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A B S T R A C T

Introduction: Respiratory syncytial virus (RSV) causes a significant respiratory disease burden in the under 5
population. The transmission pathway to young children is not fully quantified in low-income settings, and this
information is required to design interventions.
Methods: We used an individual level transmission model to infer transmission parameters using data collected
from 493 individuals distributed across 47 households over a period of 6 months spanning the 2009/2010 RSV
season. A total of 208 episodes of RSV were observed from 179 individuals. We model competing transmission
risk from within household exposure and community exposure while making a distinction between RSV groups A
and B.
Results: We find that 32–53% of all RSV transmissions are between members of the same household; the rate of
pair-wise transmission is 58% (95% CrI: 30–74%) lower in larger households (≥8 occupants) than smaller
households; symptomatic individuals are 2–7 times more infectious than asymptomatic individuals i.e. 2.48
(95% CrI: 1.22–5.57) among symptomatic individuals with low viral load and 6.7(95% CrI: 2.56–16) among
symptomatic individuals with high viral load; previous infection reduces susceptibility to re-infection within the
same epidemic by 47% (95% CrI: 17%–68%) for homologous RSV group and 39% (95%CrI: -8%-69%) for
heterologous group; RSV B is more frequently introduced into the household, and RSV A is more rapidly
transmitted once in the household.
Discussion: Our analysis presents the first transmission modelling of cohort data for RSV and we find that it is
important to consider the household social structuring and household size when modelling transmission. The
increased infectiousness of symptomatic individuals implies that a vaccine against RSV related disease would
also have an impact on infection transmission. Together, the weak cross immunity between RSV groups and the
possibility of different transmission niches could form part of the explanation for the group co-existence.

1. Introduction

Respiratory syncytial virus (RSV) is an ubiquitous RNA virus in-
fection that is a major cause of lower respiratory tract disease in chil-
dren under 5 years of age worldwide (Nair et al., 2010; Shi et al., 2015).
The estimated global burden of RSV associated acute lower respiratory
tract infection (ALRI) in 2015 in under 5 year olds is 33.0 million
(21.6–50.3), most of which occurs in developing countries (30.5 mil-
lion) (Shi et al., 2017). Of the 3.2 (2.7–3.8) million hospital admissions

associated with RSV in the under 5 s, 1.4 (1.2–1.7) million occurred in
the 0–5 months age group, and 1.2 (1.0–1.5) million occurred in de-
veloping countries.

Despite 50 years of vaccine research none is yet licensed for the
prevention of RSV infection or disease. There are currently over fifty
vaccines in different stages of development: many with the aim of
prevention of early infant RSV disease. While the most advanced (in
phase III trials) is a maternal vaccine to boost transplacental antibody
transfer (Nigel Thomas (2017); “RSV Vaccine Snapshot (2016); WHO
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(2016), a variety of product types and range of strategies for protecting
young children are under investigation including indirect protection by
targeting older infants, elder siblings and family cocooning (Anderson
et al., 2013; Kinyanjui et al., 2015; Poletti et al., 2015).

Prior to vaccine introduction, drivers of transmission need to be
well understood in order to predict the potential public health impact of
implementation. Investigating outbreaks within the household setting
could help to further characterize RSV transmission. The household is
an important unit of study for diseases that are transmitted through
close contact. The quantitative analysis of household outbreaks has
been conducted for influenza (Cauchemez et al., 2009, 2004; House
et al., 2012; Klick et al., 2011; Lau et al., 2015; Wu et al., 2006; Yang
et al., 2015). This has led to quantification of transmissibility within the
household, improved understanding of the factors that determine level
of transmission such as household size and effectiveness of different
household level interventions (Tsang et al., 2016). To date studies of
RSV transmission within households or families have been largely ob-
servational. One of the earliest is a household cohort study in the USA
in which 36 families were followed up for 2 months during the 1974/
1975 RSV season (Hall et al., 1976). This study found that RSV attack
rates in households were high, more so in infants. Older siblings to
infants were found to be the most likely index cases in household
outbreaks, and illness was found to have an age-related severity. Sev-
eral other studies over the years across different settings have high-
lighted the importance of older children in household outbreaks
(Heikkinen et al., 2015; Jacoby and Glass, 2017; Munywoki et al.,
2014) which could have implications for control strategies (Graham,
2014).

In Kenya, a household cohort study conducted in a rural coastal
community during the 2009/2010 RSV epidemic has revealed several
patterns. In addition to the importance of older children (Munywoki
et al., 2014), bigger household size and infection with RSV group B,
among other factors, were found to be independently associated with
increased risk of asymptomatic infection (Munywoki et al., 2015a);
shedding duration estimates (using molecular diagnostics) were 11.2
days on average, and longer than the previous range reported of 3.9–7.4
days (Munywoki et al., 2015b); individuals experiencing the first in-
fection of an RSV season were found to shed more virus relative to
secondary infections; children under 1 year old, symptomatic shedders
and RSV A and B co-infected individuals were identified as the most
likely to transmit due to their relatively higher viral loads (Wathuo
et al., 2016).

