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immunity and immunotherapy response, and unfavorable clinical
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Alterations in the spliceosome pathway (SP) have been associated with diverse human cancers. In this
study, we explored associations of the SP activity with various clinical features, anti-tumor immune sig-
natures, tumor immunity-related genomic and molecular features, and the response to immunotherapies
and targeted therapies in 29 cancer types from The Cancer Genome Atlas (TCGA) database. We showed
that the SP activity was an oncogenic signature, as evidenced by its hyperactivation in cancer and inva-
sive cancer subtypes and correlations with unfavorable clinical outcomes and anti-tumor immunosup-
pression in various cancers. The SP activity showed positive correlations with tumor mutation burden
(TMB) and aneuploidy in diverse cancers, suggesting its association with genomic instability. However,
the negative association between the SP activity and anti-tumor immune response was independent of
its associations with aneuploidy and TMB. Furthermore, we supported that the SP activity had a negative
correlation with immunotherapy response in four cancer cohorts treated by immune checkpoint inhibi-
tors. Moreover, elevated SP activity is correlated with increased drug sensitivity for a broad spectrum of
anti-tumor targeted therapies. In conclusion, the SP activity is a negative biomarker for anti-tumor
immune response, prognosis, and the response to immunotherapeutic and targeted drugs in pan-cancer.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Recently, immunotherapy has achieved success in treating
diverse cancers [1,2], particularly immune checkpoint inhibitors
(ICIs) targeting PD-1 (programmed cell death protein 1) and its
ligand PD-L1 [1]. However, only a subset of cancer patients
respond to ICIs [3]. Certain molecular determinants of the response
to ICIs have been identified, such as tumor mutation burden (TMB)
[4], DNA mismatch repair deficiency (dMMR) [5], and PD-L1
expression [6]. In addition, the tumor immune microenvironment
(TIME) is also crucial for the response to ICIs [7]. In general, ‘‘hot”
tumors with dense tumor-infiltrating lymphocytes (TILs) in the
TIME are more likely to respond to ICIs than ‘‘cold” tumors with
sparse TILs [8]. Although some biomarkers for stratifying cancer
patients responsive to ICIs are being utilized in clinical practice
guidelines, e.g., PD-L1 expression, dMMR, and high TMB, the effec-
tiveness of these biomarkers for pan-cancer immunotherapy
remains controversial [9,10]. Thus, discovery of novel and effective
biomarkers for cancer immunotherapy response remains an urgent
need. With the recent rapid development of next-generation
sequencing (NGS) technologies, large volumes of high-quality can-
cer genomics data have been produced through international coop-
eration, e.g., the Cancer Genome Atlas (TCGA,
https://cancergenome.nih.gov) and the International Cancer Gen-
ome Consortium (ICGC, https://daco.icgc.org/). Meanwhile, pre-
clinical studies have generated a large number of data of
immunotherapy response in cancer patients accompanying with
their genomics data. Based on these data, many potential biomark-
ers for immunotherapy response have been explored, such as
mutations of TP53 [11], ARID1A [12], KALRN [13], KRAS [14], and
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HRAS [15], and elevated activities of glycolysis [16] and cell cycle
pathways [17].

The spliceosome is a complex of ribonucleoproteins regulating
RNA splicing, which is made up of five small nuclear ribonucleo-
proteins (snRNPs), U1, U2, U4, U5, and U6, and several
spliceosome-associated proteins (SAPs). Because RNA splicing
plays an important role in gene regulation, alterations in the
spliceosome pathway (SP) have been associated with diverse
human cancers [18,19]. A comprehensive analysis of 32 TCGA can-
cer types revealed that alternative splicing events more frequently
occur in cancer than in normal tissues [20]. Furthermore, tumor
specific mRNA splicing events may derive neoepitopes to incite
anti-tumor immune response and serve as immunotherapy target
[21]. A recent study showed that spliceosome-targeted therapies
may stimulate anti-tumor immune response in triple-negative
breast cancer [22]. Despite these previous studies, a systematic
investigation into the correlation between SP and anti-tumor
immunity and immunotherapy response in pan-cancer remains
lacking.

In this study, we first explored associations between SP and var-
ious clinical features, including survival prognosis, tumor progres-
sion phenotypes, and tumor subtypes in 29 TCGA cancer types.
Next, we analyzed the association between SP and anti-tumor
immune signatures in these cancer types. We also explored associ-
ations between SP and tumor immunity-related genomic and
molecular features, including tumor mutation burden (TMB), ane-
uploidy, DNA damage repair pathways, and PD-L1 expression.
Moreover, we explored associations of SP with the response to tar-
geted therapies and immunotherapies. Finally, we revealed the
splicing events that were significantly associated with SP and
immune signatures in cancer. Our data demonstrated that SP was
hyperactivated in various cancers, and elevated SP activity was
correlated with unfavorable clinical outcomes, reduced anti-
tumor immune response and immunotherapy response, and
increased response to targeted therapies. Our findings provide
new insights into the role of SP in pan-cancer.
2. Methods

