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Tumor-derived extracellular vesicles (TEVs) are important regulators of the immune
response in cancer; however, most research so far has been carried out using cell
culture systems. Immune-competent murine tumor models currently provide the best
platform to assess proposed roles of TEVs using in vivo animal models and therefore are
important for examining interactions between TEVs and the immune system. In this
review, we present the current knowledge on TEVs using in vivo tumor-bearing animal
models, with a focus on the role of TEVs in mediating crosstalk between tumor cells and
both adaptive and innate immune cells. In particular, we address the question how animal
models can clarify the reported heterogeneity of TEV effects in both anti-tumor responses
and evasion of immune surveillance. The potential of TEVs in mediating direct antigen-
presenting functions supports their potential as cancer vaccine therapeutics, therefore,
we provide an overview of key findings of TEV trials that have the potential as novel
immunotherapies, and shed light on challenges in the path toward the first in-human trials.
We also highlight the important updates on the methods that continue to enhance the
rigor and reproducibility of EV studies, particularly in functional animal models.

Keywords: extracellular vesicles, tumor exosomes, adaptive immunity, extracellular vesicle heterogeneity, cancer,
immunotherapy, mouse tumor models, immune system
INTRODUCTION

Metastatic cancers are among the deadliest diseases worldwide, yet, therapy options remain limited.
Escaping the host’s immune response is one of the characteristic properties of tumors that are
essential for malignancy, tumor growth and metastasis (1). During the past few decades, immuno-
oncology research has focused on deciphering the molecular mechanisms that tumors develop to
influence their microenvironment as well as the global immune response. More recently,
extracellular vesicles (EVs) released by tumor cells have been studied extensively for their
potential as antigen-presenting particles and regulators of immune cells (2). EVs are
nanoparticles that are formed intracellularly, and are composed of a proteo-lipid bilayer, and
luminal proteins and nucleic acids, which together determine their functionality. The complex
org December 2020 | Volume 11 | Article 6068591
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mechanism of EVs biogenesis has been recently outlined
elsewhere (3). Of note, the packaging of EVs may be altered
upon changes of the cellular microenvironment or after
therapeutic interventions (4). EVs are categorized by size and
the organelle from which they are derived. The three
predominant classes of EVs are endosomal-derived exosomes
that are 50–150 nm in diameter, microvesicles, or “ectosomes”
that are 200–1,000 nm in diameter and are derived from plasma
membrane shedding, and apoptotic bodies that have a wide size
range of 100–5,000 nm in diameter. Recent work has pointed
toward the existence of a plethora of additional EV classes not
described above, a prominent example being so-called exomeres.
Exomeres were described to be smaller than exosomes (<50 nm)
and enriched in metabolism-associated enzymes and antigens,
which has led to the assumption that they might influence the
metabolic state of recipient cells and take part in tumor-related
mechanisms such as metastasis (5, 6).

The heterogeneity of extracellular vesicles is further
underscored by studies that continue to refine our understanding
of their cargo (7), and challenges with standardized isolation and
characterization techniques to define the function of specific
subpopulations of EVs. It remains a common approach in
the field to focus studies on pellets acquired following
ultracentrifugation. These fractions are referred to as “exosomes”,
even though the International Society for Extracellular Vesicles
(ISEV) is encouraging researchers to use the term “small EVs” to
better capture the spectrum of vesicle types (8). To meet the
requirements of more precise terminology and biological
accuracy, we will use the term “tumor-derived extracellular
vesicles” (TEVs), which includes vesicles released by an
endosomal pathway (“classical” exosomes), membrane-derived
vesicles and apoptotic-derived vesicles since all three are
frequently observed in malignancy.

Many investigators have identified and classified TEVs using
various cancer cell lines to obtain an insight into their
pathophysiological relevance in tumor progression and
immune responses, however, the potential of TEVs as immune
regulators in immune-competent animal tumor models remains
understudied. The importance of an immune-competent model
is highlighted by the need to understand tumor-immune cell-
crosstalk mediated by TEVs in the complexity of an animal
model, which we argue have the greatest potential to provide
insight into the TEV-dependent mechanisms relevant to
metastasis and translation to humans. We point out where
findings from animal studies and cell culture experiments may
appear to be contradictory and identify areas for future research
on the role of TEVs and the regulation of tumor-associated
immune cells.

An understanding of the basis of the most utilized methods,
such as direct injection of TEVs and immune cell pulsing by
TEVs before injection, is important to consider with respect to
their potential influences on experimental outcomes. Work by
Andre and colleagues (9) first showed that TEVs carry antigens
derived from their cells of origin that are presented by dendritic
cells (DCs) to induce the proliferation of specific T cell subsets.
The observation that bodily fluids contain TEVs that are
Frontiers in Immunology | www.frontiersin.org 2
reservoirs for tumor antigens demonstrated the relevance of
TEVs in tumor immunotherapy research that has been
followed by cancer vaccine trials (10) and TEV bioengineering
approaches (11, 12). While specific aspects of TEV immunology
remain poorly understood, TEVs remain promising targets for
future research, with the regulation of their release being a
prominent example (13–16). Moreover, the rapid evolution of
EV methodologies in general will benefit in vivo studies of TEVs.
Progress in these areas will likely lead to new therapy options in
cancer, autoimmune disease and many other chronic conditions
where EVs can mediate immune activity to distal end organs.
TEV EFFECTS ON THE ADAPTIVE
IMMUNITY: DENDRITIC CELLS AND
T CELLS

Our current understanding of anti-tumor immunity emphasizes
the role of CD8+ cytotoxic T-lymphocytes (CTLs) as
key protective agents. The presentation of tumor antigens by
dendritic cells induces the activation and clonal proliferation
of anti-tumor CTLs, however, tumors regularly develop
mechanisms and factors to evade this response. It has been
recognized that TEVs might carry such factors as a payload or
express tumor antigens on their surface. Therefore, both
immunosuppressive and immune-stimulatory roles have been
proposed and described for TEVs (2).