RSV can be categorized into two antigenically and genetically dis-
tinct groups, RSV A and RSV B (Cane, 2001). These groups, thought to
have diverged about 350 years ago (Zlateva et al., 2005), have been
observed to co-exist geographically and temporally with most out-
breaks being dominated by RSV A and, in some locations, clear patterns
of alternating dominance (White et al., 2005). Within the RSV groups
are subgroups or genotypes whose frequency changes from season to
season, with some genotypes undergoing complete replacement over
time (Agoti et al., 2013, 2012; Park et al., 2017; Rodriguez-Fernandez
et al., 2017; Song et al., 2017; Thongpan et al., 2017). This pattern of
group and genotype replacement is thought to be due to a herd im-
munity effect (Botosso et al., 2009; Cane, 2001; Pretorius et al., 2013;
White et al., 2005). A phylogenetic analysis of RSV A sequences from
the Kenyan household study showed that most infections arise from a
single variant introduction followed by accumulation of household
specific variation, i.e. cases arise more from within household spread
rather than multiple introductions (Agoti et al., 2017).

However, there is yet to be a mechanistic analysis of RSV household
outbreak data that consolidates information on the characteristics of
infection episodes and characteristics of the host population into a
single dynamic framework. Inference could then be drawn on the
competing risks of within household exposure and community (external
to household) exposure, in order to quantify the importance of house-
holds in RSV transmission. We proposed to use an individual-based

approach within a Bayesian framework to analyze the household cohort
data from Kenya to further understand transmission dynamics. We also
explore the differences and interactions between RSV groups.

2. Material and methods

2.1. Data

The data to be used were collected from a household cohort study
conducted in rural coastal Kenya within the Kilifi Health and
Demographic Surveillance System (KHDSS) during the 2009/2010 RSV
epidemic. Details of the study have been published elsewhere
(Munywoki, 2013; Munywoki et al., 2015a, 2015b, 2014). In brief, the
infant-centric study recruited household members using the criteria
that the infant was born after 1 April 2009 (after the previous RSV
epidemic) and had at least 1 older sibling less than 13 years old. Deep
nasopharyngeal swab (NPS) samples were collected every 3–4 days
regardless of symptoms, together with a record of clinical illness. The
samples were tested for RSV antigen using an in-house real-time mul-
tiplex polymerase chain reaction (PCR) assay. A sample was considered
antigen positive if the PCR cycle threshold (Ct) value was 35.0 or
below. Positive Ct values were then converted to viral load (log10 RNA
equivalent). A household was defined as a group of individuals living in
the same compound and eat together. The data contain information
from 493 individuals spread across 47 households whose dates of data
collection span 180 days. The household sizes range from 4 to 37 oc-
cupants with a median of 8 members.

An RSV A/B shedding episode is defined as a period within which an
individual provided PCR positive samples for RSV A/B that were no
more than 14 days apart. A shedding episode is referred as symptomatic
if within the window of virus shedding, there is at least one day where
symptoms were recorded. The symptoms of interest are those of an
acute respiratory illness (ARI), which are: cough, or nasal discharge/
blockage, or difficulty breathing. Sampling of the study population was
done in 3–4 day intervals, as such, complete duration of shedding and
ARI episodes had to be imputed, and missing viral loads were linearly
interpolated. Shedding durations were imputed first, after which, if
there were any days of recorded ARI within shedding episodes, the total
duration of the ARI was imputed based on the days of recorded
symptoms. As such, the length of an ARI episode within a shedding
episode can be≤ length of related shedding episode.

Details of the imputation of episodes and interpolation of viral load
can be found in the Supplementary appendix section.

We categorized days of shedding according to viral load and
symptoms into 4 categories to compare infectiousness: low viral load
and asymptomatic, high viral load and asymptomatic, low viral load
and symptomatic and, high viral load and symptomatic. High viral load
is defined as> 6 log10 viral copy number (or a PCR Ct value<23.05).

2.2. Transmission model

We built a mechanistic model for RSV that tracks infection onset at
the individual host level. The main assumptions about transmission are
contained in the equation giving the per capita rate of exposure (to
infection) per unit time, also known as the infection hazard. The rate of
exposure to a particular RSV group (index g) is given for a particular
individual, (index i) from a given household (index h) at a given day
(index t) and is specified by the notation t( )i h g, , . We assume that an
individual can be exposed to infection in the household they occupy
and from external infection sources and as such, decompose the rate of
exposure into two parts, a within household component and a com-
munity component.

2.2.1. Within household exposure
For an individual i, in household h, the rate of exposure at a given

time t, is a summation of rates from all the infectious individuals in
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their household. The rate of exposure from a single infectious house-
mate (index j) is assumed to depend on the size of the household and
the viral load and symptom status. We consider the household size ef-
fect as a binary variable where a house with>8 members is considered
large. We consider viral load and symptom status as one variable with 4
categories: low viral load and no symptoms, high viral load and no
symptoms, low viral load and symptomatic, high viral load and symp-
tomatic. The household rate of exposure from individual j to i is thus
give as:

= × ×HH Risk t Household size Infectivity t_ ( ) ( _ ) ( ( ))h g j i g H i I inf j h g, , , , ,

g is the baseline rate of exposure in the household which is estimated
for each of the two RSV groups, RSV A and RSV B. H is the coefficient
modifying exposure in large household relative to small households and

I inf, is the coefficient modifying infectiousness based on viral load and
symptom status. The within household rate of exposure only affects
susceptible individuals who are present in the household, as such this
rate is multiplied by a binary variable M t( )i h, =0 if i is not present in
the household at time t and M t( )i h, =1 if i is present.

