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Cancer is considered a high-risk condition for severe illness resulting from

COVID-19. The interaction between severe acute respiratory syndrome

coronavirus-2 (SARS-CoV-2) and human metabolism is key to elucidating

the risk posed by COVID-19 for cancer patients and identifying effective

treatments, yet it is largely uncharacterised on a mechanistic level. We pre-

sent a genome-scale map of short-term metabolic alterations triggered by

SARS-CoV-2 infection of cancer cells. Through transcriptomic- and

proteomic-informed genome-scale metabolic modelling, we characterise the

role of RNA and fatty acid biosynthesis in conjunction with a rewiring in

energy production pathways and enhanced cytokine secretion. These findings

link together complementary aspects of viral invasion of cancer cells, while

providing mechanistic insights that can inform the development of treatment

strategies.

Keywords: cancer; COVID-19; flux balance analysis; genome-scale

metabolic modelling; multi-omics; SARS-CoV-2

The rapid spread of severe acute respiratory syndrome

coronavirus-2 (SARS-CoV-2) has created a global

public health emergency that is currently affecting

countries across the globe [1,2]. The coronavirus dis-

ease 2019 (COVID-19) pandemic poses challenges to

healthcare systems due to the lack of specific therapeu-

tics for prevention or patient treatment. In turn, drug

development requires scientists across biomedical disci-

plines to expand our knowledge on biomolecular

mechanisms regulating SARS-CoV-2 infection and the

associated cascade of cellular alterations.

Cancer is considered by the Centers for Disease

Control and Prevention a high-risk condition for sev-

ere illness resulting from COVID-19. However, it is

not clear to what extent this comorbidity affects the

cellular mechanisms observed in both diseases. While

cancer patients infected with SARS-CoV-2 are known

to be at increased risk, the human metabolic response
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to SARS-CoV-2 infection in cancer cells remains lar-

gely uncharacterised to date [3–6]. The severity of

physiological symptoms experienced by individuals is

largely dependent on the host response, which means

understanding the metabolic changes caused by infec-

tion is crucial to identifying treatments for managing

both the immediate and longer-term effects on health

[7].

Further, liver dysfunction has been reported to

increase with increasing severity of COVID-19 infec-

tion [8–12]. It has been reported that the ACE2 recep-

tor that facilitates viral entry to the cell is highly

expressed in cholangiocytes and is also expressed in

hepatocytes to a lesser extent [13,14]. Chu et al. [15]

demonstrated that COVID-19 can replicate within liver

cancer cells such as Huh7. However, the precise mech-

anism underlying the viral effect on the liver has still

to be determined [16,17].

Recently, time-course transcriptomic measurements

of SARS-CoV-2-infected Huh7 cells have been

reported [18]. In this study, the ErbB, HIF-1, mTOR

and TNF signalling pathways were identified as signifi-

cantly modulated during the course of the SARS-CoV-

2 infection. The mTOR signalling pathway was thus

suggested as a potential drug target to treat COVID-

19 patients. mTOR is known to be implicated in the

metabolic control of glucose, nucleotides and lipids

[19]. This study thus highlights the relevance of omics

analyses for the consolidation of knowledge with

potential for clinical translation. Studies based on gene

and protein transcription levels, however, provide scat-

tered information that may be difficult to unify and

interpret.

Similarly, studies of circulating blood metabolites in

COVID-19 patients have yielded interesting biomark-

ers of infection, including hijacking of nucleic acid

intermediates [20–23], dysregulation of lipid metabo-

lism [22,24,25], changes in amino acid metabolism

[23,25], alteration of energy metabolism [26], immune

response [27], and indicators of hepatic cell damage

[25]. However, a limitation of metabolomics alone is

that it focuses on alterations of metabolites at a path-

way level rather than identifying altered reaction/en-

zyme activity, which allows for more specific

therapeutic targeting.

To unify and interpret heterogeneous omics data,

systems biology offers powerful tools such as genome-

scale metabolic modelling [28]. This approach mathe-

matically describes metabolic networks and their

activity by unifying large corpuses of detailed bio-

chemical knowledge, thus allowing the estimation of

metabolic phenotypes on a single-reaction resolution

[29]. For instance, previous studies exploited it for

predicting biomarkers in the context of cancer and

other diseases [30–32]. In the context of SARS-CoV-2,

there have been few studies to investigate the meta-

bolic effects of viral infection at genome scale [33,34]

and to our knowledge, none that investigate the meta-

bolic effects of infection in cancer cells, an aspect of

special relevance in cancer [35].

To address these gaps, we apply a systems biology

approach to explore how SARS-CoV-2 infection

impacts human cancer cell metabolism and how dis-

tinct pathways are affected over time. To this end, we

build genome-scale metabolic models (GSMMs) that

incorporate multiple transcriptional and protein

expression states after infection and that reflect consec-

utive stages of immune response to viral invasion.

Thanks to a flux balance analysis (FBA) framework,

such models allowed us to explore in detail how the

disease insurgence impacts single metabolic reactions.

Through this approach, we identify altered pathway

capabilities and reconstruct a global overview of meta-

bolic rewiring under SARS-CoV-2 infection (Fig. 1 for

the workflow).