In terms of the immunosuppressive effects of TEVs, direct as
well as indirect effects on cellular immunity have been proposed
(17). Ning and colleagues demonstrated in a murine model that
TEVs owe the potential to block the differentiation and function
of dendritic cells and Th1 CD4+ lymphocytes, whereas the
activity of regulatory T cells (Tregs) is increased by TEVs
(18). However, functional conclusions should be drawn with
caution as certain Treg subtypes may also suppress cancer
progression especially in tumors with extended tumor-
induced inflammation (19).

Although not much is known about the pathways by which
TEVs can directly suppress effector cell function, there is some
recent evidence that apoptosis induction, at least in CD4+ T cells,
is mediated by miRNA that is associated with TEVs (20), a mode
of EV signaling that has been well established since
the recognition of various RNA types as a common EV cargo
(21). The immunosuppressive effects of TEVs were partially
reversible by blockage of PD-L1, allowing the interpretations
that either TEVs carry PD-L1 on their surface to interact with
PD-1 receptors on activated CTL, or that TEVs induced the
expression of PD-L1 on dendritic cells. It was recently
demonstrated that tumor cells actively secrete TEVs carrying
PD-L1 that are released in a mechanism that is dependent on the
EV release regulators such as Rab27a and nSMase2 (22, 23). In
mice, the TEV-associated PD-L1 enhanced tumor progression,
suppressed T cell activity, and was resistant to antibody therapy.
Interestingly, when TEV-associated PD-L1 secretion was
blocked, distant secondary tumor growth was inhibited (23).
This effect was synergistic with anti-PD-L1 antibody treatments
December 2020 | Volume 11 | Article 606859
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and led the authors to the conclusion that blocking of PD-L1
secretion associated with TEVs could provide an additive
treatment to current antibody therapies, which would have a
high clinical relevance (24). Interestingly, PD-L1 has been shown
to be present in TEVs from various cancer cell lines in different
concentrations, which could explain the heterogeneous results
obtained from therapeutic PD-L1 antibody treatment (23).
Further studies are warranted to clarify whether other tumor-
derived ligands are also differentially packaged into TEVs
dependent on the cancer cell line.

Another example for a mechanism of CD4+ and CD8+ T cell
suppression is arginase-1 carried by TEVs. Such TEVs were
isolated from patients with ovarian cancer and inhibited effector
cell function after previous uptake into dendritic cells in an
ovarian cancer mouse model (25). The resulting tumor
progression could be reversed by applying arginase inhibitors,
thus underlining the potential for therapeutic manipulation.

Despite suppression of T cell function, it has also been
reported that TEVs carry out tumor antigen-presenting
functions, similar to antigen-presenting cells. When CD8+ CTL
are stimulated in vitro with TEVs, a strong specific anti-tumor
effect of these CTL was reported (26). This finding might open up
a new strategy for potential tumor vaccines. Additionally, this
observation raises the question whether TEVs alone have the
capacity to induce T cell responses independently of the
contribution by dendritic cells. Indeed, another group has also
described a direct antigen-presenting effect of TEVs on CD8+

CTL via transfer of so-called pioneer translation peptides that
originate from pre-mRNAs (27). In contrast, others have shown
that TEVs alone do not exert T cell-activating functions in the
absence of DCs even though they carry MHC cargo (28). This
finding has been attributed to the fact that TEVs, due to their
small size, might not carry enough MHC molecules to activate
the T cell receptor (29). It remains controversial whether TEVs
may act as “mini-DCs” to directly promote T cell activation,
which can be addressed in the future by comparison of multiple
tumor models. The potential role of vesicle size can be addressed
by the use of different TEV isolation protocols.

During the last decade, multiple groups have investigated the
processes by which TEVs interact with T cells to promote the
effects discussed above. Most evidence which is available to date
points toward a receptor-ligand interaction between T cells and
TEVs which controls cellular homeostasis. For instance, it has
been demonstrated that binding of TEVs to target receptors on T
cells alters the amount of Ca2+ influx and comes along with
transcriptional reprogramming of the targeted cell (30, 31). In
this context, the signaling ligands of TEVs may function in the
same way as cells carrying the surface molecule (32). However,
the proposed transfer of RNA to T cells would require
internalization of TEVs and subsequent intracellular cargo
release. Indeed, recent work has suggested the existence of a
relatively small subpopulation of T cells that is able to internalize
TEVs by micropinocytosis, at least in a growth factor-enriched
microenvironment such as the tumor bed (33). Given the fact
that the variety of TEV uptake mechanisms is thought to be
large, other processes, such as receptor-mediated endocytosis,
Frontiers in Immunology | www.frontiersin.org 3
may also play a role, as comprehensively outlined elsewhere
(34, 35).

