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TGF-β-mediated crosstalk between TIGIT+

Tregs and CD226+CD8+ T cells in the
progression and remission of type 1 diabetes

Ting Zhong1,6, Xinyu Li 1,6, Kang Lei1,6, Rong Tang1, Qiaolin Deng 2,
Paul E Love 3, Zhiguang Zhou 1 , Bin Zhao 1,4,5 & Xia Li 1

Type 1 diabetes (T1D) is a chronic autoimmune condition characterized by
hyperglycemia resulting from the destruction of insulin-producing β-cells that
is traditionally deemed irreversible, but partial remission (PR) with temporary
reversal of hyperglycemia is sometimes observed. Here we use single-cell RNA
sequencing to delineate the immune cell landscape across patients in different
T1D stages. Together with cohort validation and functional assays, we observe
dynamic changes in TIGIT+CCR7− Tregs and CD226+CCR7−CD8+ cytotoxic T
cells during the peri-remission phase. Machine learning algorithms further
identify TIGIT+CCR7− Tregs and CD226+CD8+ T cells as biomarkers for β-cell
function decline in a predictive model, while cell communication analysis and
in vitro assays suggest that TIGIT+CCR7− Tregs may inhibit CD226+CCR7−CD8+

T cells via TGF-β signaling. Lastly, in both cyclophosphamide-induced and
streptozotocin (STZ)-induced mouse diabetes models, CD226 inhibition
postpones insulitis onset and reduces hyperglycemia severity. Our results thus
identify two interrelated immune cell subsets thatmay serve as biomarkers for
monitoring disease progression and targets for therapeutic interven-
tion of T1D.

Type 1 diabetes (T1D) is a progressive autoimmune disease that cur-
rently affects approximately 8.4 million people worldwide, with pre-
valence increasing by approximately 4% per year1,2. Accumulating
evidence has linked T1D etiology to a combination of genetic and
environmental factors which eventually results in the breakdown of
immunological tolerance, thus treatment strategies focusing on
immunomodulation are considered to be the most promising.
The recent approval by the USA Food and Drug Administration
(FDA) of the first disease-modifying therapy for T1D, the anti-CD3
monoclonal antibody Teplizumab, ushers in a new era in the
treatment of T1D3–5. Despite these extensive efforts, detailed

immunopathological mechanisms during the different stages of T1D
remain elusive6,7.

T1D involves complex interactions between islet β cells and the
immune systems8,9. Especially, an imbalance between CD8+ T cells and
regulatory T cells (Tregs) has been highligheted, and diabetogenic
CD8+ T cell precursors are present in the pancreas-draining lymph
node (PLN), where they may continuously generate effector cells and
migrate to the pancreas, destroying β cells and eventually causing
T1D9–13. However, most of these studies came from mouse models,
limiting their application in clinical settings. Also, detecting T1D-
specific immune cell subsets fromperipheral bloodwould be ideal due
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to the easy availability. Therefore, a comprehensive assessment of the
peripheral immune cells involved in different stages of T1D is
warranted.

Shortly after T1D diagnosis and initiation of insulin therapy, some
patients may undergo a phase of partial remission (PR). Previous
research conducted by our team and others has revealed that the
immune profiles and intracellular metabolism of T cells during this
specific period display distinct features from newly onset ones14–18,
providing a natural model for investigating the restoration of immune
tolerance toward β cells within the context of T1D. However, the
characteristicsof immune cells in PRphase, particularly T cells subsets,
remain unclear.

Immune checkpoint receptors play an essential role in maintain-
ing the equilibrium of T-cell immunity by regulating the balance
between co-stimulatory and inhibitory signals19,20, which are also
implicated in the pathogenesis of T1D21,22. Recently, an intriguing
immune checkpoint system has come to light, featuring CD226 as the
co-stimulatory receptor and T cell immunoglobulin and ITIM domain
(TIGIT) as the co-inhibitory receptor. TIGIT andCD226 compete for the
binding of ligands CD112/CD155, and the delicate balance between the
co-stimulatory effects of CD226 and the co-suppressive functions of
TIGIT plays a crucial role in the maintenance of immune
homeostasis23–25. In this regard, Thirawatananond, P et al. demon-
strated that nonobese diabetic (NOD) mice lacking CD226 were pro-
tected from the onset of T1D26. However, the precise impact of CD226/
TIGIT on T-cell function during the progression and remission of T1D,
particularly their alterations and regulatory mechanisms, remains
poorly understood.

In this study, we identify TIGIT+CCR7− Tregs and CD226+CD8+

T cells as crucial biomarkers during the peri-remission phase of T1D.
TIGIT+CCR7− Tregs promote immune tolerance in PR phase by inhi-
biting CD226+CD8+ T cell activation via TGF-β1 signaling. Blocking
CD226 delays insulitis and the onset of diabetes, and reduces hyper-
glycemia in both cyclophosphamide (Cy) and streptozotocin (STZ)-
induced mouse diabetes models. Our findings spotlight two inter-
related immune cell subsets with roles in T1D progression and PR, and
present promising targets for future T1D immunotherapies.

Results
A single-cell peripheral immune atlas of T1D
To understand the heterogeneity of immune cells across the different
stages of T1D, single-cell RNA sequencing (scRNA-seq) was performed
to interrogate the transcriptomic status of peripheral immune cells. In
total, 12 patients were enrolled, including 5 new-onset cases with T1D
(New), 4 cases during PR with T1D, and 3 HDs. A schematic illustration
summarizing the clinical information for the individuals involved is
shown in Fig. 1A27. An overview of the approach and clustering strategy
used to analyze the circulating immune cell profiles is summarized
in Fig. 1B.

After quality control and batch correction (supplementary Fig. 1),
139,901 cells were retained for analysis, including 44,508 cells from
T1D patients and 95,393 cells from HDs (supplementary Table. 1).
Thirteen cell types were manually identified based on CellTypist
annotation results (supplementary Fig. 2) and the expression of
canonical marker genes (supplementary Table 2, supplementary
Dataset 1).Most of the peripheral immune cell types couldbe captured
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Fig. 1 | Overview of the peripheral immune landscape in patients in different
T1D phases and HD. A Schematic illustration highlighting the group design and
clinical information for the individuals. B Schematic diagram highlighting the
workflow of the study design and analysis. C UMAP embedding overlaid with
unsupervised cluster cell type annotations. D Dot plot showing the expression
levels of canonical markers in each cell type. The dot size indicates the expression

of the gene cluster as a percentage. E Major cell-type compositions for each indi-
vidual. The cell types represented by the color correspond to Fig. 1C. T1D, type 1
diabetes; NEW, new-onset; PR, partial remission; HD, healthy donor; PBMCs, per-
ipheral blood mononuclear cells; scRNA-seq, single-cell RNA sequencing. Source
data are provided as a Source Data File.
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by the scRNA-seq, including CD16+ monocytes (CD16+ Mono), CD16−

monocytes (CD16− Mono), conventional dendritic cells (cDCs), plas-
macytoid dendritic cells (pDCs), granulocytes, B cells, CD4+ T cells
(CD4+ T), CD8+ T cells (CD8+ T), double negative T cells (DNT), natural
killer cells (NK), natural killer T cells (NKT), and a small number of stem
cells and platelets (Fig. 1C, D). The small number of granulocytes and
platelets may be related to technical factors introduced during sample
collection and processing. Quality control analysis revealed that
granulocytes and platelets exhibited lower total counts and gene fea-
tures (supplementary Fig. 1) andwere therefore considered low-quality
cells. A global view of the cell composition data from each donor was
generated to illustrate the cell composition differences. The compo-
sition variability within groups was detected and showed individual
heterogeneity (Fig. 1E). In summary, the first peripheral immune
landscape was mapped for T1D progression and PR at a single-cell
resolution.

ScRNA-seq revealed a role of TIGIT+ CCR7− Tregs in different
stages of T1D
A total of 6 typical CD4+ T cell clusters were identified, including naive
(Tn), central memory (Tcm), T helper type 1 (Th1), T helper type 2
(Th2), T helper type 17 (Th17) and Tregs (Fig. 2A). Each CD4+ T cell
cluster exhibited distinct signature genes and transcription factors

(TFs) (Fig. 2B, C). The composition variability of CD4+ T subclusters
within groups was insignificant although individual heterogeneity was
detected (Fig. 2D, supplementary Fig. 3A). However, differential gene
analysis suggested that the transcriptional profile of CD4+ T cells was
not entirely the same at different stages of T1D (supplementary
Fig. 3B). Interestingly, regulon activity analysis revealed that tran-
scription factor STAT5B was more activated in the Tn and Tcm cells in
new-onset cases. In contrast, HMGB2, JUND, KLF2, CEBPB, IRF9 and
YBX1were downregulated in the new-onset group and recovered in the
PR phase (supplementary Fig. 3C). While the regulon models in
Th1 cells showeddynamic changes in two transcription factorsNFATC2
and KLF2 at different stages of T1D (supplementary Fig. 3D).