Our analysis identified four main areas of metabo-

lism affected by SARS-CoV-2 infection: RNA pro-

duction, energy production, fatty acid metabolism

and the secretome. Glycolysis showed upregulated

production of ATP while the mitochondrial electron

transport chain and oxidative phosphorylation were

downregulated. This diversion of energy production

through glycolysis is in addition to the upregulation

of glycolysis already known to occur in cancer cells.

The amplified effect of cancer metabolism may

explain why cancer patients are at higher risk from

SARS-CoV-2 infection. Synthesis of fatty acids for

the viral cell envelope was increased, while unsatu-

rated fatty acid synthesis was decreased. Secretion of

interferon c-induced protein-10 (IP10/CXCL10),

which is associated with the cytokine storm, was

highly upregulated. Finally, we suggest some biologi-

cal processes that could be targeted by therapeutic

treatments based on our findings.

Materials and methods

Data collection

RNA-seq data were taken from the SRA database (acces-

sion PRJNA627100). Briefly, Huh7 cells were used to per-

form transcriptomic analysis in uninfected and 24, 48 and

72 hours post-infection (hpi) by the SARS-CoV-2 virus.

Three specimens for each time point were collected. Com-

plete data production is extensively reported in the original

paper of Appelberg et al. [18]. Preprocessed proteomic data
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for Huh7 cells at the same time points were obtained from

the authors.

RNA-seq and proteomic data processing and

analysis

RNA read preprocessing was performed by using FASTP

v0.20.0 [36], applying specific parameters in order to

remove residual adapter sequences and to keep only high-

quality data (qualified_quality_phred = 20, unqualified_

percent_limit = 30, average_qual = 25, low_complexity_

filter = True, complexity_threshold = 30). Then, passing fil-

ter reads were mapped to the human genome reference

(version GRCh38) using STAR v2.7.0 [37] with standard

parameters, except for sjdbOverhang option set to 74 due

to read length. Genome and transcript annotation provided

as input were downloaded from the Ensembl repository

v99 (genome [38], annotation [39]). Alignments were then

elaborated by RSEM v1.3.3 [40] to estimate transcript and

gene abundances. Subsequently, sample-specific gene-level

abundances were merged into a single raw expression matrix

applying a dedicated RSEM command (rsem-generate-data-

matrix). Genes with less than 10 counts in all samples were

then filtered out. Gene differential expression (pairwise com-

parisons) was computed by EDGER [41] from raw counts in

each comparison, following the authors’ instructions. A mul-

tiple testing correction was applied (estimateDisp, glmQLFit

and glmQLFtest), and genes with a P-value ≤ 0.05 were con-

sidered differentially expressed.

Starting from quantile-normalised protein abundance,

proteomic profiles were processed as described in the

original paper [18]. Proteomic-transformed data were pro-

cessed through linear models using the LIMMA R package

[42]. In the limma design matrix, separated coefficients

were associated with time and samples in order to define

the contrasts. For the pairwise comparisons, a single fac-

torial design was implemented to fit models with a coeffi-

cient for each of four factors: uninfected, 24, 48 and

72 hpi. As a result, significant differentially expressed pro-

teins were selected based on P-values after a Benjamini–
Hochberg (BH) adjustment. Proteins with an alpha value

less than 0.05 were considered significant. For both pro-

teomic and transcriptomic results, no threshold was

applied on the log2 fold change.

Re-annotation of differentially expressed genes (DEGs)

and proteins was performed using the BIOMART package

[43] in R 3.6, querying available Ensembl Gene IDs and

retrieving Gene Names and HGNC gene IDs to allow

mapping of genes onto the metabolic model. Then, GO

(gene ontology) and pathway enrichment analyses were

performed on the KEGG [44] and Reactome [45] public

pathway databases, which consist of graphical diagrams

of biochemical pathways including most of the known

metabolic reactions.

Huh7 cell cultures

RNA-seq and proteomic analysis

Genome-scale 
metabolic modelling x3  x3  x3  x3

Mock       24hpi       48hpi       72hpi
Glc + ATP → G6P + ADP + H+

Fatty acids

Energy

RNA

Human metabolic 
reconstruction

Mechanistic prediction of 
infection progression

Gene and 
protein 
counts

Raw 
reads and 

spectra

DEGs 
and 

DEPs

Pathway enrichment

Protein secretion

24 hpi

48 hpi

72 hpi

Fig. 1. Workflow followed in the study. Time series RNA-seq and proteomic data from infected Huh7 cells sampled at 24, 48 and 72 hours

post-infection (hpi) were analysed and used to identify DEGs, DEPs and dysregulated pathways compared with uninfected cultures. Results

from RNA-seq and proteomic analysis were used to inform a genome-scale metabolic reconstruction of human metabolism, which was

expanded to include translation and secretion pathways for a range of immune proteins alongside a SARS-CoV-2 biomass objective function.