2.2.2. Community exposure
For a susceptible individual i, this external to the household source

of exposure is assumed to represent both sampled and unsampled cases
from other households. Community exposure is assumed to depend on
the age of the susceptible individual and time. Age is treated as a ca-
tegorical variable. The community rate of exposure is thus given as:

= × ×Comm t f t Age group( ) ( ) ( _ )Riski g g g E age E i, , ,

g is the baseline rate of exposure from the community, which is esti-
mated for each of the two RSV groups. E age, is the coefficient modifying
the rate of community exposure by age. For each RSV group, we have
f t( )g , a time-unit dependent curve that modifies the community rate of
exposure over time, in this case the time period of interest is the
duration of the study. We wanted this curve to represent the back-
ground epidemic dynamics in the local zone from which the data was
collected; as such we proceeded to use the same household dataset to
generate it.

The data are calibrated in days and are at the individual level, but to
obtain the background community rate, we assumed that this back-
ground rate is scalable from the weekly household-level rate of primary
incidence, denoted t( )HH w . The household level rate of primary in-
cidence is the rate at which a household (rather than a single member of
a household) acquires the first episode/outbreak in the ongoing RSV
season. A household outbreak is a period within which at any given
time, at least one household member is shedding RSV. If we treat

t( )HH w as the hazard rate in a probability distribution, we can estimate
it using the following model:

=I t N exp( ) 1c w HH
s( )

tw
HH

0

=I t max I t I t( ) (0, [ ( ) ( 1)])w c w c w

Where
NHH = Total number of households in the study
I(tw) = Average weekly household-level incidence of primary in-

fection
IC(tw) = Weekly cumulative household-level incidence of primary

infection

We further assumed that = ( )t a exp( )HH w 1
tw b

c
1

1
2

, giving it a bell-
shape, and estimated {a1, b1, c1} using maximum likelihood assuming
Poisson distributed data.

Once t( )HH w was estimated for each RSV group, it was scaled
such that it ranges between 0 and 1 using the formula

=Xi
Scaled X min X

X min X
({ })

max ({ }) ({ })
i . As such,

= …
… …

f t t min t
t min t

( ) ( ) ({ (1), (2) ( )})
max ({ (1), (2) ( )}) ({ (1), (2) ( )})g w

HH w HH HH HH w

HH HH HH w HH HH HH w

To turn f t( )g w into a daily scale, the value for a given week were as-
sumed to be the values for every day of that week. The resultant
background community curves for RSV A and B are shown in Fig. 1.

Finally, we assume that susceptibility can be modified according to
an individual’s infection history within the same epidemic, and their
age. These two components are combined into an equation representing
relative susceptibility to infection as shown below

= +S t Infection History t Age group( ) exp ( ( _ ( )) ( _ ))i g Y hist i X age S i, , , ,

X age, is the coefficient modifying susceptibility by age. We categorized
infection history into four groups: no previous infection, recovered from
an RSV A infection, recovered from an RSV B infection, recovered from
both RSV A and B. Y hist, is the coefficient modifying susceptibility to a
particular RSV group depending on infection history in the following
three ways: by exp Y hom, if an individual has previously experienced and
recovered from infection by the same group (homologous infection),
exp Y het, if the individual has previously experienced and recovered from
infection by a different group (heterologous infection) and by

+exp( )Y hom Y het, , if an individual has previously experienced and re-
covered from both RSV A and RSV B infection. This mechanism of in-
teraction between RSV A and B is similar to that applied in a com-
partmental model used to analyze data from the UK and Finland (White
et al., 2005).

In combination, all the above assumptions result in the rate of ex-
posure equation shown below

1) t( )i h g, , = Rate of exposure of individual i in household h with
RSV group g at time t.

= +t S t M t HH Risk t Comm Risk t( ) ( ) ( ) _ ( ) _ ( )i h g i g i h
j i

h g j i i g, , , , , , ,

The assumption of how age and infection history modify the rate of
exposure is similar to the assumptions made in a proportional hazards
model.

Additional details on the data variables and parameters are given in
Table 1.

Following on from the rate of exposure equation are two additional
nested equations that make up the model.

2) t( )i h g, , = Probability of infection following exposure per day i.e.
individual enters the latent phase

=t exp( ) (1 )i h g
t

, ,
( )i h g, ,

3) p t( )i h g, , = Probability of starting to shed i.e. individual enters the
infectious phase

=
=

p t t l( ) ( )i h g
l

L

l i h g, ,
0

, ,

Where L is the maximum latent period and l is the probability that the
latent period is exactly l days. For l = {0,1,2,3,4,5} days, we have the
following probabilities [0,0,4,4,3,1]/12= [0, 0,0.33,0.33,0.25,0.083] (Lee
et al., 2004). The same latency distribution is used for RSV A and B.