Antigen-presenting cells, such as DCs, are another important
target of TEVs, as they largely facilitate the connection between
tumor-derived, antigen-containing material, and immune
effector cells. TEVs have been described to either induce or
decrease the intensity by which dendritic cells are activated,
comparable to what is known regarding the TEV effects on T
cells. It was reported by several groups that TEVs severely
interfere with differentiation of DCs from bone marrow
myeloid precursor cells and CD14+ monocytes, resulting in
impaired migratory behavior and apoptosis of the precursor
cells (18, 36). Moreover, when incubated with TEVs, these cells
produce increased amounts of interleukin-6 (IL-6) (36).
Interestingly, IL-6 induction was also shown in TEV-activated
differentiated DCs and one study reported that this is related to
metastasis and tumor invasion in a STAT3-dependent manner
(37). However, this trial did not provide evidence that this can
be attributed to TEVs in vivo, as IL-6 induction by TEVs was
solely demonstrated in vitro. In addition, the effect has
been linked to HSP72 on the TEVs, which conversely has been
shown by another group to induce IL-12 production and thus
increase tumor surveillance (38). It is therefore controversial
whether differentiated DCs are also capable of producing
immunosuppressive cytokines. Recent work, which applied
lymphatic-derived TEVs from melanoma patients, has further
supported the theory that DC maturation is targeted by TEV
contents. Proteomic profiling of vesicles revealed that this effect
might be linked to S100A9, which had been previously described
to suppress DC differentiation (39).

The above described findings support the conclusion that the
differentiation phase of DCs is particularly susceptible to
interference by TEVs. However, when differentiated DCs are
incubated in vitro with TEVs, some groups were able to use these
DCs as a potent DC vaccine against the tumor after expansion in
cell culture, underlining the role of TEVs in antigen presentation
and induction of the adaptive immune response (40). This
provides some evidence that at least a certain subset of TEVs
might be part of a tightly regulated cellular anti-tumor signal, but
also allows the hypothesis that fully differentiated DCs are less
prone to dysregulation by TEVs than their precursors (41). In a
pioneering trial applying human material, it was shown that
differentiated DCs pulsed with autologous TEVs isolated from
patient ascites can be used for inducing tumor-specific CTL, in
some cases even expanding restricted T cell repertoires (9). This
was the foundation for further TEV/DC-based vaccine trials.
Subsequently, antigen transfer from TEVs to DCs has been well
characterized. DCs have the capacity to readily internalize TEVs
and process their associated antigens in an MHC-dependent
manner (28, 42, 43). The uptake of TEVs into DCs has been
shown to be mediated by LFA-1/CD54 and C-type lectin/C-type
lectin receptor interactions and is dependent on the actin
cytoskeleton (40). After internalization, TEV contents are
predominantly recruited to MHCII loading compartments
(41). Interestingly, TEVs with luminally loaded antigens induce
stronger class I MHC responses than TEVs with antigens located
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at the outside of the vesicle membrane (44). Moreover, TEVs
seem to be the most efficient route of presentation for some
tumor antigens. Using MUC1, a well-known tumor antigen,
Rughetti et al. were able to demonstrate that TEV-associated
MUC1 is translocated from endolysosomes to MHCII loading
compartments in DCs. This was however not the case when
soluble MUC1 was used (45). TEVs also have the capacity to
reprogram the uptaking DC by inducing reactive oxygen species
(ROS) and alkalinization in the phagosomal compartment,
which enhances antigen processing (46). Apart from this, TEV
internalization by DCs was also described to result in an increase
in expression of the costimulatory receptors CD40, CD80, and
CD54 on the DCs (40).

However, it is probable that not all types of TEVs interact
with DCs efficiently. For example, a recent study examined
glycocalyxes on TEVs, especially ligands of sialic acid binding
Ig-like lectin (Siglec) receptors, to determine the extent to which
they mediate internalization (47). Indeed, the authors found
evidence that these glycocalyx components directly affect TEV-
DC interaction and can be experimentally modified to alter the
uptake of TEVs by DCs. This finding could explain differences in
DC pulsing efficacy, while also allowing for positive selection or
artificial generation of TEV subtypes that are well-suited
for immunotherapy.

There is also evidence that certain therapeutic interventions
shift the payload of TEVs toward a phenotype that favors anti-
tumor immune responses. For example, double-stranded DNA
(dsDNA) is shed in TEVs (48, 49), but is markedly increased
after radiotherapy (RT). This RT-induced dsDNA can be
delivered to DCs by TEVs, increasing the production of type 1
interferon to promote the survival of tumor-bearing mice (50).
Another study reported that treatment of tumor cells with IFN-g
results in the release of TEVs which have the capacity to induce
IL-12 secretion in cultured DCs, thus promoting tumor
surveillance (38). This is particularly interesting as this effect
was attributed to TEV-associated HSP72, which has been
described by other groups as an inducer of pro-tumoral
phenotypes in DCs (37). Moreover, others have argued that
IFN-g upregulates the expression of TEV-associated PD-L1, thus
inhibiting CTL (22). Further studies to assess how cancer therapy
potentially alters the TEV profile toward immune stimulation or
suppression are clearly needed as such approaches owe a
potential for biomarkers for therapy response.

