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Endogenous oxidized phospholipids are produced during tissue stress and are
responsible for sustaining inflammatory responses in immune as well as non-immune
cells. Their local and systemic production and accumulation is associated with the etiology
and progression of several inflammatory diseases, but the molecular mechanisms that
underlie the biological activities of these oxidized phospholipids remain elusive. Increasing
evidence highlights the ability of these stress mediators to modulate cellular metabolism
and pro-inflammatory signaling in phagocytes, such as macrophages and dendritic cells,
and to alter the activation and polarization of these cells. Because these immune cells
serve a key role in maintaining tissue homeostasis and organ function, understanding how
endogenous oxidized lipids reshape phagocyte biology and function is vital for designing
clinical tools and interventions for preventing, slowing down, or resolving chronic
inflammatory disorders that are driven by phagocyte dysfunction. Here, we discuss the
metabolic and signaling processes elicited by endogenous oxidized lipids and outline new
hypotheses and models to elucidate the impact of these lipids on phagocytes
and inflammation.

Keywords: oxidized phospholipids, oxPAPC, inflammation, immunometabolism, inflammasome, atherosclerosis,
lung, COVID-19
INTRODUCTION

Immune cells are strategically distributed in the body and react rapidly to internal and external cues,
thereby controlling tissue homeostasis. In particular, phagocytes such as macrophages play a key
role not only against pathogen invasions, but also in organ function. Macrophages regulate
remodeling and maturation of synapses during brain development (1), as well as bone formation
(2), electrical conduction in cardiomyocytes (3), gastrointestinal motility (4) and insulin sensitivity
(5), among others. Thus, perturbations in the biology of these cells, or in the quality of their
responses, have a profound impact on the etiology and development of several pathologies.
Classically, phagocytes respond to stress stimuli, which trigger inflammatory programs
and eliminate the source of stress, and/or support adaptation mechanisms. The persistence and
accumulation of stress signals may lead to the exacerbation and persistence of inflammation, and
thus to tissue dysfunction. Endogenous oxidized phospholipids have been shown to function as
stress signals that may profoundly impact the activity of innate immune phagocytes.
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The arachidonic acid-containing phospholipid 1-palmitoyl-2-
arachidonoyl-sn-glycero-3-phosphocholine (PAPC) is a
constituent of the plasma membrane of every cell type (6)),
lung surfactant (7–9), and circulating lipoproteins (10). PAPC
reacts with oxygen on the sn-2 chain to create a mixture of
oxidized phospholipids, collectedly referred to as “oxPAPC”.
Although exogenous acute administration of oxPAPC before
the encounter with an inflammatory moiety reduces the
subsequent immune response both in vitro and in vivo (11–
13), endogenous production and accumulation of oxPAPC
during pathophysiological conditions are strictly associated
with the onset of a detrimental chronic inflammation. In fact,
oxPAPC accumulates in apoptotic cells (14–16), microparticles
released by activated or dying cells (17, 18), oxidized low density
lipoproteins (oxLDLs) (19) and oxidized pulmonary surfactant
(20). oxPAPC also actively modulates cellular signaling
processes, and contributes to the initiation and amplification of
inflammation in atherosclerosis (21), lung injury and viral
infections (20), non-alcoholic steatohepatitis (NASH) (22),
colitis (23), leprosy (24), UV-irradiated skin (25), myocardial
and hepatic ischemia (17, 18, 26), multiple sclerosis (27, 28) and
inflammatory pain (29, 30).

In this review, after an overview of the capacity of lipids to
modify several signaling processes, we focus on the role of
endogenous non-enzymatically oxidized phospholipids (oxPLs)
such as oxPAPC, in sustaining and enhancing inflammatory
disorders. In particular, we discuss how oxPLs modulate pro-
inflammatory responses in immune cells, with special attention
on the crosstalk between metabolic and signaling pathways in
phagocytes; we discuss how oxPAPC affects the pathophysiology
of inflammatory diseases such as atherosclerosis and
lung infections.
LIPIDS MODULATE CELLULAR
SIGNALING PROCESSES

Lipids not only serve a structural role in membranes and
function as a source of energy, but they are able to modulate
cellular signaling processes. This last task is performed via
several mechanisms, which are not mutually exclusive.