The likelihood of an individual’s data, given the above model thus
becomes:

=L p u p u[ ( ) (1 ( ))]i
g u U

i h g
u U

i h g, , , ,
i h g i h g, , , ,

The model as presented can be reduced to fit for a single RSV group
or for RSV as a single pathogen with no distinction between RSV A and
B. Attempts to model household size as a continuous variable were
unsuccessful possibly due to our small sample size and hence we
modeled transmission within the household as a density dependent
process but identified households as either large or small and found that
the cut-off between categories of 8 provided the best fit.
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2.3. Parameter inference

We used Bayesian inference to obtain estimates of the parameters.
Adaptive Metropolis Markov Chain Monte Carlo was used as im-
plemented in the R software package fitR (Camacho and Funk, 2017),
function mcmcMH. The mcmcMH function can adapt the size of the
proposal distribution, such that the acceptance rate is close to 23.4%,
and the shape using the Adaptive metropolis algorithm as in (Roberts
and Rosenthal, 2009); the difference in size and shape adaptation being
in the scaling factor used. In brief, the method builds a Markov chain
which allows us to sample from the posterior distribution P(φ|D) of the
parameters given the data, where φ={ X age, , Y hist, , H , g, I inf, ,

E age, , g}. Flat bounded priors were used for all the parameters. We
initiated 3 chains and set the algorithm to start adapting the size of the
proposal distribution after 1000 iterations and the shape after 500 ac-
cepted iterations.

Burn-in was assessed visually after which the results of the three
concurrent chains were combined to infer the posterior distribution. To
obtain fairly accurate values for the 95% credible intervals, we ran the
MCMC algorithm until the effective sample size (ESS) was ≥ 4000
(Raftery and Lewis, 1992). The three chains were run for 250,000
iterations each and burn-in for each chain was 80,000, 90,000 and
80,000. After burn-in the reminders of the three chains were combined
into a single chain with and overall acceptance rate of 16.8%. The
parameters were estimated on the log scale. All the computation was
done using R software package (RStudio version 1.1.383 running R

version 3.4.0 (R Core Team, 2017)). The code is freely available under
the GNU Lesser General Public License v3.0 and can be found at
https://github.com/Ikadzo/HH_Transmission_Model.

3. Ethics statement

For the data collection, informed written consent was obtained from
all the study participants or their parents/guardian. The KEMRI-
Scientific and Ethical Review Committee in Kenya provided ethical
approval. The analysis presented here falls under the expected results
from the original data collection study, however, additional ethical
approval was obtained from the Observational / Interventions Research
Ethics Committee at the London School of Hygiene and Tropical
Medicine.

4. Results

Table 2 gives a summary of the shedding episodes in the data. This
particular outbreak had more RSV B cases than RSV A, with a sig-
nificant portion of cases being symptomatic both for RSV A and B.
Eighty five percent of the households that were successfully followed up
had an introduction of an RSV case. In addition to the information in
Table 2; 28 (13.5%) of the total 208 episodes were censored during
imputation; of the A and B episodes, 14 (6.7%) were simultaneous RSV
A and B shedding episodes, 7 (3.3%) of which had a simultaneous onset;
of the 179 individuals who got infected 31 (17.3%) were<1 year old,

Fig. 1. Establishing the background community rate function. The figures in the top row show a comparison of data and model fit of the weekly household-level rate
of primary incidence that was used to derive the background community rate function. Top left: RSV A data and model fit; Top right: RSV B data and model fit;
Bottom: Comparing the estimated background community rate function for RSV A and RSV B.
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41 (22.9%) were 1–4 years, 66 (36.9%) were 5–14 years and 41
(22.9%) ≥15 years old. Of the symptomatic infected individuals, 28
(25.7%) were< 1 year old, 35 (32.1%) were 1–4 years, 36 (33%) were
5–14 years and 10 (9.2%) ≥15 years old. A detailed analysis of these
shedding patterns has been published elsewhere (Wathuo et al., 2016).
Fig. 2 shows the shedding pattern for all 179 people who had a shed-
ding episode. Figure A.3 and Figure A.4 in the Supplementary appendix
shows the shedding and ARI patterns for RSV A and B respectively.

4.1. Transmission model parameter inference

The trace plots used to assess convergence of the three chains are

shown in Figure A.5 in the Supplementary appendix. The resulting
parameters estimates are given in Table 3 and Figure A.6.

In short, susceptibility to infection was reduced by previous infec-
tion whether these infections were homologous (Prev.hom= 0.53 (0.32
- 0.83)) or heterologous (Prev.het= 0.61 (0.3–1.1)). Increasing age also
reduces susceptibility with ages 1–4 years old having an estimated 8%
reduction (Sus.age.2 = 0.92 (0.48–1.9)), ages 5–15 years a 73% re-
duction (Sus.age.3 = 0.27 (0.14 - 0.53)) and ages ≥15 years an 84%
reduction (Sus.age.4 = 0.16 (0.08 - 0.32)). The within household
transmission coefficients (HH.rsv.a=0.019 (0.0073 – 0.04) and
HH.rsv.b=0.015 (0.0058 – 0.033)) are estimated higher than the
community transmission coefficients (Comm.rsv.a=0.0034 (0.002 –

Table 1
Model Notation.

Symbol Name Type Description

i Index Index of individual
h Index Index of household
g Index Index of RSV group type, either A or B
t Index Index of time in days
I t( )j h g, , Infectivity Dataa Categorical data variable for infectious individuals indicating level of infectivity categorized by viral load and symptom status at time t.

The categories are: low viral load and asymptomatic (reference group), high viral load and asymptomatic, low viral load and
symptomatic and, high viral load and symptomatic. High viral load is defined as > 6 log10 viral copy number.

Y t( )i Infection_history Data Variable indicating if an individual has experienced and recovered from an infection by a particular RSV group in the current epidemic at
time t.

Xi Age_groupS Data Categorical data variable indicating the susceptibility age group of an individual. The age groups are < 1 year (reference group), 1-4
years, 5-14 years and ≥15 years.