Gene and protein expression counts were thus incorporated in the baseline model to capture time-dependent changes in metabolic activity

by estimating DARs with respect to uninfected Huh7 cells.
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Expansion of a human genome-scale metabolic

reconstruction

We modelled the hepatocyte-derived cellular carcinoma cell

line Huh7 metabolism based on the Recon 2.2 genome-

scale reconstruction [46]. This model incorporates a large

number of biochemical pathways of human metabolism

and is the result of joint efforts by many scientists and sev-

eral rounds of curation. We expanded Recon by including

translation and secretion pathways for relevant proteins

using a recently introduced pipeline [47]. Secretory proteins

were selected based on the secretomes of COVID-19

[11,12,48–50], SARS [51–53], oxidative stress [54] and liver

cells [55] (Table 1). Moreover, we introduced a SARS-

CoV-2 biomass pseudoreaction accounting for viral meta-

bolic requirements within host cells, to enable an integrated

human virus metabolic modelling simulation [56]. Specifi-

cally, we employed a biomass stoichiometry defined in pre-

vious works by assembling molecular investments in SARS-

CoV-2 biomass and that accounts for nucleotide, amino

acid, lipid and energetic requirements [33,34]. The resulting

model spans 1838 genes, 9892 reactions and exchange

pseudoreactions and 7386 metabolites across 10 cellular

compartments.

Infection-stage-specific metabolic modelling

Flux balance analysis is a mathematical approach for analys-

ing the flux of biochemical reactions through a genome-scale

reconstruction of metabolic networks [28,29]. FBA requires

a genome-scale metabolic network reconstruction, repre-

sented as a stoichiometric matrix S where the rows corre-

spond to metabolites and the columns represent reactions.

Under a steady-state assumption, there is no net change in

mass in the system and the mass is conserved. Therefore, the

rate of production of each internal metabolite equals its rate

of consumption. A column vector v represents the flux

through the system (reaction rate of each reaction). Under

the steady-state assumption, the matrix multiplication of the

stoichiometric matrix S and column vector v provides the lin-

ear equations representing the constraints (Sv = 0).

Further constraints are added through RNA-seq expres-

sion profiles, and specifically the lower and upper bounds

Table 1. Genome-scale metabolic model secretory proteins. Table showing the name, gene and protein UniProt ID for the secretome added

to the GSMM.

Name Gene Protein

Alpha-1 acid glycoprotein ORM1 P02763

Apolipoprotein A1 APOA1 P02647

Basic fibroblast growth factor FGF2 P09038

Chemokine (C-C motif) ligand 20 CCL20 P78556

C-reactive protein CRP P02741

Eotaxin CCL11 P51671

Fetuin AHSG P02765

Granulocyte colony-stimulating factor (GSCF) CSF3 P09919

Haptoglobin HP P00738

IFN-c IFNG P01579

Proinflammatory interleukins IL-1b, IL-2, IL-5, IL-6, IL-

8, IL-12A, IL-12B, IL-15, IL-17A

IL1B, IL-2, IL-5, IL-6, CXCL8, IL-12A,

IL-12B, IL-15, IL-17RA

P01584, P60568, P05113, P10145, P29459,

P29460, P40933, Q96F46

Anti-inflammatory interleukins IL1RA, IL-4, IL-7, IL-9,

IL-10, IL-13

IL1RN, IL-4, IL-7, IL-10, IL-13, IL-9 P18510, P05112, P05231, P13232, P22301,

P35225, P15248

Interferon c-induced protein-10 (IP10) CXCL10 P02778

Macrophage inflammatory protein-1a (MIP-1a) CCL3 P10147

Macrophage inflammatory protein-1b (MIP-1b) CCL4 P13236

Monocyte chemoattractant protein-1 (MCP1) CCL2 P13500

Peroxiredoxin-1 PRDX1 Q06830

Peroxiredoxin-2 PRDX2 P32119

Platelet-derived growth factor subunit B PDGFB P01127

RANTES CCL5 Q9Y2Y9

Thymic stromal lymphopoietin TSLP Q969D9

Transferrin TF P02787

Transthyretin TTR P02766

Tumour necrosis factor-a (TNF-a) TNF P01375

Vascular endothelial growth factor A (VEGFA) VEGFA P15692

a1-Antichymotrypsin SERPINA3 P01011

a1-Antitrypsin (TF-a1-AT) SERPINA1 P01009
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of each metabolic flux lb ≤ v ≤ ub. These are vectors repre-

senting the lowest and highest reaction rate possible for

each reaction. These constraints reduce the possible solu-

tion space and can be set for each condition, therefore cre-

ating condition-specific metabolic models [29].

Temporal progression was modelled through the creation

of condition-specific models, based on the gene and protein

expression fold change profiles over the three time points.

Gene expression for the unaffected cells was used as a con-

trol when calculating the fold changes. Condition-specific

models were generated through a modified version of ME-

TRADE [57] where flux bounds are a linear function of gene

set expression values. This process requires, as input,

expression fold changes, which are then converted into

reaction flux bounds through gene-protein-reaction rules

encoded in the model. The same process was repeated with

proteomic data, therefore generating two sets of models,

which will be denoted by transcriptomic-informed and

proteomic-informed GSMMs. The flux bounds obtained

after solving these models were then used in the simulations

described below.