CD4+ Tregs were identified by markers for interleukin 2 receptor
subunit alpha (IL2RA, also known as CD25), forkhead box P3 (FOXP3)
and cytotoxic T-lymphocyte associated protein 4 (CTLA4). By re-
clustering, the heterogeneity of the Tregs was assessed and seven
clusters were generated (c1–c7) with clearly defined marker genes
(Fig. 2E, supplementary Fig. 4A). Based on the expression levels of
TIGIT and CCR7, three Treg phenotypes (TIGIT−CCR7+ Tregs,
TIGIT+CCR7+ Tregs, TIGIT+CCR7− Tregs) were annotated (Fig. 2F, G).
The compositions of the Treg subsets were altered in different disease
stages. Specifically, when compared to the HD group, the frequencies
of TIGIT+CCR7− Tregs decreased in new-onset patients, increased to a

Fig. 2 | Dynamic changes in the composition and differentiation trajectories of
the Treg subclusters in different T1D phases. AUMAP visualization of the CD4+ T
cell subclusters. B Heatmap showing the scaled expression levels of canonical
markers in each cell type. C Regulon activity of transcription factors within each
type of CD4+ T cell. Data from 40,040CD4+ T cells are shown: Tn (n = 27,004), Tcm
(n = 5,584), Th1 (n = 1,903), Th2 (n = 1,371), Th17 (n = 535), and Treg (n = 3,640). Each
cell represents a biological replicate. The central line in thebox denotes themedian
of activity values. The box represents the interquartile range (IQR), bounded by the
25th percentile (lower quartile) and the 75th percentile (upper quartile). Whiskers
extend from the box to the largest and smallest values within 1.5 × IQR from the
quartiles. Data points outside this range are considered outliers and are not dis-
played. D Composition of CD4+ T cells in each group. E UMAP visualization of the
CD4+ Treg subclusters. F Dot plot showing the expression levels of the TIGIT and

CCR7 in each Treg subcluster. G Annotation of the Treg phenotypes based on the
expression levels of the TIGIT and CCR7. H Treg phenotype compositions of each
group. I UMAP visualization showed a differentiation trajectory for Treg predicted
byMonocle 3. Cells wereordered in pseudotimeby a gradient coloring frompurple
to yellow. Density distribution plots displayed the compositions of the Treg sub-
clustersover pseudotime. J ScaledAUCvaluesof thedifferential signalingpathways
in each Treg subcluster and (K) activity of TF regulons that were differential
between the TIGIT–CCR7+ and TIGIT+CCR7– Tregs. Regulon activity was shown as
the AUC value (left) and dichotomous activation status (right). Cells were sorted by
pseudotime and subclusters. L Alterations in regulon activity under pseudotime
differentiation trajectories. T1D, type 1 diabetes; NEW, new-onset; PR, partial
remission; HD, healthy donor. Source data are provided as a Source Data File.

Article https://doi.org/10.1038/s41467-024-53264-8

Nature Communications |         (2024) 15:8894 3

www.nature.com/naturecommunications


normal level during the PRperiod, and significantlydeclined inpost-PR
patients. In contrast, we noted an increasing trend in the proportion of
CCR7+TIGIT− Tregs in the new-onset group, alongside a decreasing
trend during the PR period (Fig. 2H).

To further explore the continuum of development states in the
Treg clusters, pseudotime analysis using Monocle 3 was conducted.
Starting from c3, we reconstructed a potential differentiation trajec-
tory in Tregs (Fig. 2I). The trajectory proceeded from TIGIT−CCR7+

Tregs (c3, c1, c2) to TIGIT+CCR7+ Tregs (c4), and then to TIGIT+CCR7−

Tregs (c6, c7), which meant that the TIGIT increased and CCR7
decreased along with the process (Fig. 2I). Functional genes were
identified for the Tregs such as IL2RA, TGFB1, and CTLA4 and they were
synchronously increased with pseudotime (supplementary Fig. 4B).
The c5 cluster may be in an abnormal cell state due to obvious outliers
in the pseudotime analysis. Furthermore, considering the extremely
small size of the c5 cluster, it was not included in the analysis.

To compare the signal transduction signatures of different Treg
subsets, pathway activity analysis was performed using AUCell. The
activity analysis identified variations in multiple signaling pathways.
The pathways related to type I interferon (IFN) gamma response,
immune effector process, cytokine secretion, and cell adhesion were
stronger in TIGIT+CCR7− Tregs (c6, c7) than in TIGIT−CCR7+ Tregs (c1,
c2, c3) (Fig. 2J, supplementary Fig. 5). To understand the transcrip-
tional regulatory features of different Treg clusters and construct a
regulatory network, we further mapped the TF regulon landscape
using single-cell regulatory network inference and clustering (SCENIC)
analysis and identified 12 TFs with obvious differences. These TFs with
regulons exhibited distinct activation signatures across subclusters
under pseudotime differentiation trajectories. MYC and TCF7 were
mainly activated in the TIGIT−CCR7+ Treg subclusters (c1, c2, c3), while
ESR2, STAT1, EZH2, PRDM1, RUNX2, FOXP3, RUNX3, KLF6, MAF, and
BATF were mainly activated in TIGIT+CCR7− Tregs (c4, c6, c7) (Fig. 2K,
supplementary Fig. 6). Combined with the pseudotime trajectory,
TIGIT and CCR7 expression was closely related to the regulons’ activ-
ity (Fig. 2L).

ScRNA-seq revealed a role of CD226+CCR7−CD8+ T cells during
different phases of T1D
CD8+ T cell heterogeneity was assessed and 18 CD8+ T cell subclusters
were defined (c1–c18) (Fig. 3A). Based on the expression levels of CCR7
and KLRG1, KLRG1−CCR7+ naive (Tn) and central memory (Tcm) cells
were annotated, and the remaining effector or memory CD8+ T cells
(c4, c7, c8, c10, and c15) were screened for further analysis (Fig. 3B).
The CCR7−CD8+ T cell subsets were then re-annotated based on the
expression levels of the CD226 and TIGIT (Fig. 3C–F). These
CCR7−CD8+ T cells could be divided into 3 separate phenotypes
(CD226+, TIGIT+, and CD226−TIGIT−), and each exhibited distinct gene
expression signatures (Fig. 3G). Among them, CD226+CCR7−CD8+

T cells expressed high levels of cytotoxic granular proteins such as
Granulysin (GNLY), Granzyme B (GZMB), and Granzyme H (GZMH).
While TIGIT+CCR7−CD8+ T cells expressed high levels of class II major
histocompatibility complex related-genes (CD74, HLA-DRA, and HLA-
DRB1). CD155, as a common ligand of TIGIT and CD226, is mainly
expressed in antigen presenting cells (APCs), especially monocytes
and cDCs in our data set (supplementary Fig. 7A–B), and that the
expression of CD155 on monocytes of patients in the PR period is
significantly lower than that of newly diagnosed patients (supple-
mentary Fig. 7C–J).

To characterize the pathway activation features of CD8+ T cell
subclusters, AUCell and gene set enrichment analysis (GSEA) were
utilized to identify functional differences in multiple pathways based
on the differentially expressed genes (DEGs) between the CD226+ and
TIGIT+CCR7−CD8+ T cells. The AUCell results suggested that
CD226+CCR7−CD8+ T cells had enhanced adhesive and cytotoxic
functions (supplementary Fig. 9A, B). Using external data (GSE10239,

GSE9650 and GSE22443), we found that the down-regulated genes in
the CD226+CCR7−CD8+ T cells were concentrated in the sets of highly
up-regulated genes derived from naive or memory CD8+ T cells when
compared to effector cells (Fig. 3H). Similarly, the highly expressed
genes of the TIGIT+CCR7−CD8+ T cells were concentrated in the sets of
highly up-regulated genes derived from PD-1+CD8+ T cells when com-
pared to the PD-1− cells (GSE26495) (Fig. 3H). These results suggested
that CD226+CCR7−CD8+ T cells were more likely to have the char-
acteristics of highly activated effector CD8+ T cells, while
TIGIT+CCR7−CD8+ T cells had characteristics similar to PD-1+CD8+

T cells.

Cohort validation and functional assays confirmed the altera-
tions of TIGIT+CCR7− Tregs in different stages of T1D
To validate the scRNA-seq results, in an independent cohort, flow
cytometry (FCM) was performed using cell surface markers for the
different clusters (supplementary Fig. 8A). All 125 cases in the cohort
(supplementary Table. 3&4)were divided into four groups:HD (n = 35),
new-onset T1D (n = 21), T1D in PR (n = 34, 0.85 ± 0.66 months after the
onset of PR), andpost-PRT1Dpatients (n = 35, 11.54 ± 8.47months after
PR ended). We performed a sample size calculation using PASS
15 software (NCSS, Kaysville, UT, USA), with ɑ = 0.05 and 1–β =0.8,
which indicated a required sample size of 16 individuals per group
(Cohort II). Our actual sample size has exceeded expectations. Com-
pared with that of the HD (22.6 ± 6.2%), the proportion of TIGIT+CCR7−

Tregs decreased in new-onset patients (14.2 ± 7.5%), significantly
increased in patients during PR (20.5 ± 4.9%), and then declined to a
lower level in post-PR patients (14.0 ± 5.1%) (Fig. 4A), while the per-
centage of TIGIT−CCR7+ Tregs showed the opposite pattern duringT1D
progression (Fig. 4B). These results from the validation cohort were in
line with those derived from the scRNA-seq analysis. Notably, there
was a significant positive correlation between the percentage of
TIGIT+CCR7− Tregs and β-cell function (i.e., 2-hour postprandial C-
peptide, PCP) (R = 0.52, P <0.001, Fig. 4C). In contrast, TIGIT−CCR7+

Tregs were negatively correlated with β-cell function (R = −0.44,
P <0.001, Fig. 4D). To rule out any confounding effects of blood glu-
cose on the Tregs, the proportion of TIGIT+CCR7− and TIGIT−CCR7+

Tregs were measured in two groups of type 2 diabetes (T2D) indivi-
duals with different glycemic controls. No statistical differences in the
TIGIT+CCR7− and TIGIT−CCR7+ Tregs were identified between the gly-
cated hemoglobin (HbA1c) < 7.5% (n = 11) andHbA1c ≥ 7.5% (n = 11) T2D
subgroups (supplementary Fig. 8B).