M t( )i h, Data Binary data variable indicating if an individual is present in the household at time t. Absence from the household means that an
individual was not present at the point of sample collection and thus in the model they can only get infection from a community source
and not from an infectious housemate (not sampled and not at household risk). Individuals who were present but not sampled are
exposed to both household and community source transmission in the models (not sampled but at household risk).

Hi Household_size Dataa Binary data variable indicating whether the individual lives in a large or small household. A small household (reference group) has < 8
individuals.

Ei Age_groupE Data Categorical data variable indicating the community exposure age group of an individual. The age groups are <1 year (reference group),
1-4 years and ≥5 years.

X age, Sus.age.2
Sus.age.3
Sus.age.4

Parameter Coefficients modifying susceptibility to RSV depending on age, applied to the age group covariate Xi. Sus.age.2 estimates the effect being
in age group 1-4 years, Sus.age.3 the effect of group 5-15 and Sus.age.4 of group ≥15 relative to group < 1 year.

Y hist, Prev.hom
Prev.het

Parameter Coefficients modifying susceptibility to infection by a particular RSV group depending on infection history. Prev.hom estimates the effect
of a previous homologous group infection, while Prev.het estimates the effect of a previous heterologous group infection. Applied to the
categorical covariate Yi(t).

H HH.size Parameter Coefficient modifying the amount of within household exposure by household size. HH.size estimates the effect of being in a large
household relative to a small one. Applied to covariate Hi.

g HH.rsv.a
HH.rsv.b

Parameter Baseline rate of within household exposure by RSV group

I inf, High.Asym
Low.Sym
High.Sym

Parameter Coefficients modifying infectiousness by viral load and symptom status. Relative to shedding low viral load and being asymptomatic,
High.Asym estimates the effect of shedding high viral load and being asymptomatic, Low.Sym the effect of shedding low viral load and
being symptomatic and High.Sym the effect of shedding high viral load and being symptomatic. Applied to the infectivity covariate
I t( )j h g, , .

E age, Exp.age.2
Exp.age.3

Parameter Coefficients modifying the rate of community exposure by age group. Exp.age.2 estimates the effect being in age group 1-4 years and
Exp.age.3 the effect of group ≥5, relative to the <1-year age group. Applied to the age group covariate Ei

g Comm.rsv.a
Comm.rsv.b

Parameter Community transmission coefficient by RSV group

f t( )g Estimated RSV group specific, time-dependent curve modifying the rate of community exposure.

Ui h g, , Data Set of group specific onset days for an individual i in household h used in calculating the likelihood of an individual’s data.

a The choice of cut-off for high viral load and large households was based on initial runs of the inference algorithm that explored different cut-offs for each. The
choice of 6 log10 copy number for high viral load and 8 persons for large households led to the best convergence.

Table 2
Summary of shedding episodes.

RSV A RSV B All RSV

Number of episodes 97 125 208
Number of symptomatic episodes 59 69 119
Number of people infected 88 113 179
Number of people with symptomatic episodes 54 67 109
Number of people with repeat infections 8 12 27
Number of households infected (percentage of total) 25 (53.2%) 34 (72.3%) 40 (85.1%)
Total percentage of household occupants that were

infected (total number of occupants)a
30.0% (293) 28.5% (396) 40.5% (442)

a The total number of infected individuals out of the total number of individuals that occupy the infected households.
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0.0053) and Comm.rsv.b=0.0062 (0.0039 – 0.0093)). The coefficient
modifying within household exposure by size (HH.size=0.42 (0.27 –
0.7)) suggests that larger households have less risk of pair-wise
within household transmission (HH Risk t. ( )h g j i, , ) than smaller
households. However the total risk of household transmission
( HH Risk t. ( )j i h g j i, , ) is in general higher for larger households as
they can have more infectious individuals at a time point, this is illu-
strated in Figure A.7.

Although there is suggestion that pre-school individuals are the least
likely to acquire infection from the community, and school-age in-
dividuals and older are the most likely to acquire community infection,
the evidence is very weak: the relative estimate for age groups 1–4
years is Exp.age.2=0.56 (0.21–1.5) while for age group ≥5 years is

Exp.age.3=1.9 (0.78–4.2). Symptomatic individuals are more in-
fectious than asymptomatic individuals, more so those with high viral
load, the relative estimate for high viral load symptomatic shedders is
given as High.Sym=6.7 (2.6–16). However there are not enough in-
stances where individuals have high viral load and are asymptomatic to
quantify the relative infectiousness of this specific combination, the
relative estimate for high viral load asymptomatic shedders, High.Asym,
has a very wide 95% CrI. Given 71,132 person days of observation (493
individuals * 180 days of data, minus days individuals were away),
1021 had RSV A shedding, of which 49 were asymptomatic high viral
load shedding days, and 1227 had RSV B shedding with 49 days of
asymptomatic high viral load shedding. Given the inability to distin-
guish between the infectiousness of high versus low viral load asymp-
tomatic shedders, we will not make this distinction in subsequent re-
sults and instead just refer to asymptomatic shedders in general.

For a better understanding of the within household and community
transmission coefficient parameters, we calculated the different rates of
exposure and plotted them as shown in Fig. 3.