Simulating alterations in metabolic network

capabilities

In addition to the transcriptional constraints described

above, we utilised additional constraints devised based on

the literature and our RNA-seq analysis results. Regulation

of lipid metabolism by peroxisome proliferator-activated

receptor alpha (PPARalpha), which increases the size and

number of peroxisomes, was identified from the pathway

analysis. PPARalpha is known to be involved in regulating

fatty acid metabolism and the immune response in hepato-

cytes [58]. Acyl-CoA oxidase is a rate-limiting enzyme acti-

vated by PPARalpha [59]. Two further constraints were

added from a review of the literature and their correlated

increase in activity with the viral infection. Phosphoglu-

conate dehydrogenase catalyses the conversion of 6-

phosphogluconate to ribulose-5-phosphate in the cytosol

generating NADPH. Ribulose-5-phosphate is used for

nucleotide biosynthesis. The reaction catalysed by phospho-

gluconate dehydrogenase is increased when there is a need

for nucleotide and fatty acid synthesis, which uses the

NADPH, such as for viral replication [60,61]. The third

and final reaction chosen occurs in peroxisomes, where lac-

tate and NAD+ are converted to pyruvate and NADH by

NAD+ oxidoreductase. The pyruvate/lactate ratio is linked

with the NAD+/NADH ratio [62], potentially suggesting

that the pyruvate is then shuttled back into the cytosol to

be recycled into the citric acid cycle. Following the evidence

described above, we set the lower bound of phosphoglu-

conate dehydrogenase, acyl-CoA oxidase and NAD+ oxi-

doreductase to 80% of their maximum value. Moreover, to

account for cells growing in a culture, we constrained bio-

mass production to be at least 50% of its maximum value.

Analogously, we set a lower bound on viral biomass

production to simulate the effects of intracellular viral

replication, based on a total virion dry weight estimate of

one-third the host cell’s at peak infection [63]. The viral

biomass production was therefore constrained to be above

a variable fraction of the maximum host biomass across

the time points, in order to get a peak bound of one-third

of its value for the 72-h time point. Only for the translation

and secretion pathways, we used the same bound over all

the time points, in order to best balance the impact of the

viral biomass. Finally, oxygen uptake was set as unlimited,

while oxygen production and superoxide consumption were

blocked.

After having obtained a constrained model, flux variabil-

ity analysis (FVA) was used to evaluate the minimum and

maximum value of the flux that each reaction can carry,

while still satisfying the given constraints. FVA was run by

solving a double linear programming problem on each

condition-specific metabolic model. Estimation of metabolic

potential on each time point was performed by FVA as

implemented in the COBRA toolbox [64]. A metabolic net-

work visualisation of flux fold changes was generated using

ReconMap [65].

Statistical analysis of differentially active

reactions

For each time point, we determined the most perturbed

metabolic pathways by a one-sided hypergeometric test

with false discovery rate correction for multiple testing on

the differentially active reactions (DARs). Overactive

DARs were defined as those reactions whose maximal flux

fold change was 1.5 or greater and above the 95th per-

centile of the fold change distribution. For underactivity,

we considered reactions whose maximal flux fold change

was 0.8 or lower and fell in the 5th fold change percentile.

In this way, we could select metabolic reactions charac-

terised by activity changes with both statistical relevance

and meaningful effect size.

Results and Discussion

Reconstructing the metabolic evolution of SARS-

CoV-2 infection

To evaluate how SARS-CoV-2 infection affects meta-

bolic activity along short-term post-infection time

points (0, 24, 48 and 72 h), we applied our condition-

specific modelling approach, as described in the Mate-

rials and methods section and illustrated in Fig. 1.

Integrated with machine learning methods, such an

approach has previously revealed insights in infec-

tious and complex disorders [66–69]. Our modelling

and analyses steps were performed starting from the
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multi-omics dataset recently published by Appelberg

et al. [18].

As a result of transcriptomic analysis, we obtained a

high percentage of uniquely mapped reads, ranging

from 88.02 and 89.13, with a mean value of 88.5.

Then, we calculated DEGs among all the possible time

point combinations, focusing on the differences

between uninfected cells and the most advanced stage

of virus incubation (72 hpi), which is expected to dis-

close the most valuable and significant results. Analo-

gously, we obtained DEPs for the same contrasts. At

72 hpi, we identified 3464 DEGs and 883 DEPs

(Table S1), associated with a large number of biologi-

cal pathways (Fig. 2), including upregulated glycolysis

and inflammatory secretome as found previously [18].

In addition, we identified dysregulation in the biosyn-

thesis of amino acids and fatty acid metabolism,

biomarkers of hepatic cell injury and biomarkers of

endoplasmic reticulum stress due to increased demand

for protein folding [70]. The enrichment results are

listed in Tables S2 and S3. DEGs and DEPs derived

from the comparisons across time points were used to

inform the genome-scale model in order to specifically

highlight metabolic alterations due to the SARS-CoV-

2 infection.