To characterize thehomeostatic and functional properties of Treg
subsets, FCM was utilized, and the functional markers was assessed in
an additional cohort comprising 40 T1D patients and 14 HD. When
compared with TIGIT−CCR7+ Tregs, the TIGIT+CCR7− Treg population
demonstrated elevated FOXP3 (Fig. 4F). In alignment with pathway
activity analysis, TIGIT+CCR7− Tregswere found to secrete significantly
greater levels of IL-10 (Fig. 4E), granzyme B (Fig. 4G), and TGF-β1
(Fig. 4H) than their TIGIT−CCR7+ counterparts. To evaluate the sup-
pressive capabilities of these Treg subsets on CD8+ T cell proliferation,
TIGIT+CCR7− and TIGIT−CCR7+ Tregs were isolated (supplementary
Fig. 8C), and co-cultured with carboxyfluorescein diacetate succini-
midyl ester (CFSE) labeledCD8+ T cells at various ratios (0:1, 1:1, 1:2, 1:4,
and 1:8) for a periodof 72 hours. The TIGIT+CCR7− Tregs demonstrated
a more potent immunosuppressive effect on the CD8+ T cells, as evi-
denced by the reduced proliferation in the CD8+ T cells (Fig. 4I, sup-
plementary Fig. 8D).

Cohort validation and functional assays confirmed the altera-
tions of CD226+CCR7−CD8+ T cells in different stages of T1D
To explore the proportional changes in the peripheral CD226+ and
TIGIT+CCR7−CD8+ T cell subsets, we performed FCM (supplementary
Fig. 9C) in the same cohort mentioned above (125 cases, 4 groups).
Compared to theHDgroup (57.0 ± 5.9 %), the CD226+CCR7−CD8+ T cell
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frequencies were increased among the CD8+ T cells in the new-onset
patients (67.0 ± 6.8 %), significantly decreased in patients during PR
(57.0 ± 7.9 %), and enriched to a high level in the post-PR patients
(70.8 ± 6.6 %) (Fig. 5A), showing that there was a dynamic change
pattern during the peri-PR phase. The percentage changes of the
TIGIT+CCR7−CD8+ T cells around the peri-PR phase showed the
opposing pattern (Fig. 5B). Notably, β-cell function assessed by PCP
was negatively correlated with the percentage of CD226+CCR7−CD8+

T cells (R = −0.66, P < 0.001; Fig. 5C), and positively correlated with

TIGIT+CCR7−CD8+ T cells (R = 0.36, P =0.0011; Fig. 5D). To rule out any
potential confounding effects imposed by hyperglycemia, the CD226+

and TIGIT+CCR7−CD8+ T cell subsets were identified in two groups of
T2D populations: HbA1c < 7.5% (n = 11) and HbA1c ≥ 7.5% (n = 11). No
statistical differences in the CD226+ and TIGIT+CCR7−CD8+ T cell sub-
sets were identified between the two groups (supplementary Fig. 9D).

To further determine the phenotypic and functional character-
istics of the CD8+ T cell subsets, FCM and functional assays were
conducted using the same cohort of 40 patients with T1D and 14 HD
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(Fig. 5E–J). The CD226+CCR7−CD8+ T cells expressed different levels of
the CTLA4, CD127, and CD62L proteins when compared to the
TIGIT+CCR7−CD8+ T cells (Fig. 5E–G). In line with pathway activity
analysis, cytokine staining showed that CD226+CCR7−CD8+ T cells
secreted significantly higher amounts of perforin, GZMB, and proin-
flammatory cytokine tumor necrosis factor (TNF)when comparedwith
the TIGIT+CCR7−CD8+ T cells (Fig. 5H–J). For the assessment of

cytotoxic activity, CD226+ and TIGIT+CD8+ T cell subsets were isolated,
and subsequently co-cultured with P815 mastocytoma cells for a
duration of 5 hours to evaluate the induction of apoptosis in the target
cells. CD226+CD8+ T cells exerted a significantly greater cytotoxic
effect on P815 cells when compared to TIGIT+CD8+ T cells, as indicated
by an increased rate of apoptosis in the P815 cells (Fig. 5K, L, supple-
mentary Fig. 9E).
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Predictive value of CD226 and TIGIT-associated T-cell subsets
for β-cell function declination in T1D
To further explore the potential of CD226 and TIGIT-related T cells as
the predictive indicators for the β-cell function declination in T1D
patients, we incorporated a cohort of 100 T1D patients who were
diagnosed within six months of disease onset, and followed up at
three-month intervals over a period of 24 months (Fig. 6A and sup-
plementary Table. 5). The predictive variable was bifurcated into two
outcome categories: patients who exhibited faster declination in their
C-peptide area under the curve (CP-AUC) value (more than50%decline
relative to their baseline) were classified into the ‘Fast’ group, whereas
those with a decline of less than 50% were classified into the ‘Slow’
group (Fig. 6B–D). By employing supervised machine learning classi-
fication algorithms, the support vector machines (SVM) model
demonstrated notable performance (average AUC of 0.77 in internal
validion cohort) in forecasting the rate of β-cell function deterioration
in T1Dpatients (Fig. 6E, F). In external validation cohort, themodel had
meanAUCof 0.81, performing close to the internal validation (Fig. 6G).
This suggested that CD226-related T cell subsets could partially pre-
dict the rate of islet failure in the early stage of T1D. An assessment of
the importance of the independent variables showed that CD226-
related immune signatures had amore important predictive role in this
model (Fig. 6H).

Further, we explored the prognostic potential of TIGIT-associated
Treg subsets in additional cohorts with similar methods (supplemen-
tary Fig. 10A, B). The results showed that the classifier constructed by
the CatBoost algorithm could distinguish rapid progressors of islet
function with a good performance of an average AUC of 0.73 with
TIGIT+CCR7– Tregs (supplementary Fig. 10C–E).

Interactions between CD226+CCR7–CD8+ T cells and
TIGIT+CCR7– Tregs via TGF-β-mediated pathway
In light of the pronounced alterations observed in TIGIT+CCR7– Tregs
and CD226+CCR7–CD8+ T cells across different stages of T1D, we
investigated the cellular interactions between these subsets to eluci-
date the regulatory role of Tregs on CD8+ T cell function. CellChat
analysis revealed that TIGIT+CCR7– Tregs emit a potent immunosup-
pressive TGF-β signal that specifically targets CD226+CCR7–CD8+

T cells (Fig. 7A). Subsequent anlysis pinpointed the involvement of
distinct TGF-β receptors, including TGF-β receptor type I (TGFBR1),
type II (TGFBR2), and activin receptors type I (ACVR1) and type II
(ACVR2), in mediating this signal to the CD226+CCR7–CD8+ T cell
subset (Fig. 7B).

Further serum analysis using enzyme-linked immunosorbent
assay (ELISA) in T1D patients revealed a parallel relationship between
TGF-β1 level fluctuations during the peri-PR phase and the dynamics of
TIGIT+CCR7– Tregs (Fig. 7C). Analysis of the supernatants from
TIGIT+CCR7– Treg cultures confirmed that these cells secreted higher
TGF-β1 than TIGIT–CCR7+ Tregs (Fig. 7D). Additionally, we established
that TGF-β1 intervention significantly inhibited the functional activity
of CD226+CCR7–CD8+ T cells in vitro (Fig. 7E, F). Crucially, co-culture
experiments of TIGIT+CCR7– Tregs with CD226+CCR7–CD8+ T cells
allowed for direct observationof the suppressive effect of TIGIT+CCR7–

Tregs on this particular CD8+ T cell subset (Fig. 7G–I).

Alterations of TIGIT+CCR7− Tregs andCD226+CCR7−CD8+ T cells
in NOD mice mirror the severity of insulitis
To explore the relationship between TIGIT+CCR7− Tregs and
CD226+CCR7−CD8+ T cells with the severity of insulitis, we assessed
these specific cellular subpopulations in the spleens and PLNs of NOD
mice across the diasese course(supplementary Fig. 11A). In comparison
to C57BL/6 mice, the splenic and PLN TIGIT+CCR7− Treg cell propor-
tions displayed a significant reduction, gradually declining in NOD
mice at 4weeks, 8weeks, and 12weeks of age (supplementary Fig. 11B).
In contrast, the proportions of CD226+CCR7−CD8+ T cells in the spleen
and PLN were notably higher in NOD mice than in control C57BL/6
mice, progressively increased at 4 weeks, 8 weeks, and 12 weeks of age
(supplementary Fig. 11C). The hematoxylin and eosin (H&E)-stained
histological sections of pancreas tissues and correlation analysis
revealed that these two cell types exhibited inverse (r = −0.48,
p =0.014 in the spleen; r = −0.59, p =0.005 in PLN) and positive
(r = 0.60, p = 0.000 in the spleen; r = 0.48, p = 0.038 in PLN) correla-
tions, respectively, with the severity of insulitis (supplementary
Fig. 11D–E). We also compared the association of TIGIT+CCR7− Treg
versus TIGIT−CCR7+ Treg with the severity of insulitis (supplemen-
tary Fig. 12).

