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Abstract

Objective—The study goal was to determine the effect of weight loss (WL) alone and with 

aerobic exercise (WL+AEX) on SAA levels and adipose SAA secretion from gluteal and 

abdominal depots.

Design and Methods—Ninety-six overweight or obese postmenopausal women undertook a 6 

month WL alone (n=47) or with aerobic exercise training (n=49) (6 months WL and WL+AEX are 

considered WL when groups were combined). Their serum SAA levels, body weight and adipose 

SAA secretion ex vivo from gluteal and abdominal depot were measured before and after WL 

interventions.

Results—The participants lost an average of 8% body weight with a 10% decrease of serum 

SAA. Serum SAA levels remained significantly correlated with body weight before and after WL. 

However, the changes of serum SAA level did not correlate with changes of body weight. The 

gluteal adipose tissue secreted ~50% more SAA than the abdominal tissue, but the changes of 

abdominal, but not gluteal, SAA secretion correlated (R2 = 0.19, p < 0.01) with those of serum 

SAA levels during WL.

Conclusion—We find no linear correlation between the decrease in systemic SAA and WL. 

There is a depot-dependent difference in adipose SAA secretion and abdominal SAA secretion 

which may partially account for the systemic SAA reduction during WL.

Introduction

Obesity is characterized by an elevation of local adipose (1, 2) as well as systemic low-grade 

systemic inflammation (3, 4), which contributes to its associated comorbidities such as 

insulin resistance, type 2 diabetes and cardiovascular diseases (CDV) (5, 6). Whether and 
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how these two inflammatory processes relate in humans is not well understood. Acute-phase 

protein serum amyloid A (SAA) is selectively expressed in adipose tissue and its tissue 

expression and circulating levels increase in obese subjects (7–9), suggesting that SAA may 

serve as a molecular link between adipose tissue and systemic inflammation. Several studies 

show that SAA plays an active role in regulating the inflammation process (7–9), and 

suggest that SAA is a pro-inflammatory cytokine that may be responsible for macrophage 

infiltration in the adipose tissue (10). A recent study shows that elevations in systemic SAA 

by transgenic overexpression increases circulating serum IL-6 and TNFα and significantly 

promotes atherosclerosis in mice (11), thus providing direct evidence that SAA is a 

causative factor for systemic inflammation and CVD in animals.

Weight loss (WL) via life-style change with or without aerobic exercise (AEX) is an 

effective regimens for prevention and treatment for obesity and its associated metabolic 

disturbances by lowering circulating SAA levels (12, 13) and adipose SAA expression (13, 

14). However, few studies have examined the effects of WL+AEX on adipose SAA 

secretion; thus, the relationship between changes in adipose SAA secretion and systemic 

SAA levels during WL remains unknown.

Adipose tissues of different depots have distinctive molecular, cellular and metabolic 

properties (15–17) with discrete systemic metabolic and endocrine consequences (18). 

Indeed, the gene expression of fatty acid amide hydrolase (FAAH), an enzyme participating 

in endocannabinoid synthesis and implicated in adipocyte dysfunction (19), is higher in the 

abdominal than gluteal adipose tissue and that WL by hypocaloric feeding decreases the 

gene expression of gluteal, but not abdominal, cannabinoid receptor 1 and FAAH. These 

observations suggest that abdominal and gluteal adipose tissue respond to metabolic and 

nutritional challenges differently; this study examines whether there are differences in SAA 

secretion between abdominal and gluteal subcutaneous fat depots to WL with and without 

AEX.

Considering that SAA plays a pivotal role in mediating inflammation and that the reduction 

of circulating SAA may be responsible for the reduced systemic inflammation in lifestyle 

change-induced WL, it will be valuable to understand the effects of WL on systemic and 

adipose SAA levels. As the adipose tissue is a prominent organ that expresses and releases 

SAA, the goal of this study was to determine 1) whether there is a relationship between 

changes of systemic SAA levels and body weight/fat mass, and 2) whether there are 

differences in SAA secretion between gluteal and abdominal depots and if these changes are 

related to circulating SAA during WL.

Research Design and Methods

Human subjects

The Institutional Review Board of the University of Maryland approved all human studies, 

and each volunteer provided written informed consent to participate. All subjects were 

relatively healthy, non-diabetic by fasting glucose (<126mg/dl), but overweight or obese 

[body mass index (BMI) > 25 kg/m2, range of 25–48 kg/m2] women between the ages of 49 

and 76 years. The women were postmenopausal and had not menstruated for ≥1 yr. Details 
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about this WL program have been described elsewhere (20). In brief, all women in WL and 

WL+AEX attended weekly WL classes led by a registered dietitian. Women were instructed 

to reduce their caloric intake by 300–500 kcal/day. For the WL+AEX intervention, women 

exercised three times per week for six months using treadmills and elliptical trainers as 

described (20). Fat mass was determined by dual-energy X-ray absorptiometry (Prodigy; 

Lunar Radiation Corp., Madison, WI). Blood samples were obtained from an antecubital 

vein after a 12-hour overnight fast, 36–48 hours after the last bout of exercise in WL+AEX, 

and stored at −80 °C until analysis. Fasting serum levels of SAA were measured before and 

after the intervention in all participants.