2.1. Datasets

We downloaded transcriptome (RNA-Seq, RSEM normalized),
somatic mutations, somatic CNAs, protein expression profiling,
and clinical data for 29 TCGA cancer types from the genomic data
commons data portal (https://portal.gdc.cancer.gov/). The 29 can-
cer types included adrenocortical carcinoma (ACC), bladder
urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA),
cervical squamous-cell carcinoma (CESC), cholangiocarcinoma
(CHOL), colon adenocarcinoma (COAD), esophageal carcinoma
(ESCA), glioblastoma multiforme (GBM), head and neck squamous
cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal
clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma
(KIRP), acute myeloid leukemia (LAML), liver hepatocellular carci-
noma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell
carcinoma (LUSC), mesothelioma (MESO), ovarian carcinoma
(OV), and pancreatic adenocarcinoma (PAAD), pheochromocytoma
and paraganglioma (PCPG), prostate adenocarcinoma (PRAD), rec-
tum adenocarcinoma (READ), sarcoma (SARC), skin cutaneous mel-
anoma (SKCM), stomach adenocarcinoma (STAD), testicular germ
cell tumors (TGCT), thyroid carcinoma (THCA), uterine corpus
endometrial carcinoma (UCEC), and uterine carcinosarcoma
(UCS). The transcriptome (RNA-Seq, RSEM normalized) data for
962 cancer cell lines and their drug sensitivities (IC50 values) to
265 compounds were obtained from the Genomics of Drug Sensi-
tivity in Cancer website (https://www.cancerrxgene.org/down-
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loads). RNAi sensitivity data (DEMETER dependency scores) for
662 cancer cell lines (DEMETER2 Data v6) was obtained from the
Depmap website (https://depmap.org/portal/). Alternative splicing
events (percentage of samples with Percent-Spliced-In (PSI)
value = 0.75; minimum PSI standard deviation = 0.1) in TCGA can-
cers were obtained from the TCGA SpliceSeq (https://bioinformat-
ics.mdanderson.org/TCGASpliceSeq/). The TCGA alternative
splicing events were identified by SpliceSeq [23], a tool identifying
genes with multiple spliceforms by aligning reads to gene splice
graphs stored in a database involving known splicing patterns.
For each splicing event in a tumor sample, PSI represents the pro-
portion of reads falling on a certain exon as normalized by length.
We obtained 75 key splicesome molecules (proteins) by the inter-
section of the spliceosome protein complex from the CORUM Pro-
tein Complexes dataset [24], the major spliceosome proteins from
the HGNC (https://www.genenames.org/data/genegroup/
#!/group/1518), and the KEGG SP [25]. Moreover, we obtained four
datasets involving data of transcriptome and the response to ICIs in
four cancer cohorts, including the Snyder cohort (melanoma) [26],
the Nathanson cohort (melanoma) [27], the Braun cohort (renal
cell carcinoma) [28], and the Snyder cohort (urothelial carcinoma)
[29]. A summary of these datasets is provided in Supplementary
Table S1.
2.2. Gene-set enrichment analysis

We used the single-sample gene-set enrichment analysis
(ssGSEA) [30] to score activities of pathways, and enrichment
levels of immune signatures and stemness signatures based on
the expression levels of their marker genes. The marker genes of
immune and stemness signatures were obtained from several pub-
lications, including CD8+ T cells [31], interferon (IFN) response
[31], and tumor stemness [32]. The sets of marker genes for SP
and other pathways were obtained from KEGG [33]. We present
all sets of marker genes in Supplementary Table S2. To identify
KEGG [33] pathways highly enriched in higher-SP-score (>median)
tumors and lower-SP-score (<median) tumors, we first identified
differentially expressed genes between both groups of tumors
using a threshold of Student’s t test adjusted P value < 0.05 and fold
change of mean expression levels >1.5. The adjusted P values,
namely false discovery rate (FDR), were evaluated by the Ben-
jamini and Hochberg method [34]. The differentially expressed
genes included the upregulated genes in higher-SP-score tumors
and the upregulated genes in lower-SP-score tumors. By inputting
the upregulated genes in higher-SP-score tumors into the GSEA
web tool [35], we obtained the KEGG pathways highly enriched
in higher-SP-score tumors with a threshold of adjusted P
value < 0.05. We likewise obtained the KEGG pathways highly
enriched in lower-SP-score tumors by inputting the upregulated
genes in them into GSEA.
2.3. Calculation of immune score, stromal score, and tumor purity

We used the ESTIMATE algorithm [36] to calculate immune
score, stromal score, and tumor purity for each tumor sample
based on its gene expression profiles. The immune score and stro-
mal score represent the enrichment levels of immune signatures
and stromal signatures in the TIME, respectively. Tumor purity
refers to the proportion of tumor cells in a bulk tumor. In evaluat-
ing the ratio of two immune signatures, we used the log2-
transformed value of the geometric mean expression level of all
marker genes in an immune signature over that in another
immune signature.
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2.4. Evaluation of TMB and homologous recombination deficiency
(HRD) score

We defined the TMB of a tumor sample as the total number of
somatic mutations detected in the tumor. From the publication
by Knijnenburg et al [37], we obtained HRD scores (aneuploidy
levels) of TCGA cancers.

2.5. Survival analysis

We used Kaplan–Meier curves to show the survival (overall sur-
vival (OS) or disease-free survival (DFS)) time differences between
different groups and the Gehan-Breslow-Wilcoxon or log-rank test
to assess the significance of survival time differences. To explore
whether the association between SP scores and survival prognosis
in cancer was affected by other confounding variables, we per-
formed multivariate survival analysis using the multivariate Cox
proportional hazards model. In the model, the response variable
was OS or DFS time, and the predictor variables included SP score,
immune score, stemness score, tumor purity, age, stage, grade, and
metastasis status. The ‘‘SP score”, ‘‘immune score”, ‘‘stemness
score”, ‘‘tumor purity”, and ‘‘age” were continuous variables, and
the ‘‘stage” (early-stage (Stage I-II) versus late-stage (Stage III-
IV)), ‘‘grade” (low-grade (G1-2) versus high-grade (G3-4)), and
‘‘metastasis status” (primary versus metastatic) were binary vari-
ables. We implemented the multivariate survival analysis with
the function ‘‘coxph” in the R package ‘‘survival”.

2.6. Logistic regression analysis

We predicted immune signature scores (high (>median) versus
low (<median)) using univariate logistic regression models with
three predictors (SP score, HRD score, and TMB). We also used
logistic regression models to predict SP scores (high (>median) ver-
sus low (<median)) using two predictors (TMB and HRD score). In
performing the logistic regression analyses, we first normalized all
values by z-score and then used the R function ‘‘glm” to fit the bin-
ary model. We specified the parameter ‘‘family” as ‘‘binomial” and
other parameters as default in ‘‘glm”.

