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   Abstract: Single cell RNA-Seq technology enables the assessment of RNA expression in individual 
cells. This makes it popular in experimental biology for gleaning specifications of novel cell types as 
well as inferring heterogeneity. Experimental data conventionally contains zero counts or dropout 
events for many single cell transcripts. Such missing data hampers the accurate analysis using stand-
ard workflows, designed for massive RNA-Seq datasets. Imputation for single cell datasets is done to 
infer the missing values. This was traditionally done with ad-hoc code but later customized pipelines, 
workflows and specialized software appeared for this purpose. This made it easy to benchmark and 
cluster things in an organized manner. In this review, we have assembled a catalog of available RNA-
Seq single cell imputation algorithms/workflows and associated softwares for the scientific communi-
ty performing single-cell RNA-Seq data analysis. Continued development of imputation methods, es-
pecially using deep learning approaches, would be necessary for eradicating associated pitfalls and 
addressing challenges associated with future large scale and heterogeneous datasets. 
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1. BACKGROUND 

 Single cell RNA sequencing (RNA-Seq) is a cutting-
edge technique, introduced in 2009, that can dissect the cel-
lular heterogeneity of a plethora of cells [1]. Single cell 
RNA-Seq plays a phenomenal role in the identification of 
specific markers of same cell type, fluctuating states of 
same phenotypic cells, intra-population heterogeneity at 
microscopic resolution, transcript dynamicity and cell to cell 
variability of transcriptome [2, 3]. It has facilitated the con-
struction of an extensive atlas of phenotypically similar hu-
man cells [4] and paved the way for researchers to initiate 
the “The Human Cell Atlas” project [5, 6]. It aims to map 
and quantify all cell types in the body, which would be use-
ful for diagnosis and disease treatment. Above all, single-
cell study supports unbiasedness in diverse research areas, 
treatment of many diseases by unmasking the presence of 
rare sub-populations of cells (i.e. cancer stem cells), under-
lying mechanisms in common diseases (i.e. kidney diseases) 
[3], reconstruction of genetic lineage trajectories, embryonic 
development [7], evolution and genomic diversity of bacte-
rial ecosystem [8], etc. 
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 All this is not without problems and single-cell sequenc-
ing has to deal with several challenges such as drop-out 
events and high level of noise because small amounts of RNA 
from a single-cell requires amplification, which is susceptible 
to damage, contamination and distortion [9]. Minimal expres-
sion may be read as a zero by computer and hence, loss of 
information impedes proper downstream analysis. To deal 
with this problem, computer programs based on logical and 
coherent algorithms are required for replacing missing or neg-
ligible values with substitute values, derived using certain 
formulas (either based on prior information or trained on da-
taset under study). This derivation of missing values and as-
sociated information is called imputation and is a critical 
component of single-cell data analysis.  
 An algorithm is a defined set of clear and implementable 
instructions on a computer. Usually, it addresses a problem 
and pertains to providing a solution through computation. 
With an avalanche of data from sequencing platforms, algo-
rithms and programs to address machine derived biological 
data challenges and solve problems in computational biolo-
gy have been in the limelight. Single cell technology pro-
duces a bulk of data but the issue of missing data is there 
which obstructs accurate transcriptomic studies. Algorithms 
have been designed to address this shortfall and impute 
missing or drop out values. We aim to provide an overview 
of such algorithms, which could be useful for scientists 
working with single cell RNA-Seq. 
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2. LITERATURE SEARCH AND CONSPECTUS 

 We searched for ‘single cell’ and ‘imputation’ in Pub-
med (dated 22 April, 2020). Inclusion and exclusion criteria 
are mentioned in (Fig. 1). Imputation methods for inferring 
proteins from RNA-Seq and phylogenetic coupled genotype 
analysis were also eliminated from the study. Only the ones 
with imputation analysis specific to RNA-Seq data were 
retained and categorized into three major types according to 
Lahnemann et al. [10], (1) model based, (2) data smoothing 
and (3) data reconstruction (low-ranked matrix-based or 
deep learning) methods. Algorithms integrating several ap-
proaches and falling under more than one category (such as 
Seurat falling under random forest-based machine learning 
or low-ranked matrix-based method), were listed only once. 
Programs such as EnImpute [11], using an ensemble of 
methods for an output combined from several software was 
not listed. For chosen approaches, the full text was down-
loaded for each algorithm/tool and programming language, 
operating system (Windows/Unix), working link infor-
mation was obtained. Method and implementation of the 
workflow was taken into account and acquired information 
was summarized. To the best of the authors knowledge, this 
is the first comprehensive review of single cell RNA-Seq 
software. 