Alteration of the relative abundance of lipid species that
constitute the cellular “lipidome” (31) is one of such
mechanisms. Changes in the lipid composition of the plasma
membrane can modify its mechanical proprieties, such as
curvature and fluidity, and can thereby affect several
membrane-dependent events, including phagocytosis (32), ion
channel gating (33), and signal transduction (34). Local
distribution of lipids in intracellular organelles also coordinates
their morphology and functionality, as has been described for
mitochondria in which the ratio of the phospholipids
phosphatidic acid (PA) and cardiolipin (CL) directs fusion or
fission dynamics (35, 36). Remodeling of the cellular lipidome
may be driven by perturbations of the extracellular milieu, as
occurs during atherosclerosis progression, wherein diet-derived
lipid deposition affects the lipid content of phagocytes and thus
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the features of their cellular processes (37). Alternatively, the
remodeling can be actively governed by the cell that, by
activating a specific set of enzymes, reshapes its lipid pool to
trigger an optimal response toward a stress factor. This is the case
when immune cells (such as macrophages) modify their
lipidome configurations in relation to the nature of stimulus
they receive (38). In this manner, the activation of different
classes of Toll-like receptor (TLR) induces distinct lipidomes in
macrophages that are necessary to promote an appropriate
inflammatory response (38–41).

A second mechanism utilized by lipids to modify cellular
signaling is the co- and post-translational protein modification,
referred to as “lipidation”. Several lipids are covalently attached
to proteins and change the folding of the proteins, their half-life,
association to membranes and other proteins, sub-cellular
localization, and binding affinity to their co-factors and
substrates (42). Palmitoylation (the addition of palmitate to a
cysteine residue (43)), is one of the best characterized lipid
modifications and controls the stability, trafficking and
functionality of the target protein. This has been shown for the
nucleotide oligomerization domain (NOD)–like receptors 1 and
2 (NOD1/2), which are responsible for detecting bacterial
products in immune cells. NOD1/2 require palmitoylation in
order to be recruited to bacteria-containing endosomes and to
function therein (44). Lipids are also an important source of
acetyl-coenzyme A (acetyl-CoA) (45), which is a central
metabolite that drives protein acetylation and thereby controls
not only gene expression through histone modification, but also
other key cellular processes such as DNA repair of double-strand
breaks, cell cycle, cellular signaling, protein conformation,
autophagy and metabolism (46). For example, acetylation
supports the assembly and activation of the NACHT, LRR and
PYD domain-containing protein 3 (NLRP3) inflammasome (47),
an innate immune sensor that responds to several exogenous and
endogenous stressors (48).

Lastly, lipids can be chemically and structurally modified to
impact the signaling process. In this case, specific cellular
enzymes catalyze definite modifications to a target lipid.
Eicosanoids and steroid hormones are lipids that are produced
via a spatially and temporally controlled multi-step mechanism,
in which arachidonic acid (or other related polyunsaturated fatty
acids (PUFAs)) and cholesterol, respectively, are converted into
their final biological active forms by a succession of enzymatic
reactions (49, 50). G protein-coupled receptors for eicosanoids,
and nuclear receptors for steroid hormones then coordinate
regulatory responses that control cellular as well as systemic
metabolism, development, and tissue homeostasis (49, 50).
Production of new lipidic molecules can also occur in a non-
enzymatic manner: lipids can spontaneously react with free
radical species present in both extracellular and intracellular
compartments and give rise to a wide variety of biologically
active products. PUFAs can undergo uncontrolled nitration (51),
sulfation (52) and oxidation (19) during tissue stress conditions.
For example, prostaglandins are eicosanoids produced by the
strict guide of cyclooxygenase (COX) enzymes, on the contrary,
isoprostanes (53) are prostaglandin-like compounds formed by
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non-enzymatic peroxidation of the same COX’s substrates
during oxidative damage. OxPAPC is another important
example of a class of chemically modified lipid moieties that
are implicated in the development of inflammatory disorders.
OXIDIZED PHOSPHOLIPIDS BOOST AND
SUSTAIN INFLAMMATION IN
PHAGOCYTES

oxPLs per se are weak inductors of pro-inflammatory cytokine
production by phagocytes, and they only slightly upregulate
the expression of interleukin-6 (IL-6) and IL-1b (20, 54, 55).
Nevertheless, oxPLs potently boost and extend the inflammatory
capacity of dendritic cells (DCs) and macrophages (56–60). In
particular, prolonged exposure of phagocytes to oxPLs strongly
potentiates the production of pro-inflammatory cytokines
thanks to the ability of oxPLs to reprogram the mitochondrial
metabolism of the phagocytes (60) and to activate the release of
IL-1b, while maintaining cell viability (56).