Adipose tissue culture and SAA measurement

Some of the participants underwent adipose tissue biopsy before and after the WL regimen. 

Biopsies were performed 36–48 hours after the last bout of exercise in the WL+AEX group. 

Abdominal and gluteal adipose tissue samples were obtained from overnight fasted subjects 

by aspiration with a 3 mm cannula under local anesthesia with lidocaine as previously 

described (21). Adipose tissue fragments were incubated for 3 hours in M199-1% BSA 

(~100 mg/ml) and the media was collected and stored at −80°C as previously described (22), 

until SAA assay.

Serum SAA levels were measured with an enzyme-linked immunosorbent assay (ELISA) kit 

according to the manufacturer’s instructions (BioSource, Camarillo, CA, USA). For high 

sensitive measurement of SAA levels in a small volume of conditional media of the acute 

human adipose culture, a Meso Scale Discovery (MSD) multiplex 

electrochemiluminescence (ECL) assay (Meso Scale Discovery, Gaithersburg, MD, USA) 

was employed. The SAA detection sensitivities by ELISA and MSD were 5 ng/ml and 8 

pg/ml, respectively. For ELISA, the intra- and inter-assay coefficients of variation (CV) 

were 5% and 8%, respectively, whereas for MSD, the intra-assay CV was 4%. The inter-

assay CV was not determined since all samples were assayed in one time. The correlation 

co-efficient between the two assays was 0.87. All samples were assayed in duplicate and the 

mean was used for data analysis.

Statistical analysis

Data are expressed as mean ± SEM unless otherwise specified. Variables that were not 

normally distributed were logarithm transformed for analysis. The Student’s unpaired or 

paired t test was performed when appropriate. Significance of correlations between two 

variables was determined by the Spearman rank correlation coefficient. Graphpad Prism 5 

(La Jolla, CA, USA) was used for statistical analysis and differences were considered to be 

significant at p < 0.05.

Results

Effects of WL on body weight and serum SAA

A total of 96 postmenopausal women, aged 60 years ± 0.79 (mean ± SE) with an average 

body weight of 85.9 ± 2.4 kg, participated in the study. Of them, 47 subjects were enrolled 

into the WL program and 49 subjects into the WL+AEX program. Fig. 1 shows that at the 
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basal level, serum SAA was well correlated with BMI and body fat mass (R = 0.46 and 0.44, 

respectively, p < 0.0001 for both). After six months of the WL programs, the participants 

lost an average of 7.9 % body weight with a reduction of 10.4% serum SAA. The WL group 

lost about 7.7 % body weight from 87.4 ± 2.4 to 80.7 ± 2.4 kg, whereas SAA decreased by 

11.4 % from 42.5 ± 4.8 to 35.1 ± 4.5 μg/ml. The WL+AEX group lost 8.1% body weight 

from 84.4 ± 1.9 to 77.6 ± 1.8 kg, whereas SAA decreased by 10.6 % from 32.5 ± 4.1 to 27.5 

± 3.9 μg/ml (p < 0.01 for all comparisons of pre- vs. post-WL). No statistical difference was 

observed in the extent of changes of body weight and SAA between the WL and WL +AEX 

groups during WL. Thus, both groups were combined for the regression analyses. The 

relationships between serum SAA and BMI (R = 0.46, p < 0.0001) and fat mass (R = 0.44, p 

< 0.0001) remained strong post-WL (Fig. 1c).

Relationships between the changes of serum SAA and body weight during WL

The significant correlations between serum SAA levels and fat mass at baseline were 

maintained after WL (Figs. 1a and 1c). This suggests a possible relationship between the 

changes of the systemic SAA vs. fat mass. However, despite the fact that the extent of 

overall reduction of serum SAA and BMI was comparable to the degree of WL (~ 10%, Fig. 

1b) in the whole cohort, the inter-individual changes in serum SAA levels varied 

dramatically, ranging from −84 to 248% compared to the relatively narrow changes of WL 

between −2.1 and −24.0 %. There was no correlation between the changes of serum SAA 

and the changes in body weight expressed in absolute or relative terms with respect to either 

percentage (Fig. 2) or log-transformed percentage (not shown) in participants pooled or 

separated by group.