3. ALGORITHMS EMPLOYING MODEL-BASED 
APPROACH 

 The primary group of algorithms enforce model-based 
approach for inferring the data sparsity and hence, imputa-
tion. Such probabilistic models may or may not be able to 
differentiate amid technical and biological zeros. Usually, 
gene expression is imputed for technical ones if they are 
able to separate both. Eight such algorithms were identified 
listed in (Table 1). The first model-based method specific to 
single cell RNA-Seq data was presented in a JMLR work-
shop in 2016 by the name of BISCUIT [12](Bayesian Infer-
ence for Single-cell ClUstering and ImpuTing). It is an im-
plementation of Dirchlet process mixture model, to itera-
tively normalize and cluster imputation expression. This 
was the initial, wholly Bayesian model for grouping, nor-

malizing and imputing single-cell expression data. Biologi-
cal and technical variation was resolved without spike-in 
and gaussian was implemented for gene-cell distribution. 
Imputation was inferred using Gibbs sampling. Following 
pursuit, SAVER [13] (Single-cell Analysis via Expression 
Recovery) was reported, which coalesces information across 
genes to infer transcript counts. Adaptive shrinkage using a 
Poisson-Gamma or negative binomial model is used for the 
purpose. SAVER-X [14] (Single-cell Analysis via Expres-
sion Recovery via harnessing eXternal data) is an extension 
of the program and uses a Bayesian approach coupled to an 
autoencoder. This makes learned analyses from UMI counts 
possible. Gene-gene relation information is transferred 
across heterogeneous data (varying conditions, species etc) 
to impute a new dataset. It gives uncertainty co-efficient but 
associated computational intensity makes it less useful for 
large datasets. It is now implemented as a web app as well. 
ScImpute [2] is a scalable method which performs imputa-
tion only on dropout entries by probability calculation of 
specified gene in similar cells. This is done by fitting a 
Gamma-Gaussian mixture model on cell clusters. It can ana-
lyze heterogeneous datasets and is robust but does not pro-
vide uncertainty quantification values and may oversmooth 
the data. The package utilizing this algorithm is Granatum 
[15]. scRecover [16], uses zero-inflated negative binomial 
(ZINB) regression for maximum likelihood-based expres-
sion imputation. It docks values with ScImpute and other 
algorithms (SAVER, MAGIC) for final imputation. scUnif 
[17] is a supervised learning method, employing Bayesian 
approach with expectation–maximization algorithm, cou-
pled with Gibbs sampling technique. It analyzes single as 
well as bulk data. Dropout inference and deconvolution are 
concurrent in bulk data. VIPER [18] accomplishes iterative 
inference of imputation using scant set of neighboring cells. 
A nonnegative sparse regression model is used for the esti-
mate of expression. It is computationally efficient but does 
not provide uncertainty co-efficients for imputation values. 
scGAIN [19] applies adversarial learning to construct gen-
erative network model for imputing. Generator and the dis-
criminator networks are trained on batches of 128 cells in 
each round, followed by mask matrix formation. It identifies 

 
Fig. (1). An outline of literature search for this review. (A higher resolution / colour version of this figure is available in the electronic copy of the 
article). 
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right entries for imputation and spawned data points, with 
characteristics analogous to existing data help infer data 
distribution. Mean expression determines zero values of 
single-cell data. bayNorm [20] applies a novel Bayesian 
approach for standardizing data features and deducing ex-
pression features. Informed data structures consolidate accu-
racy and sensitivity in differential expression study. It can 
be used for UMI and non-UMI based data. A likelihood 
function coupled with binomial model of mRNA transcript 
capture is utilized after scaling, enabling it to capture mean-
variance and mean-dropout relationship. Generated tran-
script distributions (2D using point estimate from posterior 
or 3D using posterior distribution) resemble fluorescence in 
situ hybridization (FISH) detection of single molecules. It 
exhibits high scalability coupled with computational effi-
ciency. It is also useful for heterogeneous data. 