Taking all these considerations together, the existing evidence
points toward several pivotal effects of TEVs on T cells and
dendritic cells. First, TEVs are capable of interfering with DC
differentiation. Thereby, they inhibit the recognition of tumor-
derived antigens and reduce T cell responses in the tumor
microenvironment. This is further augmented by activation of
regulatory T cells and targeting of CD4+/CD8+ T cells, in which
apoptosis is induced. The potency of TEVs is probably
influenced by three factors. First, TEVs circulate within the
bloodstream and can therefore reach distant sites of metastasis,
where local immunosuppression can contribute to pre-
metastatic niche formation (51). Second, a single tumor cell
can release thousands of extracellular vesicles during its lifespan
Frontiers in Immunology | www.frontiersin.org 4
and upon undergoing apoptosis. Thereby, the magnitude
by which tumor-promoting ligands such as PD-L1 interact
with a recipient immune cell is markedly increased compared
to single tumor cells (23). Thus, TEVs function like an
amplifier of the communication between a tumor and the
immune cells in its microenvironment. Third, due to their
heterogeneity in biophysical properties and cargo, TEVs can
target a large variety of different immune cells, which increases
the efficacy by exploiting redundant systems to promote
aligned effects. Thus, TEVs largely take part in the cellular
reprogramming which is induced by malignant tumors during
disease progression (52).

However, as outlined above, it has been also recognized that
DCs can process TEV-associated antigens to promote T cell
responses. This apparently contradictory finding has prompted
irritation in the field whether TEVs are “friends or foes” (53). We
aim to answer this question by addressing important experimental
differences in the underlying studies in Explanations for the
Reported Heterogeneity of TEV Effects section.
TEV EFFECTS ON THE INNATE
IMMUNITY: MACROPHAGES
AND NEUTROPHILS

Few groups have focused on deciphering the interaction of TEVs
and the innate immune system. Some evidence exists that
macrophages are able to capture TEVs derived from apoptosis
from circulation in a CD169 dependent process (54). Knockout
of CD169 led to an enhanced immune response after
immunization with ovalbumin, suggesting that macrophages
eliminate TEVs, thus promoting tolerance. On the other hand,
the same group demonstrated that in non-tumor bearing mice,
injected TEVs suppress the immune response toward the
ovalbumin antigen independent of macrophages (54). In an in
vitro approach, Bardi et al. found that TEVs polarize
macrophages toward a mixed phenotype of both M1 and M2
macrophages, thus promoting both inflammation and tissue
regeneration (55). This could be explained by previous studies
on macrophages in cancer that described both tumor-
suppressing and tumor-promoting roles (56, 57). However, the
authors interpreted the mixed macrophage polarization induced
by TEVs as evidence of a certain flexibility a tumor would need to
induce a vast subset of tumorigenic processes.

In concert with macrophages, neutrophils perform important
tasks in immune response, based on recent studies defining
interactions of neutrophils with TEVs. Leal and colleagues
reported that TEVs induce the formation of neutrophil
extracellular traps (NET) that promote cancer-related thrombosis
(58). TEVs from tumor stem-like cells, as well differentiated tumor
cells were described to induce a pro-tumoral phenotype in
neutrophils. This occurs, for example, by polarization toward the
N2 subpopulation, which induces production of several factors that
promote angiogenesis, invasion and metastasis (59–62). This effect
might be due to the uptake of vesicular RNA that exerts signaling
functions or the uptake of circulating oncogenic DNA (63). These
December 2020 | Volume 11 | Article 606859
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findings underline the potential of deciphering TEV-based
mechanisms by which neutrophils are altered toward a
phenotype that promotes tumor survival and progression.
A PERSPECTIVE ON TEVS IN
IMMUNOTHERAPY AND
BIOENGINEERING

Three leading hypotheses have made TEVs attractive
for immunotherapeutic research. First, their potential roles
in antigen presentation, possibly owing the potential of
an anti-tumor vaccination-like approach, second, their
immunosuppressive abilities and, third, their internalization in
living cells, making them potential biological vehicles of
artificially engineered therapeutic components. Interestingly, as
outlined above, immunotherapeutic effects have been described
when isolated TEVs are not injected separately into an animal,
but are used to educate dendritic cells which are then
administered (41). This DC vaccine might be more desirable in
terms of therapeutic application compared to the injection of
directly tumor-derived material. This approach has been used by
several groups to treat cancer in animal models and evaluated in
clinical trials that are currently registered using tumor-sensitized
autologous dendritic cells or DC-derived EVs (64, 65). However,
it remains unknown which tumor antigen source would be most
effective for the pulsing of dendritic cells, since it has been
reported that certain isolated tumor proteins would be more
beneficial than whole tumor cell lysates (66). Gu and colleagues
compared tumor lysates and TEVs in a murine model of DC
vaccine, finding that the pre-incubation with TEVs is more
efficient in terms of tumor growth restriction and survival (41).
Furthermore, TEVs could be engineered to have increased MHC
expression on the surface of TEVs, and thus enhance the efficacy
of DC sensitization (67).