To obtain a mechanistic understanding of the alter-

ations observed on a transcriptional level, we inte-

grated the gene and protein expression profiles
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Fig. 2. Dysregulated DEGs and DEPs identified by RNA-seq and proteomic analysis. (A) Hierarchical clustering heatmap representing the

most variable genes (|logFC| > 2) considering their transcript (top) and protein (bottom) expression in uninfected (yellow) and 72 hpi (violet)

samples. Overexpression is red coloured, while underexpression is depicted in green. (B) Enrichment analysis showing the most relevant

KEGG and Reactome pathways populated by differentially expressed genes (top) and proteins (bottom). Circle size indicates the number of

genes involved in each pathway. Colour gradient represents statistical significance based on adjusted P-value.
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described above within Recon 2.2, a GSMM of human

cells. The selected GSMM is among the most complete

templates for the human metabolic network and was

chosen based on its manually curated pathways and

the validated representation of energy generation

across various carbon sources [46]. As Recon 2.2 is a

general-purpose GSMM, it incorporates all the main

metabolic pathways for a range of tissues and can be

tailored to any target tissue through integration with

omics data, as reviewed elsewhere [29,71,72]. More-

over, we expanded the GSMM by including a SARS-

CoV-2 biomass accumulation pseudoreaction and

secretory pathways for a range of relevant immune

proteins (see Materials and methods). Our multi-omics

genome-scale metabolic modelling approach thus

allows us to investigate key dysregulated enzymes and

reactions, giving a more holistic view of the metabolic

phenotype of the infected cancer cell.

Our modelling approach assumes a metabolic steady

state, which can be assumed by considering different

stages of infection that are distant in time. This

approach has previously been used to detect biomark-

ers and drug targets for a range of disorders

[30,31,73]. The result is a global picture of metabolic

capabilities associated with varying transcriptional

activity at each time point (24, 48 and 72 h).

Uninfected cells were used as a control to analyse the

changes in metabolic capabilities (see Materials and

methods). Figure 3A shows the average activity fold

change across reactions for all the pathways in the

human metabolic network, while detailed results can

be found in Tables S4 and S5. Viral metabolic pertur-

bations affect a range of pathways including amino

acids, energy production and coenzymes, which appear

directly linked to specific protein oversecretion. In

Fig. 3C, we visualise the activity of main energy pro-

duction pathways, providing a graphical account of

local alterations. Further, Fig. 3B,D shows pathways

enriched in DARs at each time point, respectively,

based on RNA-seq and proteomic data integration.

To obtain a global overview of how SARS-CoV-2

affects cancer cell metabolism, we closely inspected

altered pathways and individual reactions. In the fol-

lowing sections, we describe the main patterns identi-

fied and discuss their potential role in SARS-CoV-2

invasion inside host cells.

Genome-scale modelling identifies RNA

production upregulation

The nucleotide interconversion pathway shows evi-

dence of increasing the uracil available to produce

(A) (B) (C)

(D)

Fig. 3. Genome-scale metabolic modelling predicts alterations in multiple pathways following SARS-CoV-2 infection. (A) Pathway-level

temporal progression of Huh7 cell metabolic capabilities up to 72 h from infection. (B) Pathway enrichment of DARs identified at each time

point in transcriptomic-informed GSMMs. (C) Visualisation of alterations in central metabolism after 72 h from infection. (D) Pathway

enrichment of DARs identified at each time point in proteomic-informed GSMMs. In all the panels, red denotes increased activity potential

for biochemical reactions and pathways, while blue indicates reduced activity.
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RNA by ensuring that the dUTP/dTTP ratio is low to

minimise uracil incorporation into DNA [74]. The two

top upregulated reactions at 72 hpi in the

transcriptomic-informed flux data are the catalysis of

uridine monophosphate (UMP) to deoxyuridine

monophosphate (dUMP) by deoxyuridine kinase and

of thymidine to dTMP (deoxythymidine monophos-

phate) by thymidine kinase (see TDK and TK in

Fig. 4A). dUMP is a precursor for de novo dTTP (thy-

midine triphosphate) synthesis. Thymidylate synthase

converts dUMP to TMP and dTMP to dTDP. NDP

(nucleoside diphosphate) kinase then converts dTDP

into dTTP. This last reaction is among the second

most highly upregulated reactions (see NDPK in

Fig. 4A). Also upregulated is the production of deoxy-

guanosine, uracil, cytosine and adenosine triphos-

phates, which are the components of RNA. The

nucleotide salvage pathway shows upregulated adenine

recovery from RNA/DNA degradation by adenine

phosphoribosyltransferase, which would coincide with

an increased demand for adenine to bind to uracil.