2.7. Statistical analysis

We calculated correlations between SP scores and other vari-
ables using the Spearman method with a threshold of P < 0.05
for statistical significance. In comparisons of two classes of sam-
ples, we used the Student’s t test if they were normally distributed,
otherwise we used the Mann-Whitney U test. We used the Ben-
jamini and Hochberg method [35] to calculate adjusted P values
for correcting for multiple tests. In all correlation analyses and
class comparisons, we showed the cancer types in which the
results were statistically significant. In addition, we present all
raw data in the statistical analyses in Supplementary Table S3.
3. Results

3.1. Elevated SP scores correlate with unfavorable tumor phenotypes
and clinical outcomes

In 9 cancer types (ACC, ESCA, KIRC, KIRP, LIHC, LUAD, PAAD,
PRAD, and SARC), higher SP scores were correlated with better
OS and/or DFS (Gehan-Breslow-Wilcoxon test, P � 0.05) (Fig. 1A).
Furthermore, we analyzed associations between SP scores and
tumor progression phenotypes, including tumor stage, grade, and
metastasis. In seven cancer types (ACC, HNSC, KIRC, KIRP, LIHC,
LUAD, and TGCT), SP scores were significantly higher in late-
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stage (Stage III-IV) than in early-stage (Stage I-II) tumors (one-
tailed Mann-Whitney U test, P < 0.05) (Fig. 1B). In BLCA and COAD,
SP scores were significantly lower in late-stage than in early-stage
tumors. Among the 12 cancer types with tumor grade information
available, SP scores were significantly higher in high-grade (G3-4)
than in low-grade (G1-2) tumors in five cancer types (CESC, HNSC,
KIRC, LIHC, and UCEC) (Fig. 1B). In addition, in three cancer types
(KIRC, KIRP, and LUAD), SP scores were significantly higher in
metastatic than in primary tumors (Fig. 1B).

Cancer stemness, known as tumor stem cell-like characteristics,
has associations with tumor progression, relapse, and therapeutic
resistance [38]. Strikingly, in 24 cancer types, SP scores had signif-
icant positive correlations with stemness scores (Spearman corre-
lation, P < 0.05) (Fig. 1C). In 16 cancer types, SP scores had
significant positive correlations with the expression levels of
MKI67, a proliferation marker gene (Spearman correlation,
P < 0.05) (Fig. 1C). ITH is common and is associated with tumor
advancement, immune evasion, and drug resistance in various can-
cers [31]. We found that SP scores had significant positive correla-
tions with ITH scores by DEPTH [31] in 23 cancer types (Fig. 1C).
Notably, SP scores were significantly and positively correlated with
the cell cycle pathway’s scores in 27 cancer types, while they were
negatively correlated with the apoptosis pathway’s scores in 22
cancer types (Fig. 1C).

The multivariate survival analysis revealed that the SP score
remained a risk factor for survival prognosis in multiple cancer
types, including ACC, KIRC, KIRP, SARC, and SKCM, after adjusting
for immune score, stemness score, tumor purity, age, stage, grade,
and metastasis status (Supplementary Fig. S1).

Taken together, these results support that elevated SP activity is
associated with unfavorable clinical outcomes in various cancers.

3.2. SP scores correlate negatively with immune signature scores in
cancer

Among the 29 cancer types, SP scores showed a significant neg-
ative correlation with the enrichment levels of CD8+ T cells in 17
cancer types (Spearman correlation, P < 0.05) (Fig. 2A). In addition,
in 15 cancer types, SP scores displayed a significant negative corre-
lation with IFN response scores (P < 0.05) (Fig. 2A). Moreover, SP
scores were significantly and negatively correlated with immune
scores in 16 cancer types (Fig. 2A). Likewise, SP scores had a signif-
icant negative correlation with PD-L1 expression levels in 21 can-
cer types (P < 0.05) (Fig. 2A). Furthermore, in 20 cancer types, SP
scores were significantly and negatively correlated with the ratios
of immune-stimulatory/immune-inhibitory signatures (CD8+/CD4
+ regulatory T cells) (P < 0.05) (Fig. 2A). Because tumor-
infiltrating CD8+ T cells are anti-tumor immune cells and CD4+
regulatory T cells are anti-tumor immunosuppressive cells, a
higher ratio of them indicates a stronger anti-tumor immune
response. Collectively, these results suggest that elevated SP activ-
ity is associated with reduced anti-tumor immune response in
diverse cancers. Interestingly, in 25 cancer types, SP scores had a
significant negative correlation with stromal scores (P < 0.05)
(Fig. 2B). The negative correlation between SP scores and both
immune and stromal scores indicates that SP scores are positively
correlated with tumor purity. Indeed, SP scores were positively
correlated with tumor purity in 22 cancer types (P < 0.05)
(Fig. 2C). This also supports that tumor cells likely have higher SP
scores than non-tumor cells.

3.3. SP scores correlate positively with genomic instability in cancer

We investigated associations between SP and several genomic
features, including TMB and aneuploidy. We found that SP scores
had a significant positive correlation with TMB in 13 cancer types



Fig. 1. Associations between SP and clinical outcomes in cancer. A. Kaplan-Meier curves showing that higher-SP-score (>median) tumors have worse survival than lower-NS-
score (<median) tumors in diverse cancers. The Gehan-Breslow-Wilcoxon test P values are shown. B. SP scores are significantly higher in advanced (late-stage, high-grade, or
metastatic) than in non-advanced (early-stage, low-grade, or primary) tumors in diverse cancers. The one-tailed Mann-Whitney U test P values are shown. C. Spearman
correlations between SP scores and stemness scores, MKI67 expression levels, ITH scores, cell cycle and apoptosis pathways’ scores. The Spearman correlation coefficients (q)
and P values are shown. * P < 0.05, ** P < 0.01, *** P < 0.001. It also applies to the following figures. OS, overall survival; DFS, disease-free survival; ITH, intra-tumor
heterogeneity.
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Fig. 2. Associations between SP and immune signatures in cancer. A. The significant negative correlations between SP scores and immune signature scores and the ratios of
immune-stimulatory/immune-inhibitory signatures (CD8+/CD4+ regulatory T cells) in diverse cancers. B. The significant negative correlations between SP scores and stromal
scores in diverse cancers. C. The significant positive correlations between SP scores and tumor purity in diverse cancers. The scores of CD8+ T cells and interferon response
were calculated by the single-sample gene-set enrichment analysis (ssGSEA) [6] based on the expression levels of their marker genes. The immune scores, stromal scores, and
tumor purity were calculated by ESTIMATE [25].