As the field is still at the beginning of exploiting the benefits of
EVs for therapeutic purposes, research effort is needed to
understand how therapeutic EVs, including TEVs, influence
the tumor progression in vivo. We have learned from clinical
trials that immunomodulatory EVs derived from mesenchymal
stromal cells (MSCs) are sufficient to treat steroid-refractory
human Graft-versus-Host-Disease (68). However, the experiences
with MSC-EVs also demonstrate that various subsets of EVs
differ in their immunomodulatory capacities (69). Taking into
account the contradictory functional results from studies on
TEVs, translation to the clinics could potentially be aggravated
by the lack of techniques which are suitable to reliably
predict therapeutic efficiency. Therefore, standardized assays,
such as those recently proposed by Kordelas et al. (69), are
needed in the field to determine the immunomodulatory
properties of EV preparations prior to administration.
Likewise, the same group has reported that recipients vary in
MSC-EV responsiveness which complicates EV therapy (69).
Regarding TEVs, this heterogeneity has not been widely
addressed in animal models and requires further study. It was
recently reported that an in vitro assay based on a co-culture of
Frontiers in Immunology | www.frontiersin.org 5
TEVs with splenocytes from an experimental model of murine
encephalomyelitis detects TEV-mediated activity that
distinguishes MSC-EVs from TEVs based on the expression
pattern on targeted splenocytes (70). Further development and
validation of similar approaches will likely lead to a platform that
has the potential for pre-clinical testing and enhance patient
safety, which would be a major step toward the first in-human
trials based on TEVs.

Engineered EVs are often investigated with a focus on targeting
specific tissues or tumors, respectively. Biodistribution analyses
have revealed that EVs are rapidly recruited to tumors after
intravenous injection, possibly due to the increased
vascularization (71). However, the transport of EVs within the
bloodstream to tumor sites would still be unspecific. As integrins
have been demonstrated to play a pivotal role in organotropic
delivery of EVs (72), this observation could support the loading
of specific integrins onto EVs to target the tumor bed. Moreover,
exosome-mimetic nanoplatforms (EMN) are potentially useful
for the generation of vesicles from cultured tumor cells that are
customized to contain specific integrins with a therapeutic
payload (73). Such tumor cell-derived EMN share relevant
biological properties with “natural” TEVs, but are easier to
obtain in therapeutically applicable concentrations. Moreover,
the patient safety concerns regarding tumor cell-derived EMN
could be addressed by using non-tumor cell lines that retain
targeting specificity in vivo. For example, Jang et al. reported that
monocytes and macrophages can be used for EMN production
and that these EMN can be recruited to tumor sites (74), a
promising approach avoiding the use of tumor cells.
EXPLANATIONS FOR THE REPORTED
HETEROGENEITY OF TEV EFFECTS

One of the most enigmatic questions in the study of TEVs
remains why TEVs have immunosuppressive as well as
immune-stimulatory roles (Figures 1, 2, Tables 1, 2). As
outlined above, in vivo, TEVs may suppress functionality of
dendritic cells and CD4+ T cells, and increase activation of Tregs
and myeloid-derived suppressor cells (81). However, one could
hypothesize that the antigen-presenting component of some
TEVs might predominate under certain in vitro conditions
when the suppressive effect by impaired antigen-presenting
cells and supporter cells is lacking. Still, this would not explain
why in vivo DC vaccines are quite effective when TEVs are used
for antigen delivery (9, 41). As a consequence, neither isolated
TEVs + effector cells alone nor isolated TEV-pulsed DCs shift the
phenotype toward immunosuppression. Of note, the major
difference between studies using pulsed DCs vs. direct injection
of TEVs in a living animal, is that there is an in vitro incubation
step of TEVs directly with differentiated DCs, suggesting the
following two hypotheses:

a. In living organisms, TEVs might strongly influence the
differentiation phases of immune cells. This effect has been
well described for DCs (36). Rather than interfering with fully
December 2020 | Volume 11 | Article 606859
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differentiated immune cells, TEVs might potently suppress
the differentiation of precursor cells.

b. In immune-competent animal models as well as in human
cancer, TEVs may interact directly with Tregs (activation) (18,
30), CD4+ T cells (apoptosis induction) (20), and myeloid-
derived suppressor cells (activation) (81). The direct interaction
is underlined by the finding that TEV-pulsed dendritic cells do
not induce these processes when injected into an animal.

Taking (a) and (b) together, one can conclude that at least
some subtypes of TEVs have the capacity to present tumor
antigens to CD8+ T cells and DCs. However, in a living
organism, interactions are much more complex. Direct effects
of TEVs on T-suppressor cells have to be considered where TEVs
themselves are involved in a system of linking regulatory
immune pathways. Moreover, naïve immune cells might react
substantially differently to TEVs than exhausted T cells or DCs in
the tumor microenvironment. Therefore, one explanation for the
Frontiers in Immunology | www.frontiersin.org 6
efficacy of DC vaccines could be that the injected DCs are not
excessively reprogrammed toward a pro-tumoral phenotype,
unlike the endogenous DCs. Once more, this implicates
distinct functions of TEVs under various conditions.