Effects of WL on SAA secretion

Reduced serum SAA levels post-WL could be a result of normal SAA secretion from 

reduced fat mass and/or reduced secretion from the adipose or other tissues. To investigate 

these possibilities, 42 subjects underwent abdominal and gluteal adipose tissue biopsy 

before and after WL and the adipose SAA secretion was measured ex vivo. Since there was 

no significant difference in the effect of WL vs. WL+AEX on adipose SAA secretion (data 

not shown), SAA secretion data were pooled from both groups for subsequent statistical 

analyses. As a result (Fig. 3), gluteal adipose tissue secreted ~50% more SAA than the 

abdominal (p < 0.01, Fig. 3a). The amount of SAA secreted from the gluteal region was well 

correlated with that from the abdominal depot before (R = 0.54, p < 0.001) and after (R = 

0.74, p < 0.001) WL (Fig. 3b). Notably, there was a larger variation of up to 100-fold 

difference in SAA secretion before and after WL. Thus, although the overall adipose SAA 

secretion decreased by 30% (p = 0.09) and 22% (p = 0.6) in abdominal and gluteal depots, 

respectively, after WL, the reduction after WL did not reach statistical significance.

Effects of WL on relationships between changes of adipose SAA secretion and serum SAA 
levels

We examined the relationship between changes in systemic SAA levels and adipose 

secretion from abdominal and gluteal regions after WL. Spearman analysis revealed a 
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moderate correlation of the changes of serum SAA levels with changes in SAA secretion in 

abdominal (R = 0.43, p < 0.01), but not in gluteal, adipose tissues (Fig. 4).

Discussion

Numerous studies demonstrate that SAA is an adipokine that is elevated in the circulation in 

obesity and considered to be a mediator between obesity and associated insulin resistance, 

low-grade inflammation and risk for CVD (23–25). To better understand the relationship 

between adipose and systemic SAA levels, we conducted this study and examined the 

changes of adipose SAA secretion ex vivo in relationship to its circulating level in a cohort 

of well-characterized postmenopausal women who went through WL via WL or WL+AEX 

(20). Our results show that serum SAA levels correlate with BMI and fat mass in overweight 

or obese subjects before WL. An average loss of 8% body weight resulted in a comparable 

reduction of systemic SAA after the six-month WL program alone or with AEX. Moreover, 

the relationship of systemic SAA and body fat mass remained after WL. These observations 

further support that BMI/fat mass is a determinant of circulating SAA levels. However, no 

correlation was detected between the changes of BMI vs. changes in serum SAA at the 

individual level (Fig. 2). This is a somewhat unexpected finding, considering that serum 

SAA levels are well correlated with BMI before and after WL (Fig. 1c). A possible 

explanation is that a marked variation of serum SAA relative to the narrow changes of body 

weight during the WL period significantly reduced the statistical power to detect such a 

correlation. Another explanation is that fat mass accounts for ~19 and 26 % of systemic 

SAA variation in pre- and post-WL states (Fig. 1), and fat mass-independent mechanisms 

(e.g., the rate of adipose SAA secretion and non-adipose SAA secretion) have a greater 

effect to determine systemic SAA levels.

Since there are regional differences in gene expression and regulation in the subcutaneous 

fat depot (26–28), we examined the changes of SAA release ex vivo of adipose samples from 

abdominal and gluteal regions. Results show that adipose tissue in the gluteal depot secretes 

~50 % more SAA than that of the abdominal, both before and after WL. A strong correlation 

is observed in the amount of SAA secretion between the two depots, suggesting a similar 

regulatory mechanism for adipose SAA production between the depots. Remarkably, a large 

individual variation in SAA secretion was observed during WL, indicating that the rate of 

SAA secretion is highly variable among individuals before and after WL. As a result, the 

dramatic ~25% reduction in SAA secretion after WL did not reach statistical significance.

This study finds a moderate correlation between the reduction of serum SAA levels and that 

of abdominal SAA secretion (R = 0.43, Fig. 4), suggesting that the decrease in abdominal 

SAA secretion could contribute to the lower SAA in circulation after WL. It is intriguing to 

note that although gluteal adipose tissue releases more SAA than abdominal adipose tissue, 

only abdominal adipose tissue SAA secretion is significantly related to circulating SAA 

levels. One possible explanation is that the local abdominal condition facilitates the release 

of SAA at the whole body level. This is supported by the finding that the blood flow rate in 

abdominal depot is three times that in the gluteal depot (29). Moreover, the abdominal skin 

temperature is 1°C higher than the gluteal (33.3 vs. 32.2 °C), which may enhance SAA 

release from abdominal depot into the circulation. Another possibility is via an indirect 
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mechanism, wherein abdominal adipose tissue releases more pro-inflammatory fatty acids 

systemically (29). The local SAA reduction would lower lipolysis and the output of fatty 

acids and inflammatory cytokines into the circulation, resulting in a systemic reduction in 

inflammatory status and SAA production from non-adipose tissue, such as the liver.