Given two competing sources of infection, an infectious housemate
and a source outside of the household, a susceptible individual is more
likely to get infected within the household rather than from the com-
munity. There is a suggestion that RSV A has a higher transmission
potential at the household level relative to RSV B, while the situation is
reversed at the community level. However, there is considerable
overlap between the distributions of within household transmission
coefficient for RSV A and that for RSV B as seen in Figure A.6, which
shows the distribution of the parameters on the log scale, which is
mirrored in the rate of household exposure shown in Fig. 3.

We observed some correlations in the estimated parameters. In
particular there were strong positive correlations within the relative
susceptibility by age parameters. The within household transmission
coefficient for RSV A was strongly positively correlated with the within
household transmission coefficient for RSV B. The age effects of sus-
ceptibility were strongly negatively correlated with the age effects on
community exposure. Figure A. 8 in the Supplementary index shows all
the pairwise correlation patterns.

Given the posterior densities for the parameters, we calculated the
source with the highest likelihood for each infection. While respecting
the correlation patterns observed in Figure A.8, we sampled 10 different
parameter sets and for each, we calculated the proportion of cases
whose most likely source was an infectious housemate. The changes
made to the likelihood equation to allow for this calculation are de-
scribed in the Supplementary appendix. For all the infection cases,
32–53% of them were attributed to transmission within the household.
For RSV A, this range was 40–59%, while for RSV B it was 26–48%.

To check if any information is lost when we have less data, we re-
fitted the data in three additional ways: RSV A alone, RSV B alone and
RSV with no distinction between groups. The results are shown in Table
A. 1 in the Supplementary index. In reducing the data used to infer
parameters we notice that more posterior densities for the relative ef-
fect parameters now include 1 in their 95% credible interval, as can be
expected. In general, the trends with age, household size and relative
infectiousness, as seen in Figure A.6, are maintained. However, when
RSV is treated as one entity, the protective effect of previous infection is
reduced, symptomatic cases are more infectious and the estimate of the
community transmission coefficient is increased. This suggests that
misclassification of viruses disrupts the ability of the model to track
transmission patterns, resulting in a greater propensity to account for
infections as spontaneous.

4.2. Model validation and sensitivity analysis

To validate the model we checked to see that the range of simulated
epidemics contained the real data; then we chose a single simulation
with known parameters and re-estimated to see if the posterior dis-
tribution contained the known values. Details of this process can be

Fig. 2. Shedding patterns for each of the 179 individuals who experienced at
least one RSV shedding episode. The y-axis shows the household, time is on the
x-axis with zero indicating the day before the first sample was collected. The
grey dots show RSV A shedding, dark pink show RSV B and blue shows days of
co-shedding. The horizontal grey lines separate the data by household. The
study initially recruited 60 households but 13 were lost to follow-up, hence the
numbering of the households goes beyond 47. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article).

Table 3
Results of fitting the transmission model. Median and 95% credible intervals
(CrI) are given for the 15 parameters of interest. The posterior distribution for
each parameter was obtained by running 3 MCMC chains for 250,000 iterations
each. The burn-in for the three chains was 80,000, 90,000 and 80,000 re-
spectively. The reminders of the three chains were combined into a single chain
with and overall acceptance rate of 16.8%.

Parameter name Median 95% credible interval (CrI)

Prev.hom 0.530 0.316 - 0.833
Prev.het 0.607 0.306 - 1.08
Sus.age.2 0.924 0.483 - 1.87
Sus.age.3 0.267 0.142 - 0.537
Sus.age.4 0.155 0.0825 - 0.316
HH.rsv.a 0.0188 0.00734 - 0.0401
HH.rsv.b 0.015 0.00578 - 0.033
HH.size 0.424 0.265 - 0.702
High.Asym 0.0704 0.0000692 - 3.15
Low.Sym 2.48 1.22 - 5.57
High.Sym 6.7 2.56 – 16.0
Comm.rsv.a 0.00338 0.00203 - 0.00530
Comm.rsv.b 0.00615 0.00388 - 0.00926
Exp.age.2 0.563 0.206 - 1.45
Exp.age.3 1.87 0.788 - 4.26
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found in the Supplementary appendix, but in general, we were satisfied
that the model was working as expected. Fig. 4 shows multiple simu-
lated epidemics for different parameter sets relative to the real data.
From this we see that as with the real data, the simulations show the
RSV B epidemic taking off earlier than the RSV A epidemic. There is a
tendency for simulate epidemics to be larger than that observed in
terms of total number of cases (Figure A.23).

We performed a sensitivity analysis to check the robustness of our
results to the background community density function. We used 3 ad-
ditional background functions and found that despite a change in
summary values for the parameters, in general the trends were main-
tained. These results are shown in the Supplementary appendix. They
show that the results are robust to the choice in the shape of back-
ground community density function.

Finally, we removed the largest household (which had a very large
RSV A outbreak but only a single RSV B case) from the data to check if
this would change the patterns of the within household transmission
coefficients. The results, shown in the Supplementary appendix, were
robust to these changes.

Following the validation of the model, we simulated epidemics

altering the degree of infectiousness. Initially we reduced the in-
fectiousness of symptomatic individuals to predict the effect of reducing
RSV related ARI; then we assumed that asymptomatic individuals are
not infectious in order to quantify the contribution of asymptomatic
infections to transmission. The results show that reducing infectious-
ness of symptomatic individuals to the level of asymptomatic in-
dividuals lowers the distribution of total number infected. Assuming
that asymptomatic individuals are not infectious also tends to decrease
the total number infected (see Figure A. 23 in the Supplementary ap-
pendix). We also removed the asymptomatic shedding episodes from
the data and re-estimated the parameters to check what the effect of
only having sampled symptomatic individuals would be. We found that
we lose precision in the estimates of the relative infectiousness para-
meters, previous infection is estimated as being more protective as is
being ≥15 years old (Figure A. 24 and A.25).

