with increasing concentrations of
pentasialic acid (DP5). FK, fiber knob; LFK, long fiber knob; SFK, short fiber
knob. All experiments were performed three times with duplicate samples in
each experiment. Error bars represent mean ± SD. **P < 0.01; ***P < 0.001.
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contribute any direct contacts in the overall interaction, except for
a van der Waals contact between its N-acetyl group and E328.
This contact seems to cause a local decrease of electron density
and a slight rotation of the N-acetyl group. The third (and all
following) sialic acids could not be unambiguously traced in any of
the structures. To verify our observations in solution, we per-
formed saturation transfer difference (STD)–NMR spectroscopy
to screen for glycan protons of DP3 and DP5 that are consistently
placed within 5–6 Å of the protein (shown exemplary for DP3 in
Fig. 4 B and C). The spectrum of the glycans alone compared well
with the literature (52, 53). Since all of the sialic acid repeats were
in a highly similar chemical environment in solution, the respective
peaks overlap—with the exception of the nonreducing end, which
experiences an upfield shift. The experiment showed saturation
transfer occurring almost exclusively at the nonreducing end, while
the other moieties received only a very moderate spin saturation
occurring exclusively in the N-acetyl group region, which is con-
sistent with the contacts observed in the crystal structures. In the
case of the R316A mutant, which disrupts the canonical RGN
motif and prevents 52SFK attachment to sialic acid on A549 cells
(23), saturation transfer was completely abrogated. Together,

these results demonstrate that 52SFK engages polySia exclusively
via its canonical sialic acid binding site, without any additional
binding sites on the knob domain.

Transient Hydrogen Bonds and Electrostatic Effects Are Major
Determinants of 52SFK:PolySia Interactions. A length of more
than three sialic acid residues is required for a strong interaction
with 52SFK, as seen in our glycan array data (Fig. 1). According
to a cell attachment inhibition experiment, which does not un-
derlie the steric constraints of chip-bound probes, a DP of 3 was
sufficient to substantially decrease 52SFK binding at low con-
centration in solution. A decrease was also observed with DP2,
but only at higher concentrations (Fig. 5A). Similar results were
acquired from surface plasmon resonance experiments with
immobilized FKs and oligoSia in solution, where the biggest
increase in affinity was shown between DP2 and DP3 (Fig. 5B).
In combination with the structural data, these findings suggest
that effects other than classical directed short-range contacts
account for the increased binding affinity of higher-order polySia
compounds of DP3 or more. Given the polyanionic character of
polySia, we hypothesized that these effects might be caused by

Fig. 3. OligoSia efficiently reduces HAdV-52 virion binding to and infection of SH-SY5Y cells. Binding of (A) 35S-labeled HAdV-52 and (B) 35S-labeled HAdV-
5 virions to SH-SY5Y cells after preincubation with soluble monosialic acid (DP1) or pentasialic acid (DP5). Infection of SH-SY5Y with (C) HAdV-52 and (D)
HAdV-5 after preincubation with DP1 or DP5. The experiments were performed three times with duplicate samples in each experiment. Error bars represent
mean ± SD. *P < 0.05; ***P < 0.001.
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electrostatic interactions, which are nondirected and can occur
over longer distances than direct interactions such as hydrogen
bonds or van der Waals contacts. Indeed, an inspection of the
electrostatic potential of the 52SFK revealed a positively charged
rim located around the sialic acid binding site, which we termed
the “steering rim.” The rim is mainly formed by residues Q320,
R321, R316, and K349 (Fig. 6 A–D). According to in-solution
NMR studies, the polyanionic polySia seems to at least tran-
siently adopt a left-handed helical conformation (54). However,
polySia is expected to be rather flexible in solution due to its
linear, nonbranched structure and the conformationally less re-
stricted α-2,8-glycosidic linkage (42). In the DP3 complex
structure, the second sialic acid moiety is positioned above the
e-amino group of K349. We reasoned that if the polySia glycan
roughly followed the left-handed helical arrangement proposed

in the literature with energy-minimal glycosidic torsion angles
similar to those observed between the first two moieties (Fig.
S2), the carbohydrate chain would protrude away from the
protein surface into the bulk solvent (indicated in Fig. 6E). Since
such an arrangement is unlikely to enhance the affinity for polySia,
we performed an MD simulation of the complex between 52SFK
and DP5 on the microsecond timescale in explicit solvent.
Throughout this simulation, DP5 shows a flexible structure with
dynamic partial helical features (Movie S1). Consistent with the
results from our STD-NMR experiments, only the nonreducing
end is stably associated with the protein (Figs. 6E and 7 A and B).
However, the simulation shows that the other sialic acid residues
transiently approach the protein surface and form favorable
contacts with a variety of amino acids, most of which are located
in the steering rim and the closely adjacent R347 (Fig. 7 A–D).