Collectively, our data further support the fact that BMI and fat mass are a determinant of 

systemic SAA levels. However, the post-WL systemic SAA reduction appears not to be the 

direct consequence of the reduction in BMI or fat mass alone and may be attributable to 

other chronic diseases like stress, hypertension and osteoarthritis (30–32). Such a large 

variation might have obscured or overwhelmed the contribution of fat mass changes to 

systemic SAA levels during WL. Reasons for the greater individual pre- vs. post-WL 

variation in ex vivo SAA secretion from adipose tissue are unclear. Possible explanations 

include that SAA is a highly and rapidly regulated protein; hence, the large SAA variation in 

the acute explant study may reflect the actual state of rapid dynamics of SAA production 

and secretion as well as newly synthesized SAA at the time of fat biopsy. Further, the 

finding that in the same individual, the gluteal and abdominal SAA secretion correlate well 

pre- and post-WL (Fig. 3), suggests similar regulatory mechanisms may exist within the two 

fat regions in response to the loss of body weight.

In summary, these findings show that BMI and fat mass are determinants of the circulating 

SAA levels. The overall extent of serum SAA decrease is comparable to that of weight loss 

with and without exercise in the cohort, but only collectively do the changes in SAA directly 

relate to the reduction of fat mass. We also find that the gluteal adipose tissue secretes ~50% 

SAA more than the abdominal adipose tissue, and that adipose SAA secretion tends to 

decrease after weight loss; however, only the reduction of abdominal SAA secretion 

correlated with that of systemic SAA. Thus, both reduced fat mass and decreased abdominal 

adipose SAA secretion, along with other yet unidentified factors, contribute to the reduction 

in systemic SAA levels after weight loss.
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What is already known about this subject?

• SAA is an adipokine and considered to be a link between obesity and its 

associated diseases.

• Circulating SAA is correlated with fat mass/BMI.

• Weight loss decreases adipose SAA gene expression and secretion in small scale 

studies.

What does this study add?

• Largest sample size study of weight loss on adipose SAA secretion in humans.

• The finding of adipose depot-dependent difference in SAA secretion: that the 

gluteal adipose tissue/per tissue weight secretes 50% more SAA than the 

abdominal.

• The changes of abdominal, but not gluteal, fat SAA secretion correlate with 

those of serum SAA during WL and account for ~19% variation of the systemic 

SAA reduction during WL. This suggests that abdominal SAA secretion may 

partially account for the systemic SAA reduction during WL and that the 

mechanisms for WL-induced systemic reductions in cytokines are complex, and 

not simply related to changes in fat mass.
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Figure 1. Change of serum SAA levels and its relationship with BMI/fat mass before and after 
WL
A. Relationship between BMI and % Fat Mass and Serum SAA pre-WL. Linear correlation 

analysis of serum SAA levels (μg/ml, log-transformed and presented) with BMI and 

percentage of fat mass (% of fat mass) pre-WL in 96 overweight or obese postmenopausal 

women. B. Changes in Body Weight (BW) and SAA after WL and WL+AEX. 47 subjects 

underwent a WL program and 49 subjects received WL +AEX. SAA levels (μg/ml) and 

body weight (kg) changes were compared before and after WL (**: p < 0.01, paired t-test) 

with the mean % reduction of SAA and body weight shown. No difference was detected 

between WL vs. WL +AEX treatment by two-way ANOVA. C. Relationship between BMI 

and % Fat Mass and Serum SAA post-WL. Linear and regression analysis of serum SAA 

levels (log-transformed) with BMI and percentage of fat mass post-WL in the 96 

participants.
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Figure 2. 
Relationship between changes in BMI and changes in serum SAA.
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Figure 3. Adipose SAA secretion from subcutaneous abdominal and gluteal depots before and 
after WL
A. Adipose SAA secretion before and after weight loss. Data were expressed as mean ± SE. 

**: p < 0.01 between the two depots in pre- or post-WL state. B. Correlation between 

Abdominal and Gluteal Adipose SAA Secretion. A total of forty-four subjects had fat 

biopsies at abdominal and gluteal depots before and after WL. SAA secreted ex vivo from 

the acute adipose tissue culture (ng SAA/g fat tissue/3 hours) were measured in conditioned 

media. Data were log-transformed for analyses.
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Figure 4. 
Correlation of the change in systemic SAA with the change in adipose SAA secretion from 

abdominal, but not gluteal, adipose depot during WL.
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