Within the pyrimidine synthesis pathway, three out of

the top four upregulated pathways are involved in the

production of dTTP. Proteomic-informed flux data

begin to show these same patterns at 72 hpi, apart

from deoxyuridine kinase and thymidine kinase, which

are upregulated at 48 hpi. Altogether, these results

thus suggest increased viral RNA production.
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Fig. 4. Summary of main metabolic changes in SARS-CoV-2-infected Huh7 cells at 72 hpi. The mitochondrial ETC and oxidative

phosphorylation are downregulated, reducing ATP production from the TCA cycle but potentially providing protection from apoptosis. The

components of the TCA producing intermediates for viral amino acid synthesis are upregulated. While the production of ATP is reduced in

the TCA, the energy-producing reactions of glycolysis are upregulated, producing ATP for the viral production of amino acids and RNA. Fatty

acid synthesis is also upregulated, producing fatty acids for the synthesis of the viral envelope. The production of anti-inflammatory

polyunsaturated fatty acids and the electron transport chain are both downregulated. Upregulation of inflammatory proteins IP10, eotaxin,

MIP-1b and IL-6 has been linked with the cytokine storm. AGP is an acute-phase protein involved in the inflammatory response. Green

upward arrows represent upregulation. Red downward arrows represent downregulation. (A) Upregulated transcriptomic-informed flux

reactions involved in RNA production. (B) Dysregulated transcriptomic-informed flux reactions involved in oxidative phosphorylation and

glycolysis. (C) Visual overview of main metabolic changes. (D) Dysregulated transcriptomic-informed flux reactions involved in fatty acid

metabolism; RE3243R, production of polyunsaturated fatty acids, for example oleic acid; C183806m, final step of b-oxidation producing

octanyl-CoA; C163C143m, first step of b-oxidation; ETF/QO, electron transfer from octanoyl-CoA to ubiquinone. (E) Upregulated

transcriptomic-informed secretory pathways involved in the immune response. PPP, pentose phosphate pathway; FAS, fatty acid synthesis;

FA, fatty acid, TCA, citric acid cycle; AA, amino acid; FA-b-oxidation, fatty acid-b-oxidation; ETC, electron transport chain; PUFA,

polyunsaturated fatty acid; IP10, interferon c-induced protein-10; AGP, alpha-1 acid glycoprotein; IL-6, interleukin 6; MIP-1b, macrophage

inflammatory protein-1b; TDK, deoxyuridine kinase; TK, thymidine kinase; NDPK, NDP kinase; C183806m, FAOXC183806m; C163C143m,

FAOXC163C143m; ETF/QO, electron transfer flavoprotein/electron transfer flavoprotein–ubiquinone oxidoreductase, CI, NADH: ubiquinone

oxidoreductase; CII, succinate dehydrogenase; CIII, cytochrome reductase; CIV, cytochrome c oxidase; CV, ATP synthase; PFK,

phosphofructokinase; ALDD2, aldehyde dehydrogenase.
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Altered energy metabolism for viral replication

For both sets of flux data, the components of the

mitochondrial electron transport chain/oxidative phos-

phorylation are mostly downregulated through all the

time points, indicating reduced ATP production from

the citric acid cycle (TCA) [see transcriptomic-

informed results in (Fig. 4B) CI, CII, CIII, CIV, CV].

As shown in Fig. 3, the synthesis of ubiquinone, which

is part of the mitochondrial electron transport chain,

is progressively downregulated in the transcriptomic-

informed flux data and also downregulated in the

proteomic-informed flux data. Succinate dehydroge-

nase (SDH) is the only enzyme in the citric acid cycle

that is also involved in the electron transport chain

and is downregulated over all the time points in the

transcriptomic-informed flux data [75]. The resulting

accumulation of succinate and fumarate led to an

upsurge in mitochondrial transport of these metabo-

lites into the cytosol (Fig. 3). Downregulation of the

electron transport chain, including SDH, may indicate

that COVID-19 uses a similar mechanism to cancer

cells to avoid oxidative stress initiating cell death while

it is replicating [76,77]. In the transcriptomic-informed

flux data, mitochondrial TCA reactions producing

intermediates for amino acid synthesis are downregu-

lated at 24 hpi, then become progressively upregulated

for viral protein synthesis. Paradoxically, while citrate

synthase is downregulated, the citrate shuttle and

citrate lyase are upregulated providing acetyl-CoA for

fatty acid synthesis. The cytosolic reactions of the

TCA are progressively upregulated through the time

points, generating energy in the form of NADH/

NADPH for fatty acid synthesis needed for the viral

envelope. The NADPH producing enzymes in the pen-

tose phosphate pathway, glucose 6-phosphate dehydro-

genase and phosphogluconate dehydrogenase, which

also provide NADH/NADPH for fatty acid synthesis,

are upregulated. These may have been influenced by

maximising phosphogluconate dehydrogenase in the

FVA. The proteomic-informed flux data show very

similar results for the TCA and pentose phosphate

pathways.