5. Discussion

We developed an individual based approach to make Bayesian
based inference on transmission parameters using MCMC. We set out to

Fig. 3. Comparing the range of within household exposure rate HH Risk t( _ ( ))h g j i, , , (I) and (II), and community exposure rate Comm Risk t( _ ( ))i g, , (III) and (IV), for
a single susceptible individual given different heterogeneities in exposure and infectiousness. Top row: The box plots show the 0.025, 0.25, 0.5, 0.75 and 0.975
percentiles for the rate of exposure per person per day between a single susceptible and a single infectious housemate for RSV A (I) and RSV B (II). The distributions of
rate are categorized by household size and the infectiousness based on viral load and symptom status (see text). Note: outliers have been removed from the box plots
for better visualization. Bottom row: The shaded graphs show the range of values over time for the rate of exposure from the community to a single susceptible
individual for RSV A (III) and RSV B (IV). The graphs are color-coded by the age group of the susceptible individual. The ranges for each age group are determined by
the 95% CrI of the parameters that go into the calculations, hence the shaded regions show 95% CrI of the community exposure rate.
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Fig. 4. A comparison between the simulated data and real epidemics using simulations from 5 different parameter sets estimated from the full model (row 1 to 5).
First column: RSV A simulated epidemics (grey lines) compared to real data (thick black line). Second column: RSV B simulated epidemics (light blue lines) compared
to real data (thick blue line). Third column: RSV simulated epidemics (orange lines) compared to real data (thick green lines) (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article).
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better understand RSV transmission within a household setting using
cohort data collected with unprecedented detail during the course of a
single RSV epidemic in a rural coastal community in Kenya.

Older individuals are less susceptible to detectable infection, pre-
sumably due to immunity acquired in previous epidemics. We found
strong evidence of partial immunity to homologous re-infection within
the same epidemic for the RSV groups. The effect of previous infections
is captured in two different ways in our model. Age (Sus.age para-
meters) captures the combined effect of age and experience of epi-
demics prior to the one under study, while the estimates for the effect of
previous observed infections (Prev.hom parameter), captures effect of
infections in the current epidemic. It is therefore implicit that immunity
to RSV is built up in the long term, from one epidemic to the next and in
the short term from one infection to the next. The evidence for cross-
immunity between RSV A and B was weaker, which presumably al-
lowed the two virus groups to co-circulate in this epidemic. However,
typically, RSV epidemics are dominated by one or other of group A or B
and so the particular circumstances of this epidemic might not always
hold. It remains to be explored how this individual level parameter
estimate is translated into population dynamics.

We found some evidence that individuals aged ≥5 years were the
most likely to get infection from a community source (less likely to get
infected during a household outbreak). This means that given our as-
sumption of latent periods between 2–5 days, which forms the temporal
link between cases, individuals ≥5 years were the most often identified
as index cases in a household outbreak relative to the younger age
groups. We have not considered an age-dependent latent period, and
estimating the latent period from these data is a future goal. The
≥5 years age group contains school going children and our result is in
line with those of Munywoki et al (Munywoki et al., 2014), based on a
different analysis of the same study, who found that school-going
children were often initiating household outbreaks. Establishing
transmission chains using genomic information could strengthen this
result.

We have assumed that the community risk of infection changes
smoothly over time and is homogeneous apart from an age effect. These
assumptions are necessary as community infections are not completely
observed. We are confident that these assumptions do not have sig-
nificant influence on our estimates of within-household transmission
(which is fully observed), but may result in an over-estimate of com-
munity exposure, which will be more heterogeneous than we have as-
sumed. Consequently the simulated epidemics are larger in total num-
bers than that observed, Fig. 4, and our results of up to one half of
infections arising from within the household are likely to be a
minimum. Data on genetic relatedness between viral isolates will clarify
the extent to which individuals are infected from the community during
a household outbreak.

By separating RSV A and RSV B we find that RSV B has a higher rate
of introduction into the household, and RSV A is more transmissible
once in the household, an observation also made by (Agoti et al., 2017)
from a phylogenetic analysis of RSV A sequences. This, together with
the fact that RSV A had a larger proportion of cases attributed to within
household transmission, suggests that there might be some niche se-
paration, explaining how and why these two different groups are able to
co-exist and remain separate. It should be noted however that the dif-
ference in the distribution of the within household transmission coef-
ficient between the RSV groups is not large, there is a significant
overlap of credible intervals. As such, whatever advantage RSV A might
have over RSV B at the household level is small in terms of transmis-
sion, but might be larger in terms of interaction with other respiratory
viruses, and small differences in individual based parameters might
translate into large population effects. In the present epidemic, the RSV
B epidemic takes off earlier than the RSV A epidemic despite the first
case being RSV A (Fig. 2). In addition to which, we see that despite RSV
B infecting more households than RSV A, RSV A infects a larger pro-
portion of household members (Table 2). An examination of the

comparative dynamics of RSV A and B within epidemics might be a
good way to understand how they interact.