Using multiplex fluorescence immunohistochemistry, we
observed a substantial enrichment of the CD226+CD8+ T cell subset
within infiltrating lymphocytes in severely damaged pancreatic islet
tissues (supplementary Fig. 13A–C). We further performed bulk RNA
sequencing of TIGIT+ and CD226+CD8+ T cells, isolated from 8 NOD
mice. This revealed differential expression of 4937 genes between the
two populations, with a false discovery rate (FDR)-adjusted P value <
0.05 and log2-transformed fold change (log2FC) > 1 (supplementary
Fig. 13D). Complementary to our previous functional experimental
results, the CD226+ subset, in contrast to TIGIT+ cells, demonstrated
enhanced cytokine secretion capabilities (supplementary Fig. 13E, F).

Anti-CD226 therapy inhibited the activation of CD8+ T cells and
alleviated hyperglycemia in vivo
We first assessed the binding efficiency (supplementary Fig. 14A) and
validated the blocking effect of anti-CD226 monoclonal antibody
(mAb) in vitro. CD8+ T cells, isolated from the spleens of NOD mice,
were cultured and exposed to anti-CD3 (5 µg/mL) and mPVR-Fc (5 µg/
mL), either alone or in combination with anti-CD226 mAb (5 µg/mL),
for a period of 24 h. It showed that CD226 blockade significantly
suppressed both cell proliferation and cytokine production (supple-
mentary Fig. 14B–D). To further elucidate the potential mechanistic
action of anti-CD226 mAb, we evaluated the phosphorylation levels of
signaling proteins within CD8+ T cells post-CD226 blockade. Our
results demonstrated a marked decrease in the phosphorylation of
AKT and m-TOR proteins (supplementary Fig. 14E–G). These experi-
ments confirmed that anti-CD226 mAb impaired CD8+ T cell func-
tionality through the inhibition of AKT-mTOR signaling pathway.

Furthermore, to demonstrate the prophylactic potential of the
anti-CD226 mAb in T1D, we employed both the Cy-accelerated NOD
and STZ-induced diabetic mouse models, with detailed experimental
protocols outlined in Figs. 8A and 8G. Administration of the anti-
CD226 mAb mitigated symptoms of diabetes in STZ-induced diabetic

Fig. 4 | Changes in the composition and function of two distinctive Treg sub-
sets. A, B Comparisons of the (A) TIGIT+CCR7– and (B) TIGIT–CCR7+ Treg fre-
quencies in theHD (n = 35), new-onset T1D (n = 21), T1D in PR (n= 34), andT1D post-
PR (n = 35) groups. C,D Correlation analysis of the PCP levels with (C) TIGIT+CCR7–

and (D) TIGIT–CCR7+. P values were calculated using Spearman’s correlation ana-
lysis. E–H Representative diagrams and quantification of (E) IL-10, (F) FOXP3, (G)
granzyme B, and (H) TGF-β1 in TIGIT–CCR7+ and TIGIT+CCR7– Tregs from T1D
patients (red line, n = 40) andHD (blue line, n = 14). P values were calculated using a
paired/unpaired two-tailed t-test, and data are presented as mean ± SD. ‘*’ and ‘‡’

denote statistical significance within T1D and HDs, respectively, between

TIGIT–CCR7+ and TIGIT+CCR7– Treg subpopulations; ‘#’ signify statistical sig-
nificance of marker expression in TIGIT–CCR7+ between T1D and HDs.
I TIGIT+CCR7– and TIGIT–CCR7+ Tregs, isolated from T1D patients (n = 4), were
cocultured with CFSE labeled CD8+ T cells in the presence of ɑ-CD3/CD28 anti-
bodies (0.5 bead/cell) for 72 h at 37 °C. The proliferation of CD8+ T cells was mea-
sured. Two-tailed t-test; data are shown as the mean± SEM. T1D, type 1 diabetes;
NEW, new-onset; PR, partial remission; HD, healthy donor; PCP, postprandial
C-peptide. n indicates the number of biologically independent samples examined.
Source data are provided as a Source Data File.

Article https://doi.org/10.1038/s41467-024-53264-8

Nature Communications |         (2024) 15:8894 7

www.nature.com/naturecommunications


CD226+

CTLA4 CD127

CD62L

Pe
rc

en
ta

ge
of

m
ax

im
um

24.5

52.0

TIGIT+

42.6

18.5

64.1

40.2

CTLA4 CD127

CD62L

CD226+ TIGIT+ CD226+ TIGIT+

CD226+ TIGIT+ CD226+ TIGIT+

Granzyme B

64.2 35.8

CD226+ TIGIT+

SS
C

Granzyme B

CD226+ TIGIT+
Perforin

58.1 35.7

CD226+ TIGIT+

SS
C

CD226+ TIGIT+

Perforin

100

80

60

40

20

0

100

80

60

40

20

0

80

60

40

20

0

80

60

40

20

0

80

60

40

20

0

%
of

C
D

62
L+

ce
lls

%
of

C
D

12
7+

ce
lls

%
of

C
T L

A-
4+

ce
lls

%
of

gr
a n

zy
m

e
B+

ce
lls

%
of

pe
rf o

rin
+

c e
lls

E F

I J

G

Pe
rc

en
ta

ge
of

m
ax

im
um

Pe
rc

en
ta

ge
o f

m
ax

im
um

41.2 20.3

TNF

CD226+ TIGIT+

SS
C

TNF
80

60

40

20

0

%
of

TN
F+

ce
lls

H

0 104 105 0 104 105

0 104 105

CD226+ TIGIT+A B
%

in
C

C
R

7−
C

D
8+

T

%
in

C
C

R
7−

C
D

8+
T

R=−0.66
P<0.001

PC
P

(p
m

ol
/L

)

% in CCR7−CD8+ T

R=0.36
P =0.0011

PC
P

(p
m

ol
/L

)

% in CCR7−CD8+ T

C DCD226+ TIGIT+

Annexin V

PI

0.2

2.4

7.1

16.7

13.8

32.6

P815
TIGIT+CD8+ T cells:

P815=5:1
CD226+CD8+ T
cells: P815=5:1

Co-culture

34.9

19.5

Granzyme B

80

60

40

20

0

Ap
op

to
si

s
of

P 8
15

ce
lls

(%
)

CD226+ TIGIT+

Pe
rc

en
ta

ge
of

m
ax

im
um

10000

8000

6000

4000

2000

0

M
FI

CD226+ TIGIT+

Granzyme BK L

‡P<0.0001
*P<0.0001

#P=0.0058 †P=0.0009

‡P<0.0001
*P=0.0071

‡P=0.0044
*P<0.0001

35.8 36 50.9 25.2 44 59.7 14.7 5.63 6.14 7.37 16.6 11.8 14.9 6.97

32.6 38.3 41.2 23.8 38.2 58.2 13 5.03 6.21 6.25 9.66 10 13.9 6.32

‡P=0.0067
*P<0.0001

*P=0.0009 ‡P=0.0040
*P<0.0001

P=0.0337 P=0.0313

P<0.0001

P<0.0001

P<0.0001

P=0.0338

P=0.0066

P=0.0066

Fig. 5 | Changes in the composition and function between two T1D-stage-
associated CD8+ T subsets. A, B Comparison of the (A) CD226+ and (B)
TIGIT+CCR7–CD8+ T cell frequencies in theHD (n = 35), new-onset (n = 21), T1D in PR
(n = 34), and post-PR T1D (n = 35) groups. C,D Correlation analysis of the PCP with
(C) CD226+ and (D) TIGIT+CCR7–CD8+ T cells. P values were calculated using
Spearman’s correlation analysis. E–J Representative diagrams and quantification of
(E) CTLA4, (F) CD127, (G) CD62L, (H) TNF, (I) granzymeB, and (J) perforin inCD226+

and TIGIT+CCR7–CD8+ T cells from T1D patients (red line, n = 40) and HD (blue line,
n = 14). ‘*’ and ‘‡’ denote statistical significance within T1D and HDs, respectively,
between CD226+ and TIGIT+CCR7–CD8+ T cell subpopulations; ‘#’ and ‘†’ signify

statistical significance of marker expression in CD226+ and TIGIT+CCR7–CD8+

T cells, respectively, between T1D and HDs. K, L CD226+ and TIGIT+CD8+ T cells,
isolated from T1D patients (n = 6), were cocultured with fluorescently labeled P815
cells at a ratio of 5:1 for 5 h at 37 °C. K Representative flow cytometry plots and
quantification of apoptosis in P815 cells. L Representative peak plots and quanti-
fication of granzyme B expression within CD8+ T-cell subsets. P values were cal-
culated using a paired/unpaired two-tailed t-test, and data are presented as
mean ± SD. T1D, type 1 diabetes; NEW, new-onset; PR, partial remission; HD, healthy
donor; PCP, postprandial C-peptide. n indicates the number of biologically inde-
pendent samples examined. Source data are provided as a Source Data File.
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mice, as indicated by reduced blood glucose levels (Fig. 8B) and
enhanced glucose tolerance (supplementary Fig. 15A). Additionally,
treatmentwith the anti-CD226mAb resulted indecreasedproliferation
and cytokine production in both total (Fig. 8C–F) and CD226-
expressing (supplementary Fig. 15B–F) CD8+ T cells. Corresponding
observations in the Cy-accelerated NOD model confirmed that block-
ing CD226 delayed the onset of T1D (Fig. 8H) and curtailed the acti-
vation of both total (Fig. 8I–L) and CD226-expressing (supplementary
Fig. 16) CD8+ T cells.Moreover, our results highlighted a critical role for
the cellular equilibrium between CD226+CD8+ T cells and TIGIT+ Tregs
in both the STZ-induced (supplementary Fig. 17) and Cy-accelerated
NOD (supplementary Fig. 18) mouse models.