In parallel, the majority of the reactions of glycoly-

sis in both sets of flux data are upregulated or

unchanged through all time points, with a dip in some

upregulated reactions at 48 hpi. The main rate-limiting

enzyme of glycolysis, phosphofructokinase, is progres-

sively upregulated through all time points in the

transcriptomic-informed flux data (see PFK in

Fig. 4B). At the final 72-h time point, the largest

upregulation in the transcriptomic-informed flux data

occurs in the reaction catalysed by aldehyde

dehydrogenase (see ALDD2 in Fig. 4B). Aldehyde

dehydrogenase consumes the oxidative stressor

acetaldehyde and produces energy in the form of

NADH/NADPH. Interestingly, this reaction occurs in

the cytosol, where viral replication takes place and is a

known indicator of oxidative stress/lipid peroxidation

[78]. The NADH from glycolysis is transported into

the mitochondria to be used by the TCA. Transport is

facilitated by both the malate-aspartate shuttle, which

is catalysed by the enzyme malate dehydrogenase, and

the glycerol-phosphate shuttle, which is catalysed by

glycerol-3-phosphate dehydrogenase [79]. Here, in both

sets of data, the flux of glycerol-phosphate shuttle is

unchanged, but the malate-aspartate shuttle is upregu-

lated, with the mitochondrial malate dehydrogenase

reaction being the most highly upregulated in the

transcriptomic-informed TCA flux data. Within the

glycolytic pathway for both sets of data, ATP produc-

tion from pyruvate kinase is upregulated suggesting

that glycolysis, rather than oxidative phosphorylation,

is favoured by the virus for the generation of ATP for

amino acid and RNA production [80].

Overall, proteomic-informed flux data were in broad

agreement with the transcriptomics-informed flux data

revealing greater influences on pathways at earlier time

points. See Fig. 3B for a visual representation of the

changes in the central energy metabolism.

Dysregulation of fatty acid metabolism

The largest perturbation in fatty acid synthesis occurs

in the downregulation of desaturation of fatty acids in

the endoplasmic reticulum, where polyunsaturated

fatty acids such as oleic acid are produced (Fig. 4D,

RE3243R). This downregulation is significantly more

pronounced in the transcriptomics-informed flux data

as compared to the proteomic-informed flux data. The

downregulation of unsaturated fatty acid synthesis is a

known effect of enveloped virus infection [81]. Yan

et al. [82] found that oleic acid was upregulated in

coronavirus HCoV-229E infection in HuH7 cells,

though this study did not include COVID-19. This

result could either be a result of the missing phospholi-

pase A2 pathway enzymes or indicate the downregula-

tion of unsaturated fatty acids involved in the host cell

immune response [83,84].

Moreover, the elongation stage of fatty acid synthe-

sis in the cytosol is upregulated at 72 hpi, which could

be linked to the production of the viral cell envelope.

In the transcriptomic-informed flux data, there is

indeed an upregulation 4 of the 5 steps of the synthesis

of CoA (Fig. 3), which is needed for the citric acid

cycle and fatty acid metabolism [85], in conjunction
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with a decrease in the activity of the majority of

enzymes associated with b-oxidation of fatty acids and

cholesterol synthesis. The breakdown of c-linolenoyl-
CoA to octanoyl-CoA is the only b-oxidation reaction

that shows an increase in activity in both sets of the

flux data (Fig. 4D, FAOXC183806m). This reaction is

the final step of b-oxidation in the mitochondria and

provides acetyl-CoA for the citric acid cycle. In the

transcriptomic-informed flux data, the transfer of elec-

trons from octanoyl-CoA to ubiquinone is progres-

sively downregulated showing further evidence of the

downregulation of the electron transport chain

(Fig. 4D, ETF/QO) [86]. These perturbations are more

pronounced in the transcriptomics-informed flux data

as compared to the proteomic-informed flux data.

Secretome inflammatory biomarkers

As expected, protein secretion exhibited a widespread

upregulation, though visible especially at 24 and

72 hpi, with 10 upregulated cytokine/chemokine secre-

tory pathways. Macrophage inflammatory protein-1b
(MIP-1b/CCL4), IP10/CXCL10, IL-12B and eotaxin

(CCL11) were found to be upregulated in the

proteomic-informed data, while in the transcriptomics-

informed data upregulation was found for IL-6, IL-8,

IL-12A, vascular endothelial growth factor A

(VEGFA), chemokine (C-C motif) ligand 20 (CCL20)

and alpha-1 acid glycoprotein (AGP). Analysis of the

metabolic alterations further revealed high upregula-

tion of IL-17A, IL-15 and IL-7.

As shown in Fig. 4E, MIP-1b was the most highly

expressed cytokine/chemokine at 24 and 48 hpi and

was then replaced by IP10 at 72 hpi. IP10 has been

reported as a good biomarker of SARS-CoV-2 dis-

ease progression and severity [87–89] and has been

implicated in the cytokine storm with higher levels

leading to more severe disease [90,91]. Eotaxin was

the second most highly upregulated protein at 72 hpi

followed by AGP and IL-6, respectively. In the

proteomic-informed flux data, only eotaxin was

upregulated at 72 hpi. MIP-1b is a proinflammatory

chemokine known to induce cytokines such as IL-6

and TNF-a and could be an early predictor of severe

disease [92]. Eotaxin has the potential to act as a

marker to predict disease severity and outcome.