Z. Chen, C. Chen, L. Li et al. Computational and Structural Biotechnology Journal 19 (2021) 5428–5442
(P < 0.05) (Fig. 3A). HRD may result in large-scale genomic instabil-
ity, namely aneuploidy [37]. Knijnenburg et al. defined HRD scores
(aneuploidy levels) in 9,125 TCGA cancer samples based on HRD
loss of heterozygosity, large-scale state transitions, and the num-
ber of telomeric allelic imbalances. We found that SP scores had
a significant positive correlation with HRD scores in 15 cancer
types (P < 0.05) (Fig. 3A). Collectively, these results suggest a pos-
itive association between the SP activity and genomic instability in
diverse cancers. The positive associations between the SP activity
and TMB and aneuploidy implicate that increased TMB and aneu-
ploidy may promote the SP activity in light of the impact of DNA
damage on the RNA splicing response [39]. To compare the contri-
butions of TMB and aneuploidy in altering SP, we used logistic
regression models to predict SP scores (high (>median) versus
low (<median)) using two predictors: TMB and HRD score. We
found that HRD score was a significant positive predictor of SP
scores in 15 cancer types, compared to TMB in 3 cancer types
(P < 0.05) (Fig. 3B). It suggests that aneuploidy has a more signifi-
cant impact on the SP activity than TMB.

Because both aneuploidy and TMB are correlated with anti-
tumor immune response [40], and SP are significantly correlated
with them in a variety of cancers, the significant correlation
between SP and anti-tumor immune response could be attributed
to its associations with aneuploidy and TMB. To explore this
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hypothesis, we used logistic regression models to predict immune
signature (CD8 + T cells and IFN response) scores (high (>median)
versus low (<median)) with three variables: SP score, HRD score,
and TMB. Within the 29 individual cancer types, SP was a signifi-
cant negative predictor of the CD8 + T cell score in 19 cancer types
(P < 0.05, b ranging from �0.96 to �0.23) (Fig. 3C); HRD was a sig-
nificant negative and positive predictor in 2 and 5 cancer types,
respectively, and TMB was a significant positive predictor in 2 can-
cer types (COAD and SARC) (P < 0.05). In predicting the IFN
response score, SP was a significant negative and positive predictor
in 11 and 1 cancer types, respectively (Fig. 3C); HRD was a signif-
icant negative and positive predictor in 6 and 3 cancer types,
respectively, and TMB was a significant positive and negative pre-
dictor in 1 and 1 cancer type, respectively. We also predicted
immune scores (high (>median) versus low (<median)) using logis-
tic regression models with the three variables in pan-cancer and in
29 individual cancer types. Consistently, SP was a significant neg-
ative predictor of the immune score in 17 cancer types (P < 0.05,
b ranging from �1.12 to �0.24) (Fig. 3C); HRD was a significant
negative and positive predictor in 4 and 4 cancer types, respec-
tively, and TMB was a significant positive and negative predictor
in 3 and 1 cancer type, respectively. In addition, we used logistic
regression models to predict the ratios of immune-stimulatory/i
mmune-inhibitory signatures (CD8+/CD4+ regulatory T cells) (high



Fig. 3. Associations between SP and genomic features in cancer. A. Spearman correlations between SP scores and tumor mutation burden (TMB) and homologous
recombination deficiency (HRD) scores. B. Logistic regression analysis to predict SP scores (high (>median) versus low (<median)) with TMB and HRD score. C. Logistic
regression analyses to predict immune signature scores (high (>median) versus low (<median)) with SP score, TMB, and HRD score. The standardized regression coefficients (b
values) are shown.
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(>median) versus low (<median)) with the three variables in pan-
cancer and in 29 individual cancer types. SP was likewise a signif-
icant negative predictor of the ratios in 19 cancer types (Fig. 3C);
HRD was a significant negative and positive predictor in 2 and 5
cancer types, respectively, and TMB was a significant positive pre-
dictor in 2 cancer type (COAD and SARC).

Collectively, these results confirmed that SP was a negative pre-
dictor for anti-tumor immune response in diverse cancers, inde-
pendent of its associations with aneuploidy and TMB.