4. ALGORITHMS EMPLOYING DATA SMOOTHING 
APPROACH 

 Data smoothing is a technique to eradicate noise and 
filter out important patterns from a data set. Different mod-
els employ random, exponential smoothing or variants of 
these approaches. For single cell data imputation, smoothing 
is achieved through the identification of the nearest neigh-
bors of a cell. The second class of algos for single cell data 
imputation employs this approach. Seven different algo-
rithms and, if present, associated softwares were identified 
for imputation of single cell RNA-Seq data, using the 
smoothing approach listed in (Table 2). In KNN-smoothing 
algorithm [21], transcript counts are unified and imputation 
is conducted via discreet smoothing or variance-stabilization 
of the expression profiles. It is scalable and applicable to 

heterogeneous datasets. For large datasets, having a higher 
number of similar cells, a modified version of the approach 
called KNN-smoothing 2 is implemented. In this method, 
slightly smoothed data from nearby cells are projected onto 
first principal components enabling the differentiation of 
heterogeneous data. DrImpute [22] estimates dropout 
events using a hot deck, matrix construction method. To 
swiftly process large datasets, it does not compute large 
cell-cell distance matrices but instead uses sampling-based 
algorithm. The CellBench software (available at: 
https://github.com/shians/ cellbench) [23] implements 
KNN-smooth and DrImpute. Output is delivered in tabular 
form. MAGIC / Markov Affinity-based Graph Imputation 
of Cells [24] has the capability to impute complex and non-
linear contacts of neighboring cells while retaining clusters 
and data structure. This augments group interactions of cells 
and genes (2D as well as 3D interactions). This method is 
computationally efficient, however, it does not provide un-
certainty measurement and projection of data on low dimen-
sional space, causing it to lose variability across cells. 
Moussa and Mandiou [25], later introduced an iterative al-
gorithm, called LSImpute, based on previous algorithms. 
Instead of keeping a fixed quantity of nearest cells for impu-
tation, numbers are altered based on least similarity thresh-
old. Clusters of cells were formed based on median and 
mean values of neighbouring cells (n=1-10 cells per round). 
Clusters are then assembled in corresponding centroids and 
these are added to the previous unaccounted cells. The pro-
cedure is repeated using Cosine similarity metric of Hornik 
et al. [26] or Jaccard (available at 
http://cnv1.engr.uconn.edu:3838/LSImpute/) for each itera-
tion, with a set high or low threshold (0.65-0.95). Similar 
results have been obtained for both metrics. This 

Table 1. Features of methods employing model-based approach. 

Serial 
No. 

Software/ 
Method 

OS Interface Programming  
Language 

Link 

1 BISCUIT Windows, 
Linux 

Commandline R https://github.com/sandhya212/BISCUIT_SingleCell_IMM_ICML_201
6 

2 SAVER Windows/Linux Commandline R https://github.com/mohuangx/SAVER 

3 SAVER-X Windows/Linux 
and web app 

Commandline R https://github.com/jingshuw/SAVERX, 
https://singlecell.wharton.upenn.edu/saver-x/ 

4 ScImpute Windows, 
Linux, web 

server GRAN-
ATUM 

Commandline 
as well as web 

application 

R, shiny for 
web server 

https://github.com/ 
Vivianstats/scImpute, http://garmiregroup.org/granatum/app 

5 scRecover Windows, 
Linux 

Commandline R https://miaozhun.github.io/scRecover/ 

6 scUnif Windows, 
Linux 

Commandline Python, R https://github.com/lingxuez/URSM 

7 VIPER Windows, 
Linux 

Commandline R https://github.com/ChenMengjie/VIPER 

8 scGAIN Windows, 
Linux 

Commandline python https://github.com/mgunady/scGAIN 

9 bayNorm  Windows/Linux Commandline R https://github.com/WT215/bayNorm 
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Table 2. Features of methods employing data smoothing approach. 

Serial 
No. 