Fig. 4. α-2,8-Linked oligoSias are engaged in the canonical binding pocket of HAdV-52 SFK via their nonreducing end. (A) Complex structure of 52SFK and
trisialic acid (DP3). Shown is a 2Fo − Fc map calculated at 1 σ (blue) and 1.5 σ (orange) after refinement. The nonreducing sialic acid moiety is colored in yellow,
and the adjacent moiety in green. The third sialic acid moiety could not be resolved. (B) Schematic representation of sialic acid in the α-conformation. The
positions of distinctive protons for NMR are indicated. (C) STD-NMR of 52SFK and DP3. Green box, DP3 alone; blue box, STD spectrum of the 52SFK:
DP3 complex; red box, STD spectrum of the R316A-52SFK:DP3 complex; nr, nonreducing end.
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While the sialic acid moieties adjacent to the nonreducing end
mainly interact with a subset of residues located in the canonical
pocket and steering rim, the moieties toward the reducing end
show a much more variable interaction pattern with low occu-
pancies for individual contacts. In total, however, the large ma-
jority of contacts are being formed with the canonical pocket or
steering rim, respectively. The dimensions of DP5 are similar to
the combined radius of the binding pocket and steering rim (Fig.
7 A and B). In particular, the fifth sialic acid engages in a large
number of low-intensity interactions with residues outside the
rim according to our simulations (Fig. 7 C and D), which might
explain why the enhancing effect of additional Sia moieties is
fading beyond DP5 (Fig. 1) and why colominic acid is only
moderately more potent than DP5 given the size difference (Fig.
5B). Over the time course of the simulation, the sialic acids
display an alternating pattern of transient interactions, and there
are most of the time at least two pyranoses that directly interact
with the protein (Fig. 7E). This avidity effect is only possible if
there are at least three Sia moieties. The average number of
favorable interactions found in the canonical pocket and the
steering rim per residue are shown in Fig. 7F. Overall, the data
agree remarkably well with the other experiments and strongly
suggest that transient contact interactions of the third to fifth
sialic acid moiety are responsible for the increased binding af-
finity, while the nonreducing sialic acid is a necessary feature and
engaged in a shape-complementary binding site. The involve-
ment of additional noncontact electrostatic interactions could
further contribute to binding affinity (Fig. S3). Despite the ex-
cellent agreement between the experiments and the results
derived from MD simulations, it should be noted that even

sampling of conformational space on the microsecond timescale
might not be long enough to sample all possible interactions
between the HAdV-52 SFK and oligoSia. Therefore, the results
from MD simulations should be taken with some caution.
To provide additional experimental support for our hypothesis,

we produced FKs with mutations in the steering rim and analyzed
knob binding to polySia-expressing SH-SY5Y cells. The K349A
mutant almost completely lost its cell binding capacity, and similar
effects were observed for the R321Q and analogous mutants (Fig.
7G). When mutated, the residue R321 can no longer counterbal-
ance the charge of the proximal side chain of E348, which then
likely repels the polyanionic polySia and might thus contribute to
an unexpectedly strong loss in binding. Indeed, if E348 is also
mutated to a noncharged residue, the effect of the R321Q muta-
tion is largely reversed (Fig. 7G). This implies that R321 interacts
more weakly with polySia than R316 and K349 do, which fits well
with the assumption of a flexible “pseudohelical” arrangement.