3.4. Comparisons of SP scores between cancer subtypes

We found that SP scores were significantly higher in tumor than
in normal samples in 17 cancer types (one-tailed Mann-Whitney U
test, P < 0.05) (Fig. 4A). Only in KICH, PCPG, and THCA, SP scores
were significantly lower in tumor than in normal samples. We fur-
ther compared SP scores between cancer subtypes. We found that
SP scores were significantly lower in EGFR-mutated than in EGFR-
wildtype LUAD (P = 0.009) (Fig. 4B). Besides, EGFR mutations were
associated with lower SP scores in LUSC and OV (P < 0.05) (Fig. 4B).
It indicates that there is a negative correlation between SP scores
and prognosis in lung cancer because EGFR-mutated lung cancer
patients display better clinical outcomes than EGFR-wildtype
patients due to their responses to EGFR inhibitors [41,42]. In con-
trast, EGFRmutations were associated with higher SP scores in sev-
eral cancer types, including ACC, BRCA, SARC, and UCEC (P < 0.05)
(Fig. 4B). BRAFmutations have been associated with worse progno-
sis in diverse cancers [43,44]. In CESC, ESCA, STAD, and THCA,
BRAF-mutated tumors had significantly higher SP scores than
BRAF-wildtype tumors (P < 0.05) (Fig. 4C). However, in SKCM,
BRAF-mutated tumors displayed significantly lower SP scores than
BRAF-wildtype tumors (P = 0.047) (Fig. 4C). In fact, BRAF mutations
are correlated with a better prognosis in melanoma due to the use
of BRAF inhibitors [45,46]. KRAS mutations are one of the most
prevalent gene mutations driving cancer progression [47]. In BLCA
and STAD, KRAS-mutated tumors had significantly higher SP scores
than KRAS-wildtype tumors (P < 0.05) (Fig. 4D). In addition, in
PAAD, PRAD, and SARC, SP scores were higher in KRAS-mutated
than in KRAS-wildtype tumors (P < 0.1) (Fig. 4D).

In BRCA, SP scores were significantly higher in basal-like than in
HER2-positive and luminal A&B (ER-positive) subtypes and signif-
icantly higher in HER2-positive than in luminal A&B subtypes
(basal-like versus HER2-positive: P = 7.04 � 10�5; basal-like versus
luminal A&B: P = 4.36 � 10�22; HER2-positive versus luminal A&B:
P = 3.11 � 10�5) (Fig. 4E). Furthermore, SP scores were significantly
higher in luminal B than in luminal A (P = 6.29 � 10�10). Again, SP
scores were prognostic in breast cancer since basal-like is the most
aggressive and luminal A is the most unaggressive among all breast
cancer subtypes [48]. Collectively, these data suggest that SP is
upregulated in various cancers and more highly enriched in the
cancer subtypes with worse clinical outcomes.

GBM is a type of intrinsic brain tumor which lacks effective tar-
geted therapies [49]. We analyzed the association between gene
mutations and SP scores in GBM for 231 genes whose mutated
tumor sample size exceeded 20. We found 29 genes whose muta-
tions were associated with elevated SP scores, compared to 3 genes
whose mutations were associated with reduced SP scores (P < 0.05)
(Supplementary Fig. S2). These results suggest that gene mutations
likely correlate with higher SP activity in GBM.

We further compared SP scores between spliceosome gene-
mutated and spliceosome gene-wildtype tumors in the 29 cancer
types. Spliceosome gene-mutated (SGM) tumors referred to the
tumors with mutation in at least one of the 75 critical spliceosome
genes, while spliceosome gene-wildtype (SGW) tumors referred to
the tumors without such a mutation. We found 14 cancer types in
which SGM tumors had markedly higher SP scores than SGW
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tumors, compared to 1 cancer type (OV) in which SGM tumors
had lower SP scores than SGW tumors (P < 0.05) (Fig. 4F). Similarly,
we compared SP scores between the tumors with mutation in at
least one of 16 splicing factor genes and the tumors without such
a mutation. The 16 splicing factor genes included CRNKL1, SF3B6,
PUF60, RP9, SF3A1, SF3B1, SF3B3, SF3B4, SRSF1, SRSF10, SRSF2, SRSF3,
SRSF6, SRSF7, SRSF8, and SRSF9. These splicing factor genes were
identified based on their expression levels showing significantly
negative correlations with immune scores in at least 10 cancer
types (Spearman correlation, P < 0.05). We found 6 cancer types
(LIHC, READ, SARC, SKCM, STAD, and THCA) in which SP scores
were significantly higher in the splicing factor gene-mutated
tumors (P < 0.05) (Fig. 4G). Only in CHOL, SP scores were signifi-
cantly lower in the splicing factor gene-mutated tumors. These
results imply that genetic alternations in key spliceosome mole-
cules and splicing factors likely increase SP activity in cancer.

3.5. Identification of molecular features associated with SP in cancer

We found 11 proteins (Cyclin_B1, PCNA, MSH6, Chk2, MSH2, S6,
TFRC, RBM15, FoxM1, ASNS, and FASN) showing significant higher
expression levels in higher-SP-score (>median) than in lower-SP-
score (<median) tumors in at least 10 cancer types (two-tailed Stu-
dent’s t test, FDR < 0.05) (Fig. 5A). Notably, many of these proteins
function in cell cycle regulation (such as Cyclin_B1, Chk2, and
FoxM1) and DNA damage repair (such as PCNA, MSH6, and
MSH2). It is in line with previous results of the positive associa-
tions between SP scores and the cell cycle activity and genomic
instability. RBM15 is a member of the SPEN (Split-end) family of
proteins which interacts with spliceosome components [50,51].
This protein is also a component of m6A methyltransferase com-
plex, important in the regulation of RNA methylation [52].
RBM15 upregulation has been associated with tumor invasion
and unfavorable prognosis [53]. This conforms to its positive asso-
ciation with the SP activity that is associated with unfavorable clin-
ical outcomes in various cancers. S6 belongs to the S6E family of
ribosomal proteins and plays a role in the regulation of cell growth
and proliferation by translating certain classes of mRNA [54]. S6
hyperphosphorylation has been associated with tumor progression
in diverse cancers [55–57]. Again, it conforms to the positive asso-
ciation between S6 expression and the SP activity which is an
adverse factor in diverse cancers.