Algorithm/Method Interface OS Programming 
Language 

Link 

1 DrImpute Command 
line, Cell-

Bench 

Windows/Linux R https://github.com/ikwak2/DrImpute 

2 MAGIC / Markov 
Affinity-based Graph 
Imputation of Cells 

Command 
line 

Windows/Linux Python, Matlab, R https://github.com/KrishnaswamyLab/MAGIC 

3 KNN-smoothing Command 
line, Cell-

Bench 

Windows/Linux Python, Matlab, R https://github.com/yanailab/knn-smoothing 

4 LSImpute Web applica-
tion 

Web application Java script, Shiny http://cnv1.engr.uconn.edu:3838/LSImpute 

5 2Dimpute Command 
line 

Windows/Linux R https://github.com/ 

zky0708/2Dimpute 

6 scNPF Command 
line 

Windows/Linux R https://github.com/ 

BMILAB/scNPF. 

7 netImpute Command 
line 

Linux Python http://www.cs.utsa.edu/~software/netImpute/ 

8 G2S3 Command 
line 

Windows, Linux Matlab, R https://github.com/ZWang-Lab/G2S3 

 
demonstrates that median imputation is disposed to a con-
formist approach and provides improved performance by 
minimizing dropout effects, decreasing data sparsity, reduc-
ing spurious expression and overimputation. 2DImpute [27] 
is another workflow that detects co-expression signatures by 
means of unsupervised ‘attractor metagene’ algorithm [28] 
i.e. it does not require knowledge of the preceding number 
of cell subpopulations. It also does not make random as-
sumptions of statistical methods for inferring expression. 
Spurious or dropout-suspected events are distinguished from 
true biological zeros using Jaccard distance matrix. Imputa-
tion is done by leveraging correlation among gene-gene and 
cell-cell (Inter or intra-cell) relationship. scNPF [29] takes 
into account cell-cell and gene-gene interactions through a 
network-based propagation and fusion approach. Previous 
knowledge is combined with topology of network (through 
random walk simulation). Initial expression signal is 
smoothed and diffused through network, denser propagated 
matrix and better values are obtained for expression. Two 
modes of network propagation based on Random Walk with 
Restart (RWR), including the priori mode (using public mo-
lecular networks as base and retaining top 10% interactions) 
and the context mode (utilizing WCGNA package) [30] are 
utilized. Context mode relies solely on available RNA-Seq 
data and no priori interaction network is employed. Multiple 
networks are then fused to obtain a useful expression net-
work based on shared and complementary network 
knowledge. netImpute [31] utilizes RWR method to fine-
tune the gene expression of a specified cell, using gene-
gene, protein-protein and cell-cell interaction network for 
imputing expression. Although this method has similar roots 
as other smoothing algos, network selection and diffusion 

methods differ, which lead to variation in performance. Ap-
plication of log transformation (with added pseudo count 
value to avoid infinite values) minimizes the impact of a 
very large values in data. Another recently developed G2S3 
method [32], infers scant signals and builds gene graph net-
work for imputation. Expression levels are smoothed using 
non-linear correlation and graph is optimized. After this, 
random walk aimed transition matrix is generated and gene 
expression level is imputed through weighed average ex-
pression levels of gene network in the graph. 

5. ALGORITHMS EMPLOYING DATA RECON-
STRUCTION APPROACH 

 The third algorithmic approach initially pinpoints a la-
tent space rendering of the cells, by capturing linear associa-
tions (low-rank matrix-based methods) or non-sequential 
relationships (deep-learning methods). Expression matrix is 
then reconstructed from the low-rank or predicted latent 
spaces, which then cease to be insignificant. Seven low rank 
matrix-based algorithms were identified (Table 3). 

5.1. Low-Ranked Matrix-based Methods 

 Among these, Adaptive-threshold Low-Rank Approxi-
mation (ALRA) by Linderman and Kluger [33], is a scalable 
process for retrieval of single cell RNA-Seq expression. 
Selective imputation of technical zeroes is done through a 
non-negative and correlatingly structured expression matrix. 
Matrix is approximated via a singular vector decomposition 
method, followed by a thresholding. PBLR [34] employs 
incomplete or non-negative matrix factorization (NMF), to 
create a concurrent matrix. Cell-cell distances are calculated
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Table 3. Features of methods employing low-ranked matrix-based approach. 