Moreover, the role of TEVs has to be integrated into the
complex network of the tumor secretome. This includes soluble
factors that are not released in vesicles, but might – due to their
biochemical properties – adhere to the surface of vesicles or
might as well remain completely unassociated with TEVs (87).
Therefore, it might be even harder than expected to match the
biological origin of TEVs with their function, and to establish the
effect of TEVs that could be over- or underestimated. For
example, Madera and colleagues demonstrated that the
macrophage-related effects of breast cancer cell conditioned
media are partly, but not exclusively, due to TEVs (79). These
observations underscore the importance of detailed attention to
controls in functional studies, such as the methodology for the
collection of conditioned media depleted of TEVs.
FIGURE 1 | Overview of selected immune-modulatory tumor-derived extracellular vesicle (TEV) cargo. Both immunosuppressive and immune-stimulating roles have
been proposed for TEVs. These effects can be mediated by receptors bound to the surface of TEVs, such as PD-L1, or by nucleic acid or protein contents (e.g.,
arginin-1, ARG1) encapsulated in the interior of the vesicles (21, 22, 25). However, if uptake occurs, interaction of vesicular and cellular receptors is probably needed
(75). Tetraspanins (Tspans) such as CD9, CD63, and CD81 are frequently used for characterization of EVs and are likely involved in fusion of TEVs and recipient cells,
similar to what has been described for some viruses (76, 77). While also promoting TEV uptake, integrins and other adhesion molecules are responsible for tissue-
specific binding of TEVs (78). Thus, immune responses can be modified by TEVs not only globally, but also influence local local responses. This may promote pre-
metastatic niche formation (51). Recently, a role in immune cell targeting has been also revealed for N glycans (47). (Figure created using BioRender.com).
December 2020 | Volume 11 | Article 606859

https://BioRender.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Droste et al. Tumor EVs and Immunity
Apart from these considerations, another explanation could
be the heterogeneity of EVs themselves. However, the question of
which subtype of TEVs is most likely involved in the various
processes of immunomodulation has not been widely assessed, as
there are hardly any well-established markers that could easily
distinguish exosomes from microvesicles or apoptotic bodies,
respectively. Nevertheless, some groups have targeted this
question, including further characterization of the immune-
modulatory TEVs. Muhsin-Sharafaldine and colleagues
observed that the antigen-presenting role of TEVs is mostly
mediated by apoptotic vesicles, as tumor antigens were
only detected in the “apoptotic vesicle-enriched fraction”
(86). Subsequently, when mice were first immunized by B16-
F1 cell line-derived EVs and then subject to B16 melanoma
implantation, the group of animals which had been “vaccinated”
with apoptotic vesicles were protected for longer from the
tumor than animals that were administered exosomes and
microvesicles. However, apoptotic bodies were identified as
vesicles larger than 200 nm, although it is also accepted that
Frontiers in Immunology | www.frontiersin.org 7
some apoptotic bodies are actually as small as 100 nm (88). Of
note, exosomes were – among other markers – characterized by
the presence of histones. It is currently extremely controversial
whether histone proteins are presents in EVs at all, and the
characterization of exosomes by histone payload is therefore not
recommended at the moment (7). Regardless, the hypothesis that
apoptotic-derived vesicles carry at least a larger amount of tumor
antigens than exosomes is consistent with the understanding of
exosome biogenesis as a tightly controlled process versus
apoptotic vesicle formation as a part of “cell waste” disposal.
Moreover, the immunogenicity of apoptotic tumor cells has been
well described (89, 90). Indeed, apoptotic vesicles could induce
comparably strong anti-tumor immune responses, as the variety
of genetic material and tumor-derived protein content is
probably the largest among the vesicle types.

Recently, new light was shed on the functional differences
between the several types of TEVs. In a study published by
Temoche-Diaz et al., two subtypes of small TEVs from a breast
cancer cell line were successfully separated by high-resolution
FIGURE 2 | Experimental design influences the heterogeneity of reported tumor-derived extracellular vesicle (TEV) effects. TEVs are regularly harvested from the
supernatants of tumor cell lines (1). They can be either used for in vitro pulsing of immune cells (e.g., differentiated dendritic cells, 2a) or for direct injection (2b). In
pulsing experiments, TEV-associated antigens are presented to dendritic cells, which are then injected into an animal and induce strong T cell responses (3a) (41).
This promotes tumor growth restriction and increases survival of tumor-bearing mice (4a). On the other hand, when TEVs are injected separately, they interact with a
plenitude of other immune cells, such as regulatory T cells, CD34+ dendritic cell precursors and myeloid derived suppressor cells (3b), which are commonly activated
by TEVs to enable immune evasion (18, 36). This, in turn, reduces the tumor-specific T cell response and enhances tumor progression (4b). (Figure created using
BioRender.com).
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density gradient fractionation and then further characterized
(91). These authors demonstrated that these two subtypes of
small TEVs exploit distinct mechanisms of RNA loading and
recruit miRNA in a selective way. As gene ontology analysis
revealed different subcellular origins of these vesicles,
corresponding to endosomes and the plasma membrane, it can
be hypothesized that the rough EV pellet typically obtained by
ultracentrifugation contains at least two biologically different
populations of TEVs with possibly distinct functions. Given the
fact that these subtypes were shown to differ in terms of their
density, even minimal differences in ultracentrifugation
parameters such as k-factor, speed, time, and rotor (swing-out
vs. fixed angle) or tube type used might predominantly enrich one
of these subtypes. As a remarkable number of publications do not
contain any characterization of the proposed EVs or only provide
evidence that significantly falls below the experimental guidelines
Frontiers in Immunology | www.frontiersin.org 8
of the ISEV (8), findings should also be interpreted with a view to
the utilized TEV isolation and characterization techniques.