We identified KEGG pathways highly enriched in higher-SP-
score tumors and lower-SP-score tumors in at least 10 cancer types
(Fig. 5B). The pathways highly enriched in higher-SP-score tumors
were mainly involved in cell cycle, DNA damage repair (such as
DNA replication, homologous recombination, p53 signaling, mis-
match repair, nucleotide excision repair, and base excision repair),
and RNA regulation (such as ribosome, spliceosome, and RNA
degradation). In contrast, the pathways highly enriched in lower-
SP-score tumors were mainly involved in immune signatures (such
as chemokine signaling, B/T cell receptor signaling, Toll-like recep-
tor signaling, and Natural killer cell-mediated cytotoxicity), stro-
mal signatures (focal adhesion, gap junction, cell adhesion
molecules, and ECM-receptor interaction), neural regulation (neu-
roactive ligand-receptor interaction, axon guidance, and neu-
rotrophin signaling), cell proliferation and differentiation
regulation (such as MAPK, ErbB, Wnt, Hedgehog, TGF-b, and VEGF
signaling), and apoptosis.

We further analyzed associations between SP and seven major
DNA damage repair pathways [33] in cancer. The seven pathways
included DNA replication, base excision repair, nucleotide excision
repair, mismatch repair, homologous recombination, non-
homologous end-joining, and fanconi anemia pathway. Strikingly,
SP scores showed significant positive correlations with scores of
five of the seven pathways in all the 29 cancer types (Spearman



Fig. 4. Comparisons of SP scores between cancer subtypes. A. SP scores are significantly higher in tumor than in normal samples in 17 cancer types. Comparisons of SP scores
between EGFR-mutated and EGFR-wildtype (B), between BRAF-mutated and BRAF-wildtype (C), between KRAS-mutated and KRAS-wildtype (D), between breast cancer (E),
between spliceosome gene-mutated and spliceosome gene-wildtype (F), and between splicing factor gene-mutated and splicing factor gene-wildtype (G) subtypes of cancers.
The one-tailed Mann-Whitney U test P values are shown.
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Fig. 5. Associations between SP and protein expression, pathways’ activities, and DNA repair damage signatures. A. 11 proteins showing significant higher expression levels in
higher-SP-score (>median) than in lower-SP-score (<median) tumors in at least 10 cancer types. The two-tailed Student’s t test adjusted P values (FDRs) are shown. The FDRs
were evaluated by the Benjamini and Hochberg method [34]. B. KEGG pathways highly enriched in higher-SP-score tumors and lower-SP-score tumors in at least 10 cancer
types identified by [34]. C. Spearman correlations between SP scores and seven DNA damage repair pathways’ scores in 29 cancer types. D. SP scores are significantly higher in
TP53-mutated than in TP53-wildtype tumors in 14 cancer types. The one-tailed Mann-Whitney U test P values are shown.
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correlation, P < 0.05) (Fig. 5C). Besides, SP scores had significant
positive correlations with scores of non-homologous end-joining,
and homologous recombination in 18 and 27 cancer types, respec-
tively. The tumor suppressor p53 plays a key role in DNA damage
repair [58]. We found that TP53-mutated tumors had significantly
higher SP scores than TP53-wildtype tumors in 14 cancer types
(Fig. 5D). Again, these results suggest a positive association
between the SP activity and genomic instability.
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3.6. SP scores likely correlate negatively with immunotherapy
response and positively with targeted therapy response in cancer

Because both inflamed TIME and PD-L1 expression are determi-
nants of the active response to ICIs, and SP scores were negatively
correlated with them, we anticipated that there would be an asso-
ciation between elevated SP activity and reduced response to ICIs.
This anticipation was supported in four cancer cohorts receiving ICI



Fig. 6. Association between SP and immunotherapy in cancer. A. The tumors with lower SP scores (<median) show a higher response rate than the tumors with higher SP
scores (>median) in four cohorts treated by immune checkpoint inhibitors (ICIs). B. In the Snyder (melanoma) cohort treated by ICIs, lower-SP-score tumors show better OS
than higher-SP-score tumors, while in the TCGA melanoma cohort not treated by ICIs, higher-SP-score and lower-SP-score tumors show no significant difference of OS. The
log-rank test P values are shown. C. The tumors with lower expression levels (<median) of several genes encoding splicing factors show higher response rates than the tumors
with higher expression levels of them (>median) in three cohorts treated by ICIs. D. Two compounds (STF-62247 and KIN001-260) showing significant negative correlations of
its IC50 values with SP scores in cell lines of GBM, THCA, and colorectal cancer. The Spearman correlation coefficient (q) and P value are shown.
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treatments, in which the tumors with lower SP scores (<median)
displayed a higher response rate than the tumors with higher SP
scores (>median) (Fig. 6A). The four cohorts included the Snyder
(melanoma) [26], Nathanson (melanoma) [27], Braun (renal cell
carcinoma) [28], and Snyder (urothelial carcinoma) [29] cohorts.
The response rates to ICIs in higher-SP-score versus lower-SP-
score tumors were 12.5% versus 37.5%, 16.7% versus 50%, 11% ver-
sus 20%, and 27.3% versus 40% in these cohorts, respectively
(Fig. 6A). Furthermore, in the Snyder (melanoma), lower-SP-score
tumors showed a better OS prognosis than higher-SP-score tumors
(log-rank test, P = 0.039) (Fig. 6B). The better outcome in the lower-
SP-score tumors could be attributed to their more favorable
response to ICIs since higher-SP-score and lower-SP-score tumors
showed no significant difference of OS in the TCGA melanoma
cohort without ICI treatments (log-rank test, P = 0.869) (Fig. 6B).
Furthermore, we analyzed associations between the expression
of the 16 splicing factor genes and the response to ICIs in these
cohorts. In the Snyder (melanoma) cohort, the tumors with lower
expression levels (<median) of SRSF1, SF3A1, SF3B1, SF3B3, and
SF3B4 showed higher response rates than the tumors with higher
expression levels of them (>median) (Fig. 6C). Similar results were
observed for SF3A1, SF3B1, RP9, SRSF2, SRSF6, and SRSF7 in the
Nathanson (melanoma) cohort and SRSF1 in the Braun (renal cell
carcinoma) cohort (Fig. 6C).
Fig. 7. Association between SP and RNAi sensitivity profile in cancer cell lines. A. 50 SP ge
cell lines (Spearman correlation, q > 0.6). B. The genes having a strong correlation of thei
in RNA regulation and DNA damage repair pathways. C. The strong positive correlation be
coefficient (q) and P value are shown.
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We also explored associations between SP scores and drug sen-
sitivities (IC50 values, half maximal inhibitory concentration) of
cancer cell lines to 265 anti-tumor targeted therapeutic compounds
from the Genomics of Drug Sensitivity in Cancer (GDSC) project
(https://www.cancerrxgene.org). Strikingly, the IC50 values of
187 (71%) of the 265 compounds were significantly and negatively
correlated with SP scores in cancer cell lines (Spearman correlation,
P < 0.05) (Supplementary Table S4). The PLK inhibitor NPK76-II-72-
1 showed the strongest negative correlation of IC50 values with SP
scores (q = -0.46, P = 1.85 � 10�47). In contrast, only 18 (7%) com-
pounds had a significant positive correlation of IC50 values with
SP scores (Supplementary Table S4). These results suggest that ele-
vated SP activity is correlated with increased drug sensitivity for a
broad spectrum of anti-tumor targeted therapies. We further ana-
lyzed correlations between drug sensitivities (IC50 values) and SP
scores in cell lines from individual cancer types. We found that
the IC50 values of many compounds had significant negative corre-
lations with SP scores in diverse cancer types, such as GBM, THCA,
and colorectal cancer (COAD/READ). Notably, STF-62247, an autop-
hagy inducer, had significant negative correlations of its IC50 values
with SP scores in GBM, THCA, and colorectal cancer (Fig. 6D). This
result implicates a potential link between autophagy and spliceo-
some pathways. Indeed, previous studies have demonstrated the
association between autophagy and spliceosome pathways
nes whose RNAi sensitivity values have a strong correlation with SP scores in cancer
r RNAi sensitivity values with SP scores in cancer cell lines are significantly involved
tween SP scores and cell cycle activity in cancer cell lines. The Spearman correlation
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[59,60]. KIN001-260, an inhibitor of IKK-b, known as an enzyme
involved in immune regulation [61], also displayed significant neg-
ative correlations of its IC50 values with SP scores in GBM, THCA,
and colorectal cancer (Fig. 6D). It supports the significant correla-
tion between the SP activity and immune signatures in cancer.
Fig. 8. Associations of splicing events with SP and immune signatures in cancer. A. 31 s
least 10 cancer types (Spearman correlation, P < 0.05) and higher in lower-SP-score than i
B. 38 splicing events whose PSI values are negatively correlated with immune scores in a
in diverse cancers. PSI (percent spliced in) defines the efficiency of splicing an exon into
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3.7. Associations of SP with RNAi sensitivity profile in cancer cell lines