Although it is seen to progressively elevate in patients

with mild symptoms, eosinopenia has been detected

in patients with severe disease with a subsequent

increase being associated with a good outcome [93–
95]. AGP is an acute-phase protein, and plasma levels

of AGP have previously been found to be correlated

with influenza disease progression and could be a

potential novel biomarker for SARS-CoV-2 disease

progression [96]. IL-6 has been implicated in the

cytokine storm and has received a lot of attention as

a potential therapeutic target with clinical trials of

IL-6 receptor blockers tocilizumab, siltuximab and

sarilumab currently underway [97–100]. IL-17A

induces inflammatory cytokines involved in the cyto-

kine storm such as IL-6 and IL-8 and has been

linked with severe disease [101,102]. IL-17A blockers

such as secukinumab have been proposed as a treat-

ment for COVID-19, although their administration

would have to be timed carefully [103,104]. IL-7 has

a role in maintaining NKT (natural killer T cells)

and T cells in liver cells [105] and promotes cell sur-

vival [106]. IL-15 is an important regulator of the

immune response and a known antiviral cytokine

[107–109]. Increased levels of IL-15 may also be a

biomarker of severe lymphopenia requiring longer

hospital care [110]. The decrease in the production of

hyaluronan shown in the pathway-level flux average

(Fig. 3A) is a further indicator of liver damage [111].

Interestingly, the increase in D-alanine metabolism

also detected in the metabolic fluxes may be a mecha-

nism for producing cytotoxic oxidative stress as part

of the innate immune response [112] (Fig. 3A).

Significance for COVID-19 treatments

Figure 4 shows a visual summary of the key metabolic

changes identified at 72 hpi. Taken together, they can

be utilised for hypothesising improved treatment

strategies for COVID-19 in cancer patients. The upreg-

ulated secretory proteins identified in this study pro-

vide some insights into therapeutic treatments for

COVID-19. Upregulation of IL-7 is an indicator of T-

cell exhaustion and elevated inflammatory cytokine

characteristics of COVID-19 [113]. IL-7 has a protec-

tive role in maintaining NKT (natural killer T cells)

and T cells in liver cells [105] and promotes cell sur-

vival [106]. The levels of IL-7 could be elevated in

COVID-19 patients by using IL7r (recombinant IL-7)

therapy, which has been used to treat HIV patients

and was able to restore CD4+ T cells while being well-

tolerated [114]. Secondly, MitoQ (mitochondrial-

targeted ubiquinone) has powerful antioxidant effects

that could be used as a treatment to protect against

mitochondrial electron transport chain dysfunction/ox-

idative stress, compensating for the increased downreg-

ulation of ETC ubiquinone seen in COVID-19

infection and restoring T-cell homeostasis [115,116].

Finally, our findings support dietary supplementation

of unsaturated fatty acids administered orally or intra-

venously to counteract their downregulation by
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COVID-19, which has been suggested as a treatment

to suppress inflammation [83,84,117].

It should be noted that individuals suffering from

cancer may already be taking medication. While the

treatments suggested here do not interact with com-

mon liver cancer drugs according to the interactions

listed in the Joint Formulary Committee [118]

(Table S6), caution should be taken to ensure that any

COVID-19 treatments are compatible with existing

treatment regimes.

Conclusions

While transcriptomic-only approaches can provide

insights into changes in gene expression caused by

viral infection, translating these data into metabolic

data can give deeper and mechanistic insights into the

effects of viral infection on the host cell. Here, we use

genome-scale-metabolic modelling of Huh7 cells with

transcriptomic- and proteomic-informed FVA to

explore the metabolic effects of altered gene expression

from COVID-19-infected cancer cells on cellular phe-

notype. This method allows the identification of dys-

regulation at the enzyme/reaction level, in contrast to

previous studies of metabolism. Our models were con-

strained to represent the viral-infected cell using evi-

dence from literature and the pathway analysis of

DEGs.

A pathway analysis revealed an upregulation of

PPARalpha, known to be involved in fatty acid meta-

bolism and regulation of the immune system [58]. The

analysis of the resulting transcriptomic- and

proteomic-informed flux data revealed perturbations in

four main areas of metabolism, RNA synthesis, energy

production, fatty acid synthesis and the secretome.

Proteomic-informed flux data sometimes displayed a

cascade effect where patterns in reactions/pathways

appeared at a later time point than with flux data.

Energy production showed an increased shift from the

TCA to glycolysis, as evidenced by the upregulation of

key glycolytic enzymes and the downregulation of the

mitochondrial electron transport chain. This pseudohy-

poxic metabolic shift is in addition to the dysregula-

tion already seen in cancer cells and may contribute to

the increased risk seen in cancer patients infected with

COVID-19. Reactions involved in RNA production

were found to be upregulated in accordance with viral

replication needs. While the production of polyunsatu-

rated acids was downregulated, the synthesis of fatty

acids needed for the viral envelope was upregulated.

Key inflammatory secretory proteins involved in the

cytokine storm were found to be upregulated including

IP10/CXCL10, eotaxin, MIP-1b and IL-6. Finally, we

suggest therapeutic treatments based on mediating the

inflammatory response and metabolic key changes that

enable the virus to replicate in the host cancer cell.

Future studies could enhance our understanding by

investigating multicellular metabolic changes as well as

how individual data such as gender, age and ethnicity

affect the metabolic changes caused by COVID-19

infection. This will facilitate the investigation of more

personalised therapeutic interventions for cancer

patients.
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