Finally, it is notable that tumor cell lines differ substantially in
terms of their invasiveness, apoptosis rate and metastatic
potential. All of these factors are probably reflected in the
formation of TEVs and therefore contribute to the heterogeneity
of reported TEV effects, as well in vitro as in vivo. Of note, it was
demonstrated that cancer cell lines differ in the expression of
Rab27a, one of the known regulators of EV release (80). Another
example is Rab7, which regulates MVB transport toward
the plasma membrane and is differentially expressed in ovarian/
peritoneal serous carcinoma and malignant peritoneal
mesothelioma (92). Differences in the abundance of SNARE
proteins, which mediate the fusion of MVBs and the
plasma membrane, have been described for various types
of hematopoietic and lymphoid neoplasia (93). Apart from
TABLE 1 | Tumor-derived extracellular vesicle (TEV)-associated effects on immune cells promoting immune evasion and tumor progression.

Cancer type Material/cells Identified cargo Model Proposed mode of action Reference

Mammary
carcinoma

4T1 PD-L1 In vitro; in vivo Inhibition of DC/Th1 function and differentiation, enhancement of tolerance
(Treg induction), partly due to PD-L1

(18)

MMP9 In vitro Elicitation of pro-inflammatory phenotypes in macrophages ➔ tumor
progression

(79)

In vitro Rab27a-dependent MMP9 secretion independently of TEVs, but may
associate with TEV surface

(80)

TSA – In vitro; in vivo Inhibition of bone marrow-derived precursor cell differentiation; induction
of IL-6

(36)

MDA-MB-231 – In vitro Inhibition of monocyte differentiation into DC (36)
Melanoma B16-F10 HSP72/105 In vitro; in vivo HSP72/105 induces IL-6 secretion in DCs, dependent on TLR2/4 and

STAT3
(37)

miRNA In vitro; in vivo miRNA induces apoptosis of CD4+
T cells

(20)

+ patient
material

PD-L1 In vitro; in vivo PD-1-dependent inhibition of CTL proliferation (22)

Human
melanoma

18 immuno-
suppressive proteins

In vitro Direct delivery of inhibitory proteins (39)

Prostate
carcinoma

TRAMP-C2 PD-L1 In vitro; in vivo Promotion of tumor growth/progression; suppression of T cell activity (23)

Renal cell
carcinoma

RenCa PD-L1 In vitro; in vivo DC pulsing with TEV enables potent DC vaccine (41)

HSP70 In vitro Induction of myeloid-derived suppressor cells, dependent on TLR2/STAT3 (81)
Lymphoma EL4 – In vitro; in vivo Macrophages eliminate antigen-carrying TEVs to promote tumor tolerance (54)
Ovarian cancer OvCa + patient

material
ARG-1 In vitro; in vivo Delivery of metabolic checkpoint modulators that decrease proliferation of

T cells
(25)

Patient material FasL In vitro T cell apoptosis and loss of CD3 zeta chain expression (82)
Head and neck
cancer

PCI-13 + patient
material

FasL In vitro Apoptosis induction in activated T cells (83)

Acute myeloid
leukemia

Patient material TGF-b In vitro Suppression of natural killer cell function (84)

Colon
carcinoma

CT26 HSP72 In vitro; in vivo STAT3-mediated activation of myeloid-derived suppressor cells (85)
December 2020 | Volume 11 | Art
TABLE 2 | Tumor-derived extracellular vesicle (TEV)-associated effects on immune cells promoting tumor surveillance and immune response.

Cancer type Material/cells Identified cargo Model Proposed mode of action Reference

Mammary carcinoma 4T1 HSP72 In vitro HSP72 induces IL-12 release by DCs (38)
TSA dsDNA In vitro; in vivo Delivery of dsDNA to DCs after radiotherapy (50)

Melanoma B16-F10 – In vitro Macrophage polarization toward mixed, pro-tumoral phenotypes (55)
B16-F1 – In vivo Protection against tumor growth after TEV injection (86)
Human melanoma Matr1 antigen In vitro Induction of DCs and antigen-specific CTL (9)

Renal cell carcinoma RCC – In vitro; in vivo Stimulation of CTL through FasL/Fas signaling (26)
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release-associated proteins and enzymes, molecules that exert
direct signaling functions are differentially expressed in various
tumors. For example, PD-L1 is a prominent example that has been
linked to TEV-induced immunosuppression and is a promising
clinical outcomes marker following immunotherapy (23, 94).