Discussion
This study presents the first comprehensive single-cell resolution atlas
of peripheral immune cells implicated in different stages (newly onset
and PR pahse) of T1D. Following cohort verification and functional
analysis, we identified TIGIT+CCR7– Tregs, which exhibit potent
immunosuppressive potential, were associated with PR stage and β-
cell function, with their proportions declined in newly-diagnosed
patients, increased during PR, and then decreased again after PR. In
contrast, CD226+CCR7–CD8+ T subsets, displaying a high cytotoxic
potential and an inverse relationship with β-cell function, showed an
opposing trend throughout disease progression. Machine learning
models constructed using follow-up cohort data suggested that
TIGIT+CCR7– Tregs and CD226+CCR7–CD8+ T cells held a significant
predictive value for the progression of β-cell function in T1D. Further
mechanistic data showed that TIGIT+CCR7– Tregs may inhibit
CD226+CCR7–CD8+ T cells via TGF-β signaling. Notably, inhibition of

CD226 effectively postponed the progression of insulitis, onset of
diabetes, and ameliorated hyperglycemia in mouse models. Taken
together, our data suggested an important role of the interplay
between TIGIT+CCR7– Tregs and CD226+CCR7–CD8+ T cells in the
pathogenesis of T1D (Fig. 9).

The critical role of Tregs in maintaining immune tolerance has
long been recognized28. However, the frequency of Tregs is not always
altered in autoimmune diseases including T1D29. Furthermore, exo-
genous repletion of the Tregs infusion when treating autoimmune
diseases including T1D is not as satisfactory as was expected28,30.
Therefore, it is important to investigate the heterogeneity and plasti-
city of Tregs and identify potential disease specific subsets.While there
were no differences in the total number of Tregs in our T1D patients,
we identified two Treg subsets specifically associated with β-cell
function and T1D disease stage by scRNA-seq and cohort validation.
The expansion of TIGIT+CCR7– Tregs in the PR stage and decrease in
new-onset and post-PR stages indicate that they may signature
immunologic balance during the PR stage. Indeed, our findings
revealed that the TIGIT+CCR7– Tregs subset was characterized by ele-
vated FOXP3 expression, enhanced TGF-β secretion, and a superior
immunosuppressive function compared to the TIGIT–CCR7+ Tregs.
The important role of TIGIT as a coinhibitory molecule in T cells has
been recognized and TIGIT+ Tregs are associated with the clinical
outcomes of tumors such as melanoma31, or autoimmune diseases
such as systemic lupus erythematosus32. Interestingly, Tregs in the
inflamed islets of NOD mice were found to be correlated with TIGIT
expression in a previous study33. Our findings provided the first evi-
dence of the association between the peripheral TIGIT+CCR7– Tregs
subset and the progression of T1D, demonstrating its potential as an
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subclusters.BDot plot representing the communications between the Treg (ligand
provider) and CD8+ T cell subset. C Comparisons of the serum TGF-β1 levels in the
HD (n = 12), new-onset T1D (n = 17), T1D in PR (n = 12), and T1D post-PR (n = 12)
groups.D Sorted TIGIT+CCR7–Treg andTIGIT–CCR7+ Treg fromT1Dpatients (n = 6)
were incubated with ɑ-CD3/CD28 antibodies (0.5 bead/cell) for 48h at 37 °C. The
TGF-β1 levels in the supernatants weremeasured by ELISA. E, F Representative flow
plots and expression levels of (E) TNF, and (F) granzyme B in CD226+CCR7–CD8+

T cells from T1D patients following 48h of stimulation with or without 10 ng/ml
TGF-β1 (n = 12). G Diagram illustrating the experimental setup. H, I Representative
flow plots and expression levels of (H) IFN-γ, and (I) granzyme B in
CD226+CCR7–CD8+ T cells from T1D patients following 48h of co-culture with
TIGIT+CCR7– or TIGIT–CCR7+ Tregs at a 1:1 ratio (n = 6). Two-tailed paired/unpaired
t-test; data are shown as the mean ± SD. T1D, type 1 diabetes; NEW, new-onset; PR,
partial remission; HD, healthy donor; PBMCs, peripheral blood mononuclear cells.
n indicates the number of biologically independent samples examined. Source data
are provided as a Source Data File.
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STZ to induce diabetes. The Anti-CD226 group got 25 µg/mouse of the antibody
every threedays for four doses; controls had isotype injections. Post-treatment,five
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Source data are provided as a Source Data File.
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effective predictor for islet function declination and promising
disease-modifying therapies for T1D.

CD8+ T cells are responsible for directly destroying the islets of
T1D patients34. Few studies have analyzed islet-infiltrating immune
cells in patients with different stages of T1D due to their inaccessibility.
It is therefore imperative to determine the comprehensive transcrip-
tional profiles of CD8+ T cells in the peripheral bloodof patients during
different phases of T1D and identify the disease-related CD8+ T cell
subsets. Our data showed that CD8+ T cells were dynamically changed
along the disease stages and that the expression of CD226 and TIGIT
was pivotal for distinguishing T1D-related CD8+ T subsets. Among
classical effector CCR7–CD8+ T cells, the CD226+ subcluster was
potentially more pathogenic; its proportion increased in new-onset
T1D and was negatively correlated with islet function, while the TIGIT+

subcluster was the opposite. Phenotypic and functional analyses fur-
ther highlighted the unique characteristics of these two subsets;
notably, the CD226+ subset secreted significantly higher levels of
perforin, GZMB, and the pro-inflammatory cytokine TNF, and exhib-
ited increased cytotoxicity against target cells. These findings are
consistent with previous studies26,35,36. Furthermore, using a follow-up
cohort, we determined through machine learning algorithms that the
proportion of circulating CD226+CCR7–CD8+ T cells had a high pre-
dictive performance for the pace of β-cell function decline in T1D
patients.

The progression and PR of T1D are characterized by opposite
alterations of TIGIT+CCR7– Treg and CD226+CCR7–CD8+ T cell subsets.
Our further cell-cell interaction analysis suggested that TIGIT+CCR7–

Tregs specifically inhibited CD226+CCR7–CD8+ T cells via the TGF-β
signal. TGF-β could function as a suppressor to inhibit cytotoxic CD8+

T cell differentiation while promoting peripheral Tregs generation37.
Moreover,wediscovered thatTGF-β1 levels in the serumof PRpatients
are higher than those in non-PR status. Hence, we speculated that the
dynamics of TIGIT+CCR7– Tregs/TFG-β/CD226+CCR7–CD8+ T cells were
critical in T1D progression. Echoing this, Principe DR et al. reported
that adoptive transfer of TGFBR-deficient CD8+ T cells promotes a
cytotoxic response against tumors38. Our in vitro studies showed that
TIGIT+ Tregs secreted higher levels of TGF-β1 compared to TIGIT–

Tregs, significantly inhibiting the activation of CD226+CD8+ T cells.
Furthermore, the co-culture of TIGIT+ Treg cells with CD226+CD8+

T cells provided direct evidence of the inhibitory effect of TIGIT+ Tregs
on CD226+CD8+ T cells. These results reveal for the first time that
TIGIT+ Tregsmay supress the activation of CD226+CD8+ T cells through

the TGF-β1 signaling pathway. This interaction could play an important
role in the re-establishment of immune tolerance during the PR
phase of T1D.

Althoughpromising, theprotective effects of anti-CD3mAbsonβ-
cell destruction in T1D are far from meeting the need to cure or pre-
vent this disease. Should studies confirm that anti-CD226 mAbs
effectively and safely modulate immune responses, they might have a
synergenic impact on the basis of anti-CD3 mAbs in therapeutic
potential. In this regard,it is intriguing to find that targeting CD226
could exert significant therapeutic effects in both the Cy-accelerated
NOD and the STZ-induced diabeticmousemodels, which shed light on
the modulatory roles played by this costimulatory pathway in T1D.
Further studies targeting at NOD model or pliot clinical trials could
sure provide more solid evidence.