Serial 
No. 

Algorithm/Method OS Interface Programming 
Language 

Link 

1 ALRA Windows, 
Linux, 
Seurat 

webserver 

Commandline 
and implement-

ed in Seurat-
Web 

R https://github.com/nasqar/SeuratWizard/, 
http://nasqar.abudhabi.nyu.edu/SeuratWizard 

2 mcImpute Windows, 
Linux 

Commandline Matlab https://github.com/aanchalMongia/McImpute_scRNAseq 

3 PBLR Windows, 
Linux 

Commandline Matlab http://page.amss.ac.cn/shihua.zhang/software.html 

4 scRMD Windows, 
Linux 

Commandline R https://github.com/XiDsLab/scRMD 

5 scHinter Windows, 
Linux 

Commandline Matlab https://github.com/BMILAB/scHinter 

6 CMF-Impute Windows, 
Linux 

Commandline Matlab https://github.com/xujunlin123/CMFImpute 

7 netNMF-sc Windows, 
Linux 

Commandline Python https://github.com/raphael-group/netNMF-sc 

 
using Spearman, Pearson and Cosin metrics. Matrices are 
transformed to affinity matrices, with 20 rounds of NMF 
application on each matrix. Imputed matrices are merged to 
get a consolidated one and then fed as the input of hierar-
chical clustering. Optimization is done via Alternating Di-
rection Method of Multipliers (ADMM) algorithm [35, 36] 
and submatrices/sub-populations are inferred. mcImpute 
[37] is a matrix completion focused workslow and imputes 
dropouts from single cell expression values through iterative 
thresholding. Raw reads are standardized by library size, 
sieved for expression, pseudo-count of one is added and 
Log2 transformed expression matrix is fed to Nuclear-norm 
minimization algorithm. The expression is recovered 
through convex optimization and distribution is not taken 
into account. Synthetic or planted drop-outs in the expres-
sion matrix can be retrieved through this approach. It can 
handle heterogeneous data. scRMD [38] utilizes matrix de-
composition for imputation. Nominal assumptions (i.e. low-
rankness and the sparsity) guided by random matrix theory 
are accounted for and scRMD can resolve dropouts with 
expression matric values of zero > 80%. scHinter [39] is 
tailored for imputation on limited sample size data. A 
ranked ensemble distance technique (with consensus dis-
tance from Euclidean, Manhattan, Cosine, Pearson, Spear-
man metrics) and synthetic minority oversampling method 
(SMOTE) for aleatory or hierarchal interpolation are uti-
lized. Iteration or multi-layer random interpolation improves 
the accuracy of results. CMF-Impute [40] uses collabora-
tive matrix factorization for imputation. Distance (Euclide-

an, Chebyshev) and correlation (Pearson’s correlation) ma-
trices are used for finding cell-cell and gene-gene similarity. 
Two feature matrices are obtained from matrix decomposi-
tion algorithms and consistency is quantified. netNMF-sc 
[41] uses the network as well as transcript count information 
for making low dimensional cell and gene matrix. A net-
work-regularized NMF is combined with a graph Laplacian 
for treating excess zeros in transcript count matrices having 
a dropout rate above 60%. Value for each entry is imputed 
rather than just considering values for null entries and it is 
adept to gather information from any gene-gene interaction 
network, instead of inferring parameters from a trained pro-
tein-protein interaction. A low-dimensional transcript count 
matrix is obtained that can be used for grouping discrete 
cells or imputing gene clusters with zero and non-zero val-
ues. It has been observed that cumulating representative 
networks, boosts performance of imputation algorithm. 

5.2. Deep Learning Methods 

 In the case of deep-learning algorithms (e.g. ones em-
ploying variational autoencoders), the imputed data (i.e. 
reconstructed expression matrix) along with predicted latent 
space can be used for further analyses, but it is typical to 
only use imputed data for downstream processing. Nine al-
gorithms employing deep learning methodology were identi-
fied from the literature (Table 4). Among these, AutoImpute 
[42] applies a state-of-the-art deep learning technique and 
imputes expression using sparse gene expression matrix. A 
latent factor model based on over complete autoencoders
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Table 4. Features of methods employing deep learning approach. 