The PolySia Binding Site and the Steering Rim Are Conserved in
Closely Related Simian Adenoviruses. The polySia-binding RGN
motif is conserved in the short fibers of other closely related
members of species HAdV-G: simian adenovirus (SAdV)-1, -2,
-7, and -11, as well as SAdV-19 (SAdV-C, which acquired its
short fiber from an unknown type/species) (55), but it is not
found in any other known nonhuman or human AdV, including
the SFKs of HAdV-40 and -41 (HAdV-F) (Fig. S4A). Interest-
ingly, the three positively charged residues forming the steering
rim are also functionally conserved in these SAdV types, but in
different permutations (RRK, RKK, RRR) (Fig. S4A). Another
functionally important residue is Q320, which aids in the pro-
duction of an electropositive field in the steering rim and is
functionally conserved in all of the SAdV types of HAdV-G (but
not in SAdV-19). No other HAdV FK with known structure
exhibits a comparable steering rim (Fig. S4B). In fact, the lateral
part of the knob is typically used for protein interfaces, for ex-
ample, for CAR or CD46 (56). However, since the two fibers of
HAdV-52 display a clear division of labor, the 52SFK likely
serves as a purely Sia-binding FK and thus can accommodate
Sia-containing glycans at a more prominently exposed lateral
binding site than for example on HAdV-37. In the HAdV-41
SFK, which is the only other structurally characterized SFK,
the disordered G strand is thought to obstruct the electropositive
patch on the side (57), making a Sia interaction unlikely. HAdV-5
possesses an electropositive patch but lacks a shape-complementary
Sia-binding site and has not been reported to use sialic acid as at-
tachment receptor. Instead, it has been used as a negative control in
many experiments (Figs. 2 and 3). This further supports our hy-
pothesis that polySia binding is a specific ability limited to a small
subset of AdVs. We assayed the polySia specificity and binding
capacity of FKs belonging to this subset in a cell attachment assay
with cells expressing or lacking polySia. All of the examined short
knobs except that of SAdV-2 SFK bound better to polySia-
expressing cells than to the control cell line (Fig. 8). One possible
explanation for the inability of SAdV-2 SFK to bind polySia,
despite a conserved steering rim, could be that this knob harbors
a sequence more distantly related to the other knobs (Fig. S4C),
which might result in a different overall arrangement of the
residues. Nonetheless, 52SFK displayed the strongest discrep-
ancy between SH-SY5Y and SK-N-SH cells, indicating a more
specific interaction of 52SFK with polySia rather than a general
high binding to both cell lines as seen for SAdV-7SFK (Fig. 8).

Discussion
We show here that HAdV-52 specifically engages cell surface-
expressed polySia via its SFK, employing long-lived direct pro-
tein–carbohydrate contacts as well as transient longer-range
electrostatic steering forces. With this study, we have identified
an additional role of polySia, as a cellular receptor for a human

Fig. 5. A DP of 3 (or more) strengthens the interactions with 52SFK. (A)
Flow cytometry-based quantification of 52SFK binding to SH-SY5Y cells after
FK preincubation with increasing concentrations of oligoSia. The experiment
was performed three times with duplicate samples in each experiment. Error
bars represent mean ± SD. *P < 0.05, **P < 0.01, and ***P < 0.001. (B)
Surface plasmon resonance analysis of 52SFK binding to disialic acid (DP2),
trisialic acid (DP3), tetrasialic acid (DP4), pentasialic acid (DP5), and E. coli-
derived polySia (DP ∼ 80–100).
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pathogenic virus. Although a growing number of polySia-binding
proteins have been identified (58–64), there are relatively few in-
depth structural analyses on the determinants of specificity for
polySia, and to date no other polySia-binding protein has been
reported to use the unusual binding mode presented here. We
therefore believe that our analysis provides a useful framework

for a better understanding of general aspects of the interactions
of polySia with its binding partners, and it remains to be seen
whether polySia reacts with other binding partners in a manner
similar to that predicted for HAdV-52.
PolySia was identified as a potential receptor for 52SFK by