We analyzed associations between RNAi sensitivity values of
19,177 genes and SP scores in 662 cancer cell lines. RNAi sensitivity
reflects the degree of cancer cell survival dependency on specific
plicing events whose PSI values are positively correlated with immune scores in at
n higher-SP-score tumors in diverse cancers (two-tailed Student’s t test, FDR < 0.05).
t least 10 cancer types and higher in higher-SP-score than in lower-SP-score tumors
all the transcripts of a gene [25].
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genes by genome-wide RNAi loss-of-function screens [62]. Higher
RNAi sensitivity indicates a stronger dependency of cancer cell sur-
vival on specific genes. We found 628 genes whose RNAi sensitivity
values had a strong positive correlation with SP scores (Spearman
correlation, q > 0.6). Notably, there were 50 SP genes in the list of
628 genes, such as SRSF3 and SRSF1 (Fig. 7A). GSEA [63] identified
26 KEGG pathways significantly associated with the 628 genes
(FDR < 0.05). The 26 pathways were mainly involved in RNA regu-
lation (spliceosome, RNA degradation, RNA polymerase, and basal
transcription factors) and DNA damage repair (mismatch repair,
nucleotide excision repair, base excision repair, homologous
recombination, non-homologous end-joining, DNA replication,
and p53 signaling) (Fig. 7B). Again, the activity of cell cycle path-
way had a strong positive correlation with SP scores in the cell
lines (q = 0.88) (Fig. 7C). Collectively, these results implicate that
the cancer cells with elevated SP activity have strong dependencies
on the expression of the genes in the pathways of RNA regulation,
DNA damage repair, and cell cycle.
3.8. Associations of splicing events with SP and immune signatures in
cancer

The PSI defines the efficiency of splicing an exon into all the
transcripts of a gene [64]. We first identified 100 splicing events
whose PSI values showed the strongest correlations with immune
scores in each of the 29 cancer types. Among these splicing events,
31 splicing events displayed significantly positive correlations of
PSI values with immune scores in at least 10 cancer types (Spear-
man correlation, P < 0.05) (Fig. 8A). Notably, the PSI values of these
splicing events were significantly lower in higher-SP-score than in
lower-SP-score tumors in diverse cancers (Student’s t test,
FDR < 0.05) (Fig. 8A, Supplementary Table S5). In contrast, 38 splic-
ing events had significantly negative correlations of their PSI values
with immune scores in at least 10 cancer types, and their PSI values
were significantly higher in higher-SP-score than in lower-SP-score
tumors in diverse cancers (Student’s t test, FDR < 0.05) (Fig. 8B,
Supplementary Table S5). This conformed to previous results of
the significant negative correlation between SP scores and immune
scores in various cancer. Interestingly, around 80% of the genes
involved in the 31 splicing events were involved in at least one
of the 38 splicing events and vice verse (Fig. 7A&7B). It indicated
that the genes involved in both types of splicing events were highly
overlapped. For example, the PSI values of RPS6KA1-1280-AP had a
significant negative correlation with immune scores in 24 cancer
types and were significantly higher in higher-SP-score than in
lower-SP-score tumors in 10 cancer types. However, the PSI values
of RPS6KA1-1281-AP had a significant positive correlation with
immune scores in 19 cancer types and were significantly lower
in higher-SP-score than in lower-SP-score tumors in 6 cancer
types. These data suggest that different splicing events for an iden-
tical gene may have opposite effects on anti-tumor immune
response. A total of 39 genes were involved in the 38 and 31 splic-
ing events, which were significantly associated with pathways of
Fc gamma R-mediated phagocytosis, T cell receptor signaling,
and primary immunodeficiency, identified by GSEA (adjusted P
value < 0.05). It supports the strong correlation between their
splicing events and immune signatures in cancer.
4. Discussion