The treatment with anti-CD226 mAb led to a reduction in both
proliferation and cytokine production of CD8+ T cells, consistent with
existing literature39. Additionally, CD8+ T cells isolated from the
spleens of NOD mice and treated in vitro with anti-CD3 and mPVR-Fc,
either alone or in conjunction with anti-CD226 mAb, demonstrated
substantial reductions in both cell proliferation and cytokine secre-
tion, corroborating previous research40. Mechanistically, our findings
indicated that inhibition of CD226 simultaneously suppressed the
phosphorylation of AKT and mTOR, suggesting that anti-CD226 mAb
may inhibit CD8+ T cell functionbydisrupting theAKT/mTOR signaling
pathway. In this study, we sought to dissect the intricate balance
between CD226+CD8+ T cells and TIGIT+CCR7– Treg cells that orches-
trates immune tolerance during the PR phase. To achieve this, we
meticulously assessed the dynamic equilibrium of these two pivotal
cell subpopulations in response to precise modulation with anti-
CD226 therapeutic intervention.

Our study has a few limitations. First, the relatively small sample
size included in scRNA-seq may have reduced the statistical power of
the analysis. However, we verified our findings with a relatively ade-
quate number of independent cohorts. Second, we focused on
immune cells from circulating blood since it is challenging to obtain
infiltrating immune cells in the pancreas during the course of T1D, and
future studies of pancreatic lesionswill help to further characterize the
complex network of immune cells.

In conclusion, the results of this study provide a framework that
will enrich our knowledge of the intricacies of T1D. Furthermore, the
interplay identified between TIGIT+CCR7– Tregs and CD226+CCR7–CD8+

T cells may offer mechanistic clues for therapeutic interventions.
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However, maintaining the long-term effect of immunotherapy and
preserving β-cell function by extending the PR phase is still a complex
problem to overcome in the future.

Methods
Study cohort
Cohort I consisted of 9 T1D patients (5 new-onset and 4 in PR) and 3
HDs for single-cell sequencing. Cohort II consisted of 90 T1D patients
at different stages (21 new-onset T1D, 34 T1D in PR, and 35 post-PR T1D
patients) and 35 HDs for the in vitro validation experiments. Cohort III
included 70 T1D patients who were followed up for 24 months for
establishing predictive models with machine learning.

All patients with T1Dwere enrolled at the SecondXiangyaHospital
of Central South University (Changsha, Hunan, China) from December
2020 to July 2022. The diagnosis of T1D was made according to the
International Society for Pediatric and Adolescent Diabetes (ISPAD)
guidelines41 andour inclusion criteriaweredefined as follows: (i) insulin
dependence from the time of disease onset, (ii) positivity for at least 1
of the 3 islet autoantibodies measured (glutamic acid decarboxylase
antibody [GADA], insulinoma associated protein 2 antibody [IA-2A],
and zinc transporter 8 antibody [ZnT8A]), (iii) disease duration of less
than 2 years, and (iv) regular follow-up to measure fasting C-peptide
(FCP), PCP, insulin dosage (INS dose), body mass index (BMI) or BMI
z-score (BMI z), and HbA1c, enabling the identification of PR status.

HDwere recruited through a recruitment advertisement at a local
preschool education institution and local medical centers. All controls
underwent oral glucose tolerance test (OGTT) screening, and their
medical history was collected to exclude those with a positive family
history of diabetes, infection, autoimmune disease, severe liver and
kidney damage, or steroid hormone therapy. We also enrolled 20 T2D
patients defined according to the American Diabetes Association
(ADA) criteria with different blood glucose controls42: (i) HbA1c < 7.5%
(n = 11), and (ii) HbA1c ≥ 7.5% (n = 11).

All participants, of Asian ethnicity, were drawn from various rural
and urban regions throughout China. The sex of the study participants
was determined through self-report during the initial demographic
data collection. Informedconsentwasprovidedby all participants, and
the study was approved by the Ethics Committee of the Second
Xiangya Hospital of Central South University (SQ2016YFSF110035).

Definition of PR
The definition of PR in this study was based on either mixed meal
tolerance test (MMTT)-stimulated C-peptide levels ( ≥ 300 pmol/L) or
the index of insulin dose adjustedHbA1c (IDAA1c) (IDAA1C =HbA1c [%]
+ 4* daily insulin dose/kg ≤9). When C-peptide values were missing,
IDAA1C values were used to define the PR, as previously reported14.
Participants were classified into three subgroups according to their
status: (i) patients with diabetes for less than 3 months who did not
meet the definition of PR were classified as ‘new-onset’, (ii) patients
currently in the PR stage were grouped into the ‘PR’ group, and (iii)
patients whose PR phase had ended were defined as ‘post-PR’.

C-peptide, HbA1c and islet autoantibodies assays
C-peptide levels were measured by a chemiluminescence method
using the Advia Centaur System kit (Siemens, Munich, Germany). The
inter- and intra-assay variation coefficients were 3.7% to 4.1% and 1.0%
to 3.3%, respectively, as previously reported43. HbA1c was detected by
automatic liquid chromatography (VARIANT II haemoglobin test sys-
tem, Bio-Rad Laboratories, Hercules, CA, USA).

The determination of GADA, IA-2A, and ZnT8A was conducted
through radioimmunoassay, as previously reported44. Samples that
initially tested positive were re-evaluatedwith a second test to confirm
their status. Only patients with confirmed positive results were inclu-
ded in the study. The sensitivities of the assays for GADA, IA-2A, and
ZnT8A were found to be 82%, 76%, and 76%, respectively. Specificities

reached 96.7%, 100%, and 100%, respectively, as determined by the
Islet Autoantibody Standardization Program (IASP 2020).

Isolation and stimulation of peripheral blood mononuclear
cells (PBMCs)
Fresh venous blood samples were drawn into sodium heparin tubes
from fasting subjects and processed within two hours. PBMCs were
isolated by standard Ficoll-Paque Plus density-gradient centrifugation.

scRNA-seq experiment
scRNA-seq was performed by CapitalBio Technology Inc. (Beijing,
China). Cell density and survivability were evaluated in the fresh PBMCs
from cohort I using Count Star (Alit life science, Shanghai, China), and
the cell viability >90% for each sample. According to themanufacturer’s
instruction, single-cell suspensions were transformed to barcoded
scRNA-seq libraries using a Chromium Single Cell B Chip Kit (10x
Genomics, 1000074) and Single-cell 3′ Library and Gel Bead Kit V3 (10x
Genomics, 1000075). Then, single-cell cDNA synthesis and amplification
were generated in a S1000TM Touch Thermal Cycler (Bio Rad). Finally,
the single-cell cDNA was sequenced on the Illumina NovaSeq 6000.

Quality control and data processing for scRNA-seq
Raw FASTQ files were mapped to human reference GRCh38 using 10X
Genomics Cell Ranger software suite (https://support.10xgenomics.
com/single-cell-gene-expression/software/downloads/latest)45. Fastq
sequence quality filtering and sequencing alignment were performed
sequentially using the Cell Ranger pipeline. The gene barcode matrix
from all samples was then combined with the R package Seurat 3.046.
We performed the first round of filtering based on the conditions of
removing genes detected in fewer than 3 cells and excluding cells with
fewer than 200 detected genes. Subsequently, we applied scDblFinder
for doublet detection. The criteria for inclusion in the second round of
filtering include the number of genes between 200 and 6000, the total
number of unique molecular identifier counts (UMI counts) ranging
from 500 to 34000, and mitochondrial gene percentages below 13%.
Following these steps, we initiated the clustering and manual annota-
tions process on the overall cell population, guided by CellTypist’s two
models (supplementary Fig. 2) for major cell types. Notably, the
second-round filtering already addressed the exclusion of a portion of
doublets (supplementary Fig. 1), often characterized by exceptionally
high UMI and gene counts. Subsequently, during annotation, we
carefully detected and removed remaining doublets, informed by
scDblFinder results, genemarkers, and clustering outcomes. Formajor
cell subgroups, asmentioned in themanuscript (e.g., CD8+ T and CD4+

T),we performed secondary clustering to refine immunephenotyping.

Perform dimensional reduction and clustering
A global-scaling normalization method ‘LogNormalize’ was employed
to normalize the featured expression measurements for each cell by
the total expression, and this wasmultiplied by a scale factor (10,000)
and the result was log-transformed. A linear transformation (scaling)
thatwas a standardpre-processing stepprior todimensional reduction
techniques was then applied. The gene features that exhibited high
cell-to-cell variation in the datasets were calculated using the function
‘FindVariableFeatures’. Principal component analysis (PCA) was then
conducted on the scaled variable features data. Prior to PCA for the
overall PBMC cell subpopulations, the final number of Highly Variable
Genes (HVGs) selected was set at 4000. In the subsequent round of
clustering for specific cell types like CD8+ T cells, 3000 HVGs were
employed. The method for HVG selection used in FindVaria-
bleFeatures was the Variance Stabilizing Transformation (VST). Fol-
lowingPCA, the top30principal componentswereutilized for uniform
manifold approximation and projection (UMAP), and graph-based
clustering was performed with a resolution parameter set at 1.2. As
with the clustering, a KNNgraphbasedon the Euclideandistance in the
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PCA space was utilized, and the edge weights were refined between
any two cells basedon the sharedoverlap in their local neighborhoods.