glycan microarray screening (Fig. 1). In that same array, 52SFK

Fig. 6. Representation of the HAdV-52 SFK steering rim. Poisson–Boltzmann electrostatic potential isosurfaces and field lines for the protein were calculated
at ±1, ±0.75, and ±0.5 kT/e. The positively charged rim can be seen in blue. Bound trisialic acid (DP3) is shown as green sticks. (A) Side view. (B) Top view
including field lines. (C) Detailed view of the binding pocket including field lines. (D) Detailed view of the binding pocket showing the relative placement of
glycan and steering rim residues. Residues of the steering rim are highlighted as sticks. R321 and E348 are forming a salt bridge, as do R316 and the carboxyl
group at the nonreducing end of DP3. The orientation is the same as in A. (E) Side view of the interaction site. The second sialic acid moiety is projecting away
from the protein surface. The green arrow indicates the expected direction of the adjacent sialic acid moieties. (D and E) The nonreducing sialic acid moiety is
colored in yellow, and the adjacent moiety in green.
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Fig. 7. MD simulation of the interactions between 52SFK and DP5. Three pentasialic acid (DP5) molecules interacting with the three identical binding pockets
of 52SFK were simulated over a time of 2 μs. (A and B) The interaction profile of DP5 with the protein is mapped onto 52SFK in a “heat map” style. Non-
interacting residues are colored in gray, and interacting residues are scored from white (few interactions) to brown (strongly interacting). (A) All three pockets
are shown from a top view. (B) One of the simulated binding pockets is shown from a side view. (C and D) Detailed interactions contributed by the additional
sialic acid moieties in polySia. Amino acids of the canonical binding site are boxed in pink, and residues of the steering rim in orange. (C) Residue–residue
interaction matrix showing the average number of favorable atom contacts between individual amino acids and sialic acids (SIA 2–5, counted from the
nonreducing end) over the whole simulation. (D) Analogous plot showing the average number of hydrogen bonds. (E) Time-resolved trajectory plot of the
number of atom contacts per sialic acid residue (numbered from the nonreducing end) in the three binding sites (individual rows) averaged over 2.5-ns
increments. Atom contacts are counted as favorable if one of the following conditions are satisfied: H-bond donor/acceptor atom distance <3.2 Å or C–C atom
distance of <4.2 Å. The average number of interactions is depicted according to the color legends on the Right for each panel. (F) Summary of the interactions
of polySia with the 52SFK canonical pocket and steering rim. The number of favorable atom contacts and hydrogen bonds per residue is averaged over the
three binding sites. Boxing of the amino acid residues is analogous to C and D; sialic acids are boxed in gray. (G) Flow cytometry-based analysis of HAdV-52 SFK
mutant binding to polySia-expressing SH-SY5Y cells. The experiment was performed three times with duplicate samples in each experiment. Error bars
represent mean ± SD.
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showed weaker binding to a number of glycans with single cap-
ping sialic acids, mainly α-2,3-linked, as we described in our
previous study (23). In a cellular context, however, blocking or
removing α-2,3-linked sialic acids from the cell surface had only a
minor effect on HAdV-52 attachment (23). Thus, in comparison,
polySia is a more effective ligand. The topology of the polySia
binding site of HAdV-52 allows it to maintain a large pool of
glycan ligands while developing increased affinity for a specific
subset of surface molecules using just a single binding site.
52SFK can engage differently linked sialylated glycans, which
bind with their terminal, nonreducing sialic acid moieties to the
same epitope using identical direct contacts. The strong prefer-
ence for α-2,8-linked polySia compounds is generated through a
multitude of transient contacts between residues surrounding the
binding site and sialic acid residues that are distal to the non-
reducing end of the polySia chain. These transient contacts en-
sure that most of the time at least two Sia moieties are
simultaneously associated with the protein, providing an avidity
effect. In this manner, monosialylated and disialylated glycans
are still able to interact with the knob with lower affinities, but
long-range electrostatic and transient polar interactions enable
higher-affinity binding of oligosialic acids with a higher DP
(DP ≥ 3). In a physiological context, this might reflect the ability
of HAdV-52 to adapt to different surface glycan landscapes
presented by different cells, hosts, or even commensal bacteria.
In humans, it is unknown in which contexts HAdV-52 might
encounter polySia for cell attachment. The two most efficient

attachment factors of HAdV-52, polySia and CAR, have differ-
ent expression profiles in the human body and are recognized by
the two separate HAdV-52 fiber proteins. In light of its limited
genome size, the virus likely draws an evolutionary advantage
from being able to interact with two attachment factors. The
close evolutionary relationship between HAdV-52 and simian
AdVs, and the polySia-binding capacity of these AdVs (Fig. 8),
also indicate that polySia might play a role as a cellular attach-
ment factor for viruses that infect other mammals. Sialic acid-
containing glycans are known to serve as attachment factors for a
number of animal AdVs such as turkey and canine AdV (65, 66).
The observed interaction between HAdV-52 and polySia there-
fore provides an interesting angle to the known rules that govern
virus:glycan receptor interactions, which may be translated to
other glycan-binding pathogens.
PolySia has been detected in a number of cancer tissues by

immunohistochemical staining, and its expression is frequently
associated with high tumor aggressiveness and invasiveness,
resulting in poor clinical prognosis (43, 67, 68). Cancers expressing
polySia are also often recurrent and nonresponsive to conven-
tional treatments (43), and therefore attention has been drawn to
novel therapeutic approaches, including AdV vectors for gene
delivery and the use of modified oncolytic AdVs. In a recent ap-
proach, the FK of HAdV-5 was substituted with endosialidase NF,
a tail spike protein from the bacteriophage K1F to generate an
efficient polySia-targeting oncolytic vector (69). HAdV-52, a
naturally occurring, unmodified HAdV that already binds polySia,
could form the basis for a viable alternative strategy for de-
veloping oncolytic vectors, especially in the light of its low sero-
prevalence rates and reduced liver tropism (23, 70). The specificity
for polySia can also be increased further by mutating K349 to an
arginine (Fig. 7G). With this in mind, we suggest that HAdV-52–
based vectors could have a potential for treatment of cancers
characterized by elevated polySia expression.

Materials and Methods
Please see SI Materials and Methods for information regarding cells, viruses,
and glycans used in the study, and for detailed descriptions of production of
fiber knobs, glycan microarray, ELISA, flow cytometry, virus binding and
infection experiments, STD-NMR, crystallization, surface plasmon resonance,
MD simulations, and statistical analysis.
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