For the first time, we systematically investigated associations of
the SP activity with clinical features, anti-tumor immune signa-
tures, tumor immunity-related genomic and molecular features,
and targeted therapies and immunotherapies in pan-cancer. Our
results showed that the SP activity was an oncogenic signature,
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as evidenced by its hyperactivation in cancer and invasive cancer
subtypes and correlations with unfavorable clinical outcomes and
anti-tumor immunosuppression in a wide variety of cancers. Our
data suggest that the SP activity is correlated with genomic insta-
bility in diverse cancers, as evidenced by its positive correlations
with TMB and aneuploidy. However, our data shows that aneu-
ploidy has a more significant impact on the SP activity than TMB
in cancer. Because TMB and aneuploidy are positively and nega-
tively correlated with anti-tumor immune response, respectively,
and the SP activity is positively correlated with both of them, the
negative correlation between the SP activity and anti-tumor
immune response could be a consequence of their joint influence
on SP. However, our results indicate that the negative association
between the SP activity and anti-tumor immune response is likely
independent of its associations with aneuploidy and TMB, suggest-
ing that the SP activity is an independent predictor of anti-tumor
immune response. Furthermore, we supported that the SP activity
had a negative correlation with immunotherapy response in four
cancer cohorts receiving ICI treatments. Our data also revealed that
the correlation of aneuploidy and TMB with anti-tumor immune
response could be positive or negative, depending on cancer types.
This is in accordance with findings from previous studies [9,65].
However, different from aneuploidy and TMB, the SP activity was
a negative predictor of anti-tumor immune response consistently
in various cancers. It suggests that the SP activity is a more reliable
biomarker of anti-tumor immune response and immunotherapy
response versus aneuploidy and TMB.

We found that the SP activity was strongly and positively asso-
ciated with the activity of various DNA damage repair pathways in
cancer. This could explain why SP is associated with anti-tumor
immunosuppression since the deficiency of DNA damage repair
pathways, e.g., dMMR [66], can stimulate anti-tumor immune
response. In addition, the SP activity was positively associated with
the cell cycle activity and negatively associated with the apoptosis
activity. It may explain why the SP activity is an oncogenic
signature.

Interestingly, although the SP activity is negatively correlated
with immunotherapy response, it is positively correlated with
the response to various anti-tumor targeted therapies. These tar-
geted therapies mainly targeted pathways of cell cycle, EGFR,
p53, Wnt, IGF1R, JNK/p38, RTK, ERK/MAPK, PI3K/MTOR, DNA repli-
cation, ABL, metabolism, apoptosis regulation, chromatin histone
acetylation, chromatin histone methylation, protein stability and
degradation, cytoskeleton, genome integrity, and hormone-
related. It suggests that elevated SP activity could enhance drug
sensitivities of a wide variety of targeted therapies.

The significant association between the SP activity and anti-
tumor immunosuppression could explain why the tumors with
high SP activity had more unfavorable tumor phenotypes and clin-
ical outcomes than the tumors with low SP activity. Indeed, the
higher-SP-score tumors had higher levels of stemness, prolifera-
tion potential, ITH, and cell cycle activity. The advanced tumors
had significantly higher SP scores than the non-advanced tumors
in multiple cancers. The higher-SP-score tumors had worse sur-
vival prognosis in multiple individual cancer types. Within single
cancer types, the SP activity is higher in the subtypes with worse
clinical outcomes.

It should be noted that the negative association between anti-
tumor immune signatures and the SP activity does not conflict
with their positive association with specific mRNA splicing events.
Instead, it is consistent with a recent study showing that inhibition
of spliceosome could promote anti-tumor immune response in
triple-negative breast cancer [22]. Furthermore, our results suggest
that inhibition of spliceosome can enhance anti-tumor immune
response in various cancers. Thus, the combination of spliceosome
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inhibitors and ICIs could be an effective strategy for improving
immunotherapy response.

This study has several limitations. First, we used the SP score,
which was obtained by the ssGSEA of all genes in the SP, to quan-
tify the SP activity, namely spliceosome activation. We did not
show the data on the correlations of the key spliceosome mole-
cules with molecular and clinical features in pan-cancer. Neverthe-
less, we found 60 (80%) of the 75 critical spliceosome genes whose
expression levels were significantly and positively correlated with
SP scores in at least 20 cancer types and all 75 genes having signif-
icant positive expression correlations with SP scores in at least 12
cancer types (P < 0.05) (Supplementary Table S6). It indicates that
high SP scores likely reflect high spliceosome activation. Second,
the relationship between SP activity andmolecular and clinical fea-
tures in pan-cancer revealed by the bioinformatics analysis is the
correlation relationship, but not the causal relationship. To prove
the causal relationship, further experimental and clinical studies
are necessary. Finally, we found that SP scores had a positive cor-
relation with tumor purity in most cancer types. It suggests that
the measure of SP scores in the tumors with relatively low tumor
purity could be less accurate than that in the tumors with high
tumor purity, whereas this is a common problem in the studies
of bulk tumors. To address this issue, the use of single-cell tran-
scriptomic data is a must.

In conclusion, our findings suggest that the SP activity is a neg-
ative biomarker of clinical outcomes, anti-tumor immunity, and
immunotherapy response in various cancers. Spliceosome-
targeted therapies may promote immunotherapy response.
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