Batch effect correction
A multi-dataset integration algorithm ‘Harmony’ (https://github.com/
immunogenomics/harmony) was used to correct the batch effect47. In
brief, the batch effects were removed by the R package Harmony
version 1.0 based on the top 50 PCA components identified. The batch
variable used for correction was shown in supplementary Table. 1. All
the analyses presented in this study were done on the Harmony
corrected data.

Major cell type annotation
Cluster marker genes were recognized using the ‘FindAllMarkers’
function (supplementary Table. 2). Cell typesweremanually annotated
guided by the results from CellTypist48,49. The CellTypist predictions
were processed using the ‘Healthy_COVID19_PBMC’ and ‘Immu-
ne_All_Low’ models with majority voting classifiers. Monocytes, cDC,
NK/NKT, CD4+ T cells, CD8+ T cells, and B cells were isolated from the
whole scRNA-seq profile for a second round of re-clustering.

Detection of differentially expressed genes and functional
enrichment analysis
Differential gene expression analysis for cell clusterswas carried out in
Seurat using the ‘FindMarkers’ function with the Wilcoxon test. This
function was focusing on identifying DEGs between specific cell types
or conditions. The P-values were adjusted using the Bonferroni cor-
rection. Pseudobulk analysis has been applied to identify differences
betweendiseasegroupsby the sample-level inferences50. Themuscat R
package was used to make pseudobulk analysis.

Pseudo-bulk analysis involved aggregating individual cell expres-
sions at the sample level, and we utilized the sum aggregationmethod
with default parameters. The DEGs were ranked by log2FC. GSEA was
performed to enrich the biological function information of the DEGs51.
Pathway-specific gene sets were downloaded from the GSEA database
(http://www.gsea-msigdb.org/gsea). AUCell analysis was performed to
evaluate pathway activity based on a given gene set52. AUCell is a
ranking-based analysis that uses the ‘AUC’ to calculate whether a cri-
tical subset of the input gene set is enriched within the expressed
genes for each cell.

Pseudotime analysis
Monocle3 was used to construct the pseudo-temporal trajectory
inference53,54. Monocle3 modeled gene expression levels were based
on pseudo-time values to show the variation of gene expression over
the differentiation trajectories.

Inference of transcription factor regulatory network
SCENIC analysis was performed for simultaneous gene regulatory net-
work reconstruction52. The SCENIC process involved: (1) identification
of potential TF targets based on co-expression using GENIE3, (2) use of
RcisTarget to determine direct targets (regulons), and (3) performing
AUCell analysis to score the activity of the regulons on single cells.

Cell-cell interaction analysis
CellChat was utilized to investigate and visualize signaling pathway
networks between different immune cells55. CellChat took gene
expression data as the input and combined ligand-receptor pairs and
their cofactor interactions to model cell-cell communication.

FCM
FCM was performed using standard surface and intracellular staining
protocols. The antibody panels listed in supplementary Table 8. To
identify the functions of the subset, PBMCs were stimulated for
4–6 hours using a lymphocyte activation cocktail (BD Bioscience, San

Jose, CA, USA), which included phorbol myristate acetate (PMA), a
calcium ionophore (Ionomycin), and the protein transport inhibitor
BD GolgiPlug™ (Brefeldin A), in accordance with the manufacturer’s
recommendations. Following the surface staining cells were fixed and
permeabilized using the Fixation/Permeabilization Buffer Kit (BD
Biosciences) and further stained for intracellular cytokines and cyto-
toxic molecules. The analysis was performed using an LSR II instru-
ment (BD Biosciences), and FlowJo 10.8.1 software (Treestar, San
Carlos, CA, USA) was used to analyze the data.

Treg isolation and suppression assay
We initially purified CD4+ T cells from T1D patients using anti-CD4
magnetic beads (Miltenyi Biotec, Bergisch Gladbach, Germany), fol-
lowed by cell sorting of TIGIT+CCR7− and TIGIT−CCR7+ Treg
(CD4+CD25+CD127−) subsets using the FACS Aria II cell sorter (BD
Biosciences). The flow-sorted Treg subsets were then co-cultured in
varying ratios (0:1, 1:1, 1:2, 1:4 and 1:8) with CFSE stainedCD8+ T cells, in
Roswell Park Memorial Institute (RPMI)-1640 medium with 10% fetal
bovine serum (FBS), 100U/mL penicillin, and 100mg/mL streptomy-
cin (GenClone; Genesee Scientific) for 72 h at 37°C and 5% CO2 in the
presence of anti-human CD3/CD28-conjugated beads (0.5 bead/cell,
ThermoFisher Scientific, Pittsburgh, PA, USA). Cell proliferation was
analyzed by FCM using a LSR II (BD Biosciences).

Cytotoxicity assay
We initially used anti-CD8 magnetic beads (Miltenyi Biotec) to purify
CD8+ T cells from T1D patients, followed by cell sorting of CD226+ and
TIGIT+CD8+ T cells using the FACS Aria II cell sorter (BD Biosciences).
P815 cells were labeled with 5 ul of 1,1’-Dioctadecyl-3,3,3’,3’-Tetra-
methylindodicarbocyanine,4-Chlorobenzenesulfonate Salt (DiD’) dye
(V22887, ThermoFisher) per 106 cells for 15min at 37 °C. CD226+ and
TIGIT+CD8+ T cells were incubated with these P815 cells in 96-well
round-bottom plates for 5 h at 37 °C and 5% CO2. Early (Annexin V
positive; PI negative) and late apoptosis (Annexin V positive; PI posi-
tive) of P815 were detected at 5 h by FCM (Annexin V Apoptosis
Detection Kit, ThermoFisher).

In vitro intervention of CD226+CD8+ T cells
To analyze the TGF-β-responsiveness of the T cells, CD226+CD8+ T cells
were cultured in the presence of TGF-β (10 ng/ml; Peprotech, Rocky
Hill, NJ, USA) for 48 h at 37 °C and 5% CO2, and then stained for intra-
cellular cytokines.

ELISA
Serum TGF-β levels were measured by ELISA using a human TGF-β
ELISA kit (Novus Biologics, Littleton, CO, USA) according to the man-
ufacturer’s instructions. TIGIT+CCR7− and TIGIT−CCR7+ Treg subsets
were separately isolated and cultured with anti-human CD3/CD28-
conjugated beads (0.5 bead/cell, ThermoFisher). The cell culture
supernatants TGF-β levels were measured by ELISA after 48 h.

In vitro co-cultivation system
Utilizing the described methods, TIGIT+CCR7− and TIGIT−CCR7+ Treg
subsets, and CD226+CD8+ T cells were isolated and co-cultured in a 1:1
ratio in the presence of anti-human CD3/CD28-conjugated beads (0.5
bead/cell, ThermoFisher) and human recombinant IL-2 (hrIL-2, 200 IU/
mL, Peprotech). The intracellular cytokines of the CD226+CD8+ T cells
were then assessed after 48 h.

Construction and evaluation of machine learning model
Weenrolled two cohorts comprising 110 T1Dpatients diagnosedwithin
6 months and conducted follow-up observations every three months
over a 24-month period (supplementary Table 5–6). The discovery
cohort consisted of 70 new-onset T1D patients and was mainly used to
train the model. An independent validation cohort consisting of 40
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patients was used as external validation of the model. The target pre-
dictive variables were categorized based on two outcome groups:
patients with a decline in CP-AUC exceeding 50% from baseline at the
18-month follow-up were classified as the ‘Fast’ group, while those with
a decline below 50% were categorized as the ‘Slow’ group.

Tomitigate the potential impact of randomness on our results, we
repeated the random sampling 100 times in the discovery cohort. In
each iteration, the discovery cohort dataset was partitioned into a
training dataset and internal validation dataset, with the internal vali-
dation comprising 35% of the total data. Different random seeds were
employed in each random sampling iteration to ensure robustness. In
each repetition, we trained multiple classifiers on the training set,
utilizing the frequencies of target cell types (derived from flow cyto-
metry) as features,with different outcomeevents (‘Fast group’or ‘Slow
group’) serving as the target variable. We employed the Python library
Scikit-Learn to construct, train, and evaluate diverse machine-learning
models for the purpose of addressing classification challenges. These
models included K-Nearest-Neighbor (KNN), logistic regression, sup-
port vector machines (SVM), gaussian naive bayes (Gaussian NB),
decision trees, and random forests. Additionally, we leveraged
ensemble boosting classifier models, specifically extreme gradient
boosting (XGBoost), light gradient boostingmachine (Light GBM), and
categorical boosting (CatBoost). Subsequently, predictionsweremade
on the internal validation dataset using the trained models, yielding
predicted probabilities. To evaluate the performance of our models,
we calculated the mean of all 100 AUC values obtained from the ran-
domsampling. TheAUC serves as a key performancemetric, providing
a comprehensive assessment of the classifiers’ discriminative abilities
across various data subsets. The best-performed algorithmmodel was
selected and further used for prediction on the external validation.

SHAP (SHapley Additive exPlanations) provides insights into
model predictions. For each sample, SHAP values signify the con-
tribution of each feature to the prediction. By computing the mean
absolute value of the SHAP values for a specific feature across all
samples, we assess the feature’s average contribution to the entire
dataset. A higher mean absolute value of SHAP indicates a more sig-
nificant contribution of that feature to the model’s predictions across
the dataset. Positive SHAP values (highlighted in red in Fig.6H) denote
that the feature positively influences the model’s predictions. In other
words, an increase in the feature value tends to lead themodel towards
higher predictions, and vice versa.