Serial 
No. 

Algorithm/Method Interface Programming 
Language 

Link 

1 AutoImpute Linux Python, R https://github.com/divyanshu-talwar/ 

AutoImpute 

2 ScVI Linux Python https://github.com/YosefLab/scVI 

  DCA Linux Python https://github.com/theislab/ 

dca 

3 DeepImpute Linux Python https://github.com/lanagarmire/DeepImpute 

4 SAUCIE Linux Python https://github.com/KrishnaswamyLab/SAUCIE/ 

5 scScope Linux Python https://github.com/AltschulerWu-Lab/scScope 

7 deepMc Linux, Win-
dows 

Matlab https://drive.google.com/drive/folders/1TMD8sjPXlpe5V-
3EAi38aFHQoy1gXd6h 

8 Deconvolution through 
saliency maps 

Linux Python https://gitlab.com/cphgeno/expression_saliency 

9 LATE/TRANSLATE Linux Python https://github.com/audreyqyfu/LATE 

 
(type of neural network) is employed. Autoencoder entails a 
coder (which inputs the value with sigmoid activation func-
tion) and decoder (which outputs expression), with values 
regularized to avoid overfitting. A decreased loss and insen-
sitivity to the peripheral gene expression distribution is 
characteristic of this method. The network is trained by 
means of gradient descent with minimal cost. Iterations are 
carried out and convergent imputation values are obtained at 
the end. ScVI [43] is a scalable method utilizing probability 
to impute expression of drop outs. scVI amasses information 
across similar cells and genes via stochastic optimization 
coupled with deep neural networks. Distribution values be-
hind the observed expression are approximated and expres-
sion imputation is inferred. Even though the initial objective 
of ScVI was not imputation but gene filtering (~ top 700 
variable genes) also facilitated accurate imputation. It is 
computationally efficient but more suited to homogeneous 
datasets. DCA [44] is an abbreviation of deep count autoen-
coder. It is another workflow that uses neural networks to 
denoise single cell RNA-Seq data. DCA accounts for data 
sparsity, count distribution and overdispersion using a ZINB 
model. Non sequential gene-gene interactions are deduced 
and the process scales linearly with the quantity of cells 
with or without zeros inflation. DCA can handle heteroge-
neous datasets but a limitation is that it is computationally 
intensive. DeepImpute [45] is a scalable method which uses 
sub-neural networks with correlated genes as input layer. 
Specific target genes are not used as direct input, to reduce 

overfitting. A dense layer consisting of 256 neurons is the 
primary hidden layer followed by a dropout layer with 20% 
dropout rate for misfits. Output layer is composed of to-be 
imputed target genes and their subsets (default N = 512). 
This method is computationally efficient. Deconvolution 
using saliency maps [46] is a method which uses autoencod-
er neural networks to count single cell RNA-Seq expression. 
This method detects the expression signal with perturbed or 
zeroed out input. Four layers, with dimensions 128, 64 and 
128 were used for training autoencoders. Two layers are 
specified for encoding and two for decoding. Xavier initiali-
zation for initial weighing is followed by Poisson negative 
log-likelihood loss function for training the neural network. 
Captured information is deconvoluted through saliency 
maps. SAUCIE/ Sparse Autoencoder for Unsupervised 
Clustering, Imputation, and Embedding [47] is a scalable 
technique based on different layers and extracts structure 
from single-cell RNA-Sequencing data. Autoencoder neural 
network for unsupervised learning is employed and latent 
layer assigns digital codes, clusters input, processes near-
binary inactivated values using dimensionality reduction. 
Denoised data is regularized and outer layer yields encoded 
cluster identifications. scScope [48] is a scalable, deep 
learning method with a self-correcting capability. It obtains 
imputations for zeroed entries of single cell RNA-Seq data. 
Iterations are performed using multilayered neural networks 
for imputing zero-valued entries of input single cell RNA-
Seq data. Phenograph (https://github.com /jacoblevine/  
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PhenoGraph) is used for subpopulation discovery. deepMc 
or deep Matrix completion [49] is grounded on deep matrix 
factorization and deep dictionary learning methods. It does 
not account for distribution for gene expression. Gene de-
tected with more than 3 reads (in at least 3 cells) is consid-
ered expressed. Inferred matrices are normalized and 1000 
genes having high-dispersion coefficient of variance are 
reserved for imputation followed by log2 transformation of 
expression data. LATE/TRANSLATE [50] is a parametric 
deep learning method for imputation. Arbitrary starting val-
ues of the parameters are used for training autoencoder 
(LATE algorithm) while extension of the method is 
TRANSLATE (TRANSfer learning with LATE), which 
utilizes gene expression (reference data set) for training au-
toencoder. Input is a sequencing read count data matrix (cell 
IDs=row names; gene IDs=column names) in .csv, .tsv 
or .h5 format. Output is in .hd5 format, with the same layout 
as input. These algorithms are extremely scalable (can pro-
cess >1 million cells in a few hours) on a graphics pro-
cessing unit. 