With the definition of a household as a group of individuals living in
the same compound and eating food from the same kitchen, we found
that the pairwise rate of within household transmission is higher in
small households than large ones. However, the total household in-
cidence rate is in general higher for larger households as they have the
potential to have larger numbers of infectious individuals at a given
time point. The relationship between household size and pair-wise rate
of transmission has been observed before for Influenza, (Cauchemez
et al., 2009, 2004; House et al., 2012; Lau et al., 2015), however going a
step further we show that if households are structured such that they
can hold over 20 individuals (possibly several members of an extended
family as is the case in the present study) then larger households will
tend to contribute more to transmission than smaller households.

We looked at a combination of presence of symptoms and viral load
to infer infectiousness. We found that being symptomatic is of key
importance. In general, symptomatic individuals were more infectious,
particularly if shedding large amounts of virus. Though this result is not
surprising it has an important implication on vaccine effectiveness. If an
RSV vaccine works by reducing or preventing disease in the form of an
ARI, this will in turn have an impact on transmission potential and we
should expect to see reduced morbidity and infection. To check what
that potential impact of such a vaccine would be, we simulated epi-
demics where the infectiousness of symptomatic individuals was equal
to that of asymptomatic individuals and we found a significant shift in
the overall distribution of simulated case towards smaller total numbers
infected. The shift was more for ages between 1 and 15 years, given that
this group also had the larger fraction of symptomatic cases, the ob-
servation from simulations with reduced infectiousness suggests largely
assortative mixing within this group, which in turn means largely as-
sortative transmission. The number of cases in the< 1 year age group is
not greatly altered by reducing the infectiousness of symptomatic in-
dividuals, implying that there are several sources of infection to the
infant and reducing or removing only one has little impact (Figure A.
23).

We reduced the model complexity to look at RSV as a single pa-
thogen without distinguishing between groups. This resulted in skewing
the parameter estimates away from within household transmission and
towards spontaneous infection from external sources, as a result of in-
troductions due to RSV A and RSV B being treated as multiple in-
troduction of the same pathogen thus compounding the effect of com-
munity transmission. This, in addition to the reduced protective effect
of previous infection due to misclassification of re-infections, led to the
within household transmission parameter being underestimated in
order for the model to account for the observed number of infections. In
addition, temporally linking RSV A and B cases as a result of mis-
classification also led to the effect of symptoms on transmission being
overestimated. This suggests that the estimates obtained in the present
analysis are likely to change if we further classified the cases into RSV
subgroups. This goes to illustrate the importance of making distinctions
between pathogens in order to obtain accurate estimates of transmis-
sion parameters. At any given moment multiple pathogens are co-cir-
culating in a host population, this household study alone had multiple
viruses spreading in large numbers during the time of data collection
(Munywoki et al., 2018). How these pathogens interact could have
dramatic implications for parameter estimates, and ultimately on how
control strategies are implemented. We have seen the effect of the
pneumococcal vaccine on the non-vaccine serotypes and how it might
mitigate vaccine effectiveness (Kwambana-Adams et al., 2017) and a
study on influenza has shown evidence of its controlling effect on other
pathogens (Zheng et al., 2017). There is an increasing call from such
observations to understand how multiple pathogens interact at the host
population level.

Our study is not without limitations. The households in the study
were selected based on the presence of an infant born after the previous

I.K. Kombe et al. Epidemics 27 (2019) 1–11

9



RSV epidemic and older siblings to the infant in order to determine who
infects the infant. As such the sample is not random and this might
introduce bias in the parameter estimates, the extent of which we are
uncertain. Relative to other studies, our sample size in terms of number
of households is small. However, the intensive sampling regardless of
symptoms means we had less biased observation of infections relative
to index-case ascertained household studies that rely on symptom re-
porting by household contacts. In our study we had 47.2% of RSV A and
40.2% of RSV B positive samples that were symptomatic, 60.8% of RSV
A and 55.2% of RSV B episodes were symptomatic. Estimation of
parameters only using data from symptomatic episodes shows similar
parameter estimates, although with loss of precision, especially in terms
of differential infectiousness (Figure A. 24). In addition, sampling was
done every 3 or 4 days, which means that short duration infections
might have been missed, and we do not have serological data to com-
plement the PCR results.

The present analysis could be extended in several ways. We used
interpolated shedding durations; it would be an added advantage to use
the data to estimate a distribution of shedding durations that could
potentially be more generalizable. The inclusion of other sources of
information into the analysis could improve parameter inference, as
was the case with Li et al and the inclusion of genetic data (Li et al.,
2017). The inference made on within-household transmission com-
pared to community transmission is based on the latency distribution
that links onset of cases. This is a temporal linking of cases that is not
always correct. A combination of temporal and genetic distance would
allow better inference on linked cases and consequently the competi-
tion between within-household and community source transmission.
Finally the RSV A and B model could be used to look at other pathogen
interactions and perhaps incorporate more than two pathogens.

In conclusion, our analysis presents the first transmission modelling
of cohort data for RSV and we find that it is important to factor in
household size and social structuring – such as the tendency for
households to contain several members of the extended family – when
modelling transmission. It is also important to model competing risks of
infection from within the household and the community. There are
questions on the mechanisms that allow co-existence of RSV groups
temporally and geographically. The weak cross immunity between RSV
groups demonstrated by our analysis and the possibility of different
transmission niches could form part of the explanation for the co-ex-
istence.
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