Mice
Wild-type C57BL/6 mice (male, 6–8 weeks old; stock N000013) and
NOD/ShiLtj mice (female, 4–6 weeks old; stock N000235) were pur-
chased from GemPharmatech (JiangSu, China). All animals were
housed in the specific pathogen-free (SPF) animal facility in a tem-
perature (72 ± 3 °F)- and air (50± 20% relative humidity)-controlled
room with a 12-h light/dark cycle and were given a standard diet and
tapwater. The experimental/control animalswerebred separately. The
micewere euthanized using carbon dioxide (CO2) inhalation to induce
asphyxiation, followed by cervical dislocation as a secondary eutha-
nasia. All animal experiments were conducted following protocols
approved by the Institutional Animal Care and Use Committee of
Central South University (protocol No. 2021sydw0252).

Histology and assessment of insulitis
Pancreatic samples were fixed in 4% formalin overnight and subse-
quently embedded in paraffin. Embedding, sectioning, and H&E
staining procedures were conducted by Servicebio Company (Wuhan,
China). The extent of insulitis was assessed using three non-sequential
slides from 3 to 5 individual mice. Each islet on every section was
assigned a score based on the following criteria: 0=no lymphocytic
infiltration, 1=peri-insulitis ( < 30% infiltration), 2 = < 50% islet infiltra-
tion, and 3 = > 50% islet infiltration.

Multi-color immunofluorescence
The multi-color immunofluorescence protocol was based on the tyr-
amide signal amplification (TSA) system. Briefly, tissue sections were
deparaffinized, rehydrated, and subjected to heating-induced epitope
retrieval (HIER) followed by H2O2 and 3% BSA blocking to prevent
nonspecific staining. Then, the sections were incubated with primary
antibodies specific for CD4/CD8 or FOXP3/CD226 (Abcam, Cam-
bridge, MA, USA), an HRP-conjugated anti-rabbit secondary antibody
and fluorescent tyramide (Biotium, Fremont, CA, USA) successively.
They were then subjected to HIER again, and the process from BSA
blocking through another round of antibody staining was repeated; in
the end, DAPI (Sigma-Aldrich, St. Louis, MO, USA) was added to stain
the nuclei, and the sectionswere imaged by afluorescencemicroscope
(Nikon, Tokyo, Japan).

Bulk RNA-seq
We initially used anti-CD8 magnetic beads (Miltenyi Biotec) to purify
CD8+ T cells from NOD mice, followed by cell sorting of CD226+ and
TIGIT+ subsets using the FACS Aria II cell sorter (BD Biosciences). Total
RNA was extracted using Trizol reagent (Thermo Fisher) according to
the manufacturer’s procedure. RNA-sequencing was completed using
Illumina Novaseq 6000 (LC-Bio Technology Co., Ltd., Hangzhou,
China). Raw sequencing reads were first subjected to quality control
using FastQC, to ensure data integrity. Clean reads were then aligned
to the reference genome using the Spliced Transcripts Alignment to a
Reference (STAR) aligner. Transcript abundance was quantified using
featureCounts, which provides read counts for each gene. The read
counts were normalized to account for library size and other technical
variations using the DESeq2 package. Differential expression analysis
was then performed to identify genes with statistically significant
changes in expression between conditions. Among the eight samples,
a minimum of a one-fold difference in log 2 expression and FDR-
adjusted P value < 0.05 were considered as expression differences.

Induction and assessment of the STZ-induced diabetic
mouse model
Diabetes was induced in male C57BL/6 mice, aged 6–8 weeks, by
administering multiple low-dose injections of STZ (Sigma). STZ was
dissolved in fresh cold 0.01M citrate buffer (pH 4.5) and administered
intraperitoneally at a dose of 40mg/kg for 5 consecutive days. Mice
were fasted for 4–6 hours prior to STZ injection, and overnight access
to 10% sucrose water was provided after the first injection to prevent
sudden hypoglycemia. Blood glucose concentrations exceeding
250mg/dL or 13.9mmol/L in two consecutive daily measurements
were considered indicative of diabetes onset.

Anti-CD226 mAb (clone #: 10E5, Thermo Fisher) or isotype Rat
IgG2bwere administered via intraperitoneal (i.p.) injection at a dose of
25μg permouseondays 6, 9, 12, and 15. Following treatment, fivemice
per group were euthanized for immune analysis, and the rest later to
gauge long-term therapy outcomes.

Induction and assessment of the NOD Cy-accelerated diabetic
mouse model
NOD/ShiLtj mice (female, 12 weeks old) were administered a single Cy
dose of 200mg/kg intraperitoneally to precipitate diabetes on day 7.
The Anti-CD226 group was treated with 25 µg of anti-CD226 mAb on
days 0, 2, 4, 6, 8, 10, 12, 14, 16 and 18, while the control group received
isotype injections. Four mice from each group were euthanized for
immune profiling post-treatment, with the remainder observed sub-
sequently to assess the diabetic incidence.

Mouse cell isolation and ex vivo culture
The spleens or PLN of mice were collected and processed to obtain
single-cell suspensions using a 40-µm cell strainer (352340, Corning,
USA). Splenic erythrocytes were lysed with a red blood cell lysis buffer
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(SigmaAldrich, St. Louis, MO, USA), and T cells were enriched using
nylon wool (18369-50, Polysciences, USA). Splenic CD8+ T cells were
enriched using anti-CD8 magnetic beads (Miltenyi Biotec) and cultured
ex vivo at 37°C in 24-well U-bottom plates (2 × 105 cells/mL) in the pre-
senceofmPVR-Fc (5μg/mL,RecombinantMouseCD155/PVRFcChimera
Protein, CF, R&D Systems), anti-CD3 (5μg/mL, R&D Systems), and/or
anti-CD226 (5μg/mL, Thermo Fisher) antibodies as indicated for 24h.

For rat antimouse CD226mAb (10E5) binding assay, 2×105 splenic
CD8+ T cells were incubatedwith diferent concentrations of antibodies
(10E5) and 5μg/mLmPVR-hFc fusion protein. DyLight 488-conjugated
goat anti-human IgG Fc antibody (ab98619, abcam, Cambridge, MA,
USA) was used to detect the binding frequency of mPVR-Fc fusion
protein.

Western blot analysis
Western blots (WBs) were performed according to the standard pro-
tocol. Briefly, Protein samples were subjected to SDS-PAGE gels, elec-
trophoresed, transferred to polyvinylidene fluoride (PVDF)
membranes (Bio-Rad, Hercules, CA, USA). The membranes were
blocked in 5%non-fatmilk for 30min, and then incubatedwithprimary
antibodies [actin (ab8227, Abcam), AKT (ab8805, Abcam), p-AKT
(ab38449, Abcam), mTOR (ab51089, Abcam), and p-mTOR (ab51044,
Abcam)] at 4°C overnight. Membranes were then incubated with
horseradish peroxidase (HRP)-conjugated secondary antibodies for
another hour at room temperature and developed with an chemilu-
minescence kit (Bio-Rad). Signals were visualized using Chemidoc XRS
+ (Bio-Rad). The ImageJ 1.50i software (Wayne Rasband, National
Institute of Health, USA) was used to quantify the WB results.

Statistical analysis
Data are expressed as mean ± standard deviation (SD) for normally
distributed variables or as median with range (minimum–maximum)
for non-normally distributed variables. Group comparisons were
conducted using unpaired or paired Student’s t-tests as appropriate.
One-way ANOVA was utilized for between-group comparisons with
adjustments for potential confounders such as age, gender, and BMI,
where collinearity analysis revealed no significant interactions
between these variables. For analyzing the time-dependent changes in
CP-AUC values within the longitudinal T1D patient cohort, a mixed-
effects model with Bonferroni correction for multiple comparisons
was employed. The normality of data distribution was verified using
the Kolmogorov–Smirnov test. Nonparametric tests, including the
Wilcoxon test or Mann–Whitney U test, were applied to parameters
with non-normal distributions. Pearson correlation analysis was
employed for data that followed a normal distribution, while Spear-
man correlation analysis was utilized for data that did not adhere to
normality. The log-rank test was applied for survival curve analysis.
Statistical computations were performed using R software version
4.1.0 (R Core Team, Vienna, Austria), Python version 3.6 (Python
Software Foundation, Beaverton, Oregon), SPSS version 25.0 (IBM
Corporation, Chicago, IL), and GraphPad Prism version 9 (GraphPad
Software, San Diego, CA). Significance was established at a two-tailed
P-value of less than 0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The scRNA-seq data generated in this study have been deposited in the
NCBI Gene Expression Omnibus (GEO) database under accession code
GSE221297. We confrm that our study is compliant with the Guidance
of the Ministry of Science and Technology (MOST) for the Review and
Approval of Human Genetic Resources. The data have been deposited
in the OMIX, China National Center for Bioinformation/Beijing

Institute of Genomics, Chinese Academy of Sciences (https://ngdc.
cncb.ac.cn/omix/release/OMIX005173). Source data are provided with
this paper.

Code availability
The code can be accessed at https://github.com/Lxy-xyeyy/
scRNAseq-T1D.
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