6. PERSPECTIVE 

 For majority of transcripts, single cell RNA-Seq data 
often contains a large fraction of zero counts due to drop out 
events. The term “dropout” is often used to denote observed 
zero values in single cell RNA-Seq data. Dropout typically 
integrates two different types of zero values i.e. false and 
true. False one is due to methodological noise i.e. there is an 
expression of gene, which is undetectable by the sequencing 
technology because of insufficient depth and low capture 
rate. True drop outs are due to lack of gene expression [10]. 
The frequency of zero counts depends on which sequencing 
protocol has been used and also on the depth of sequencing. 
For example, Microfluidic single cell RNA-Seq technolo-
gies, like inDrops, Drop-Seq, and 10x Genomics Chromium 
platform have 90% dropout rate as these sequence thou-
sands of the cells with low coverage (1K-200K reads/cell). 
Cell-capture technologies, like Fluidigm C1 has 20-40 % 
dropout rate as it sequences hundreds of the cells with high 
coverage (1-2 million reads/cell) [41]. These zero counts or 
dropout events increase the complexity of single cell RNA-
Seq data and hinder the accurate quantitative data analysis. 
In single cell RNA-Seq studies, it is, therefore crucial to 
impute the zero values in order to facilitate exact quantifica-
tion of transcriptome at the single-cell level [18]. Since the 
first single cell imputation method presented in 2016, sever-
al methods/workflows have been developed for the purpose. 
In the text, we provide a short overview of different ap-
proaches for the imputation of single cell RNA-Seq data. 
We have categorized these methods into three categories, 
where the first category includes imputation methods that 
use probabilistic models to directly represent sparsity. Bio-
logical and technical zeroes may not be distinguished and 
usually only technical ones are accounted for, in the imputa-
tion function. Such methods produce less false-positives but 
this rests on data homogeneity or heterogeneity. Second 
category includes methods that smooth or adjust zero and 
non-zero values by averaging expression values or their 
diffusion. This approach is useful for reducing noise but 
many false positives may be generated. It is interesting to 
note that first category methods may outperform algorithms 

of second category, in datasets having genes with small ef-
fect size [51]. Third category entails data reconstruction, 
either through a low-ranked matrix-based method or deep 
learning neural network-based approach. Low-rank matrix-
based methods capture linear while deep learning methods 
process non-linear relationships. Denser information matrix 
is obtained for downstream processing. Although sparsity 
and scalability have been resolved by numerous methods 
and benchmarking has revealed the algorithms suited to 
heterogenous and homogenous datasets, discrete expression 
inference has been the hallmark of all these algorithms but 
trajectory-based interpretation of imputation is suggested for 
the future. Most methods are computationally efficient, 
scalable and applicable to heterogeneous datasets. Circulari-
ty issue has been addressed in several algorithms, with ran-
dom input instead of specified data values. Overimputation 
and overfitting have also been addressed by several meth-
ods, with better results. Users can implement a statistical 
method of choice, depending on their requirements. We also 
suggest that statistical tests applied to imputed data should 
be treated with care and filtering by effect size as well as 
testing with at least one algorithm from each category 
should be done to eliminate errors and reduce false-
positives. Benchmarking of all these methods on small and 
large datasets of homogeneous and heterogeneous nature 
should also be attempted to make a better comparison.  
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