Taking all these considerations together, several lessons have
to be learned from functional animal experiments studying the
effect of TEVs on the immune response. Obviously, findings
from in vivo and in vitro experiments differ notably (Figure 2).
Although comparative studies are largely lacking, preliminary
evidence suggests that experimental differences in in vitro vs. in
vivo trials account for a proportion of the reported heterogeneity
of TEV effects (95). Cell culture experiments are especially useful
if interactions between well-defined components are studied.
These components should be arbitrarily manipulatable by the
researcher. However, this is not the case for functional TEV-
immunity experiments, as two complex systems – the vesicle
population and the immune system – are studied, which are
necessarily oversimplified in this experimental setting. Therefore,
cell culture trials of immune cell interactions with TEVs resemble
a burning lens – they apply a strong focus on specific details but
leave the rest blurred out. This is underlined by two major
observations that have been outlined above:

First, mouse models have shown that many different immune
cells and precursors are influenced by TEVs. The immune cells,
in turn, influence each other’s functionality but also the tumor
microenvironment. It is therefore conceivable that the TEV
composition changes after targeting of the tumor by immune
cells. Moreover, tumor progression leads to a substantial
reprogramming of cellular functions, thus, in later tumor
stages, e.g., the antigen-presenting role of TEVs could be heavily
impaired. Certain TEV types themselves could contribute to this
process (96). These complex biological crosslinks are impossible
to mimic in a cell culture experiment which cannot simulate
reciprocal interactions.

Second, any experimental TEV population is highly
heterogeneous. Researchers are confronted with two sides of
the same coin: on one hand, technical purification of TEVs is
necessary for pulsing immune cells in vitro. On the other hand,
extreme purification can also mean a significant loss of EV
subpopulations. Moreover, the purity of EV preparations is an
issue that has led to misinterpretations in terms of cargo (7).
Thus, an impact on experimental outcomes cannot be excluded.

From a technical perspective, animal models owe the unique
potential to address currently understudied questions more
rigorously. For instance, in vivo TEV tracking could provide
insight into details on the kinetics of TEV-immune cell
interactions. Lipid dyes, including, e.g., CFSE, PKH26/67 and
DiR, have been applied in functional mouse models of tumor
progression (97), although there are remaining concerns
regarding their lack of staining specificity. A main issue is the
labelling of non-EV-lipid particles, such as lipoproteins, which
surpass EVs in terms of abundancy. Thus, results may not be
exclusively attributed to EVs. A comprehensive review of
fluorescent dyes for EV staining has been recently published
elsewhere (98). The problem of TEV pre-staining has been
Frontiers in Immunology | www.frontiersin.org 9
addressed by multiple groups, who applied transfection of
tumor cells with a fluorescent reporter such as green fluorescent
protein (GFP) under the regulation of known EV associated
proteins like the tetraspanins CD9, CD63, and CD81 (99, 100).
Combined with recent advances in high resolution imaging and
nanoscale flow cytometry, TEV release and trafficking can be
further addressed (101, 102). Another important aspect is the
mode of administration of TEVs in laboratory animals. If non-
tumor bearing animals are used, immunological effects might
differ notably from the effects observed in tumor-bearing animals,
in which TEVs are constitutively released. Additionally, the
optimal amount of TEVs injected into animals as well as the
administration route will likely have an impact on functional
results (103). To overcome the problems of TEV pre-isolation,
staining, and administration, the above described expression of
fluorescent or bioluminescent TEV fusion protein reporters could
be further investigated in murine tumors. Bridging techniques,
such as a recently reported spheroid co-culture model of PBMCs
and tumor cells stably releasing GFP-tagged TEVs (33), offer a
valuable chance to assess functional hypotheses before planning
such animal trials.
CONCLUDING REMARKS

During the past decade, our understanding of tumor-derived
EVs has grown tremendously. However, translation into clinical
research has been delayed by contradictory findings and the
technical complexity of EV studies. As substantial progress has
been recently made especially in the field of nanotechnology,
further advances in nanoscale bioimaging might ultimately
enable rigorous animal trials, which could elucidate the
enigmatic dichotomy of TEV functions in cancer immunity.
This, in turn, will lead to a more detailed understanding of the
mechanisms by which TEVs alter immune responses toward a
pro-tumoral phenotype, owing the potential for therapeutic
manipulation. We have argued that animal models can much
better account for the heterogeneity of both the TEV populations
and immune cell functions. They also accurately display
physiological phenomena such as immune cell exhaustion,
tumor apoptosis and invasion. Moreover, they owe the
potential to study alterations of the TEV profile in different
phases of tumor development and progression. Given
these premises, future research efforts should focus on
pathophysiological models in the tumor-bearing living animal
rather than characterization of TEV-single-cell-interactions.
Multiparametric readouts, using techniques that combine high-
resolution imaging and biochemical characterization, e.g., via
nanoscale flow cytometry, are valuable to cover a broad spectrum
of immune cell interactions.

Moreover, the antigen-carrying functions of TEVs and their
role in dendritic cell vaccines will likely cause further research
enthusiasm in clinical oncology. However, to fully exploit the
undoubted potential of TEVs as immunotherapeutic agents,
standardized assays will be necessary to evaluate the biological
activity of TEV preparations. Ultimately, ongoing efforts might
December 2020 | Volume 11 | Article 606859

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Droste et al. Tumor EVs and Immunity
open the door for TEVs as a novel component of personalized
tumor therapy, either as a novel treatment or a therapeutic target.
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