Metabolic Activities of Oxidized
Phospholipids in Phagocytes
Depending on the type of signal that is detected, phagocytes
reprogram their cellular metabolism differently, in order to
support a proper response (61). The Gram-negative bacteria
lipopolysaccharide (LPS), one of the best characterized
exogenous stressors, induces global rewiring of the major
metabolic pathways that dictate microbial killing processes,
production of pro-inflammatory mediators and the control of
cell viability (62–66). LPS-activated phagocytes increase
glycolysis and the pentose phosphate pathway (PPP), which
in turn provide ATP and metabolic intermediates that
support protein translation and the biosynthesis of several
macromolecules, such as the fatty acids, necessary for the
expansion of secretory compartments (63, 65, 67–70). In the
LPS-activated phagocytes, mitochondrial activity undergoes
several alterations: i) the tricarboxylic acid (TCA) cycle is
“broken” in two places, due to a reduction in isocitrate
dehydrogenase (IDH) expression and a decline in succinate
dehydrogenase (SDH) functionality; and ii) the electron
transport chain (ETC) is suppressed, mainly due to the
production of nitric oxide (NO) (63, 64, 66, 71). These changes
shorten the cell’s lifespan (66) and allows the accumulation of
key metabolites such as citrate, succinate and itaconate, which
control the activity of transcription factors and effector molecules
such as hypoxia-inducible factor 1-alpha (HIF-1a) (63) and the
NLRP3 inflammasome (72).

Recent evidence suggests that oxPLs can modify the
metabolism of phagocytes, as reported for adipose tissue
macrophages (ATM) in obese animals (73) and for circulating
and tissue-resident monocytes/macrophages in atherosclerotic
mice (60). Prolonged exposure of LPS-activated macrophages to
oxPAPC (referred to hereafter as LPS+oxPAPC) profoundly
interferes with the behavior of the mitochondria, and induces a
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novel metabolic state, termed hypermetabolism, that enhances
the production of pro-inflammatory cytokines (60) (Figure 1).
Mitochondrial activity is potentiated in cells treated with
LPS+oxPAPC, sustaining the TCA cycle and respiration. The
expression of IDH is selectively increased, and NO production is
severely impaired, thus preventing the loss and dysfunction of
ETC complexes. In this manner, the intact TCA cycle leads to the
export of citrate into the cytosol, where it is converted into
acetyl-coA and oxaloacetate (OAA) by the enzyme ATP-citrate
lyase (ACLY). In turn, OAA, probably through direct inhibition
of prolyl hydroxylases (PDH) (63, 74), stimulates stabilization of
HIF-1a, which potently increases the transcription and
production of IL-1b. This entire process is fed by glutamine
catabolism rather than by glycolysis, even though LPS+oxPAPC
cells continue to conserve a high rate of glucose utilization, as
occurs in response to LPS only. Notably, glutaminolysis also
plays a key role in epigenetic reprogramming, which controls
long-term macrophage responses such as their inflammatory
polarization and trained immunity (75–77). This mechanism is
further reinforced by acetyl-coA, formed by ACLY, which
directly supports histone modifications and thereby facilitates
the transcription of target genes (78–80). In addition, oxPAPC
treatment is sufficient to potently increase the mitochondrial
potential (Dym) of phagocytes (60), which is the gradient of the
electric potential on the inner mitochondrial membrane generated
by ETC proton pumps (81). Dym has been implicated in several
cellular processes in addition to ATP synthesis: these include
production of reactive oxygen species (ROS), cell proliferation,
functionality of sirtuin deacetylases, cell renewal, and transcription
factor activity (82–85). Thus, the conserved and increased
mitochondrial fitness induced by oxPLs, possibly assisted also by
production of a redox-balancing response (86), may prolong the
lifespan of macrophages, as has been described in atheromas (87)
and lung injuries (88) - and sustain their inflammatory signature.
We propose that all of the metabolic effects induced by oxPLs
work in concert, favoring the persistence of long-lived, detrimental,
pro-inflammatory phagocytes and collectively contributing to the
development of chronic inflammatory diseases.

Inflammasome Activation by Oxidized
Phospholipids
Phagocytes are equipped with receptors that allow them to
respond to stress stimuli. In particular, inflammasomes are
multiprotein platforms that comprise a sensor protein (i.e.
NLRP3), inflammatory caspases (i.e. caspase-1) and an adapter
protein (i.e. apoptosis-associated speck-like protein containing a
caspase recruitment domain (CARD) – ASC); together,
inflammasomes integrate various non-self and self-signals and
induce the secretion of active IL-1b and IL-18 (89). Activation of
inflammasomes involves two steps: i) a priming step, generally
induced by exogenous molecules via TLRs (e.g., LPS and TLR4),
that is necessary for the expression of pro-IL-1b (an inactive
form of IL-1b) and inflammasome components; and ii) an
activation step, whereby a repertoire of intracellular stimuli
lead to inflammasome assembly and enzymatic activation of
dedicated caspases, resulting in the processing and release of IL-
March 2021 | Volume 12 | Article 626842
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1b through a lytic cell death program (pyroptosis). Typically,
perturbations in homeostasis of the cytosolic compartment, such
as organelle dysfunction (90–93), ROS production (94, 95), ion
flux (96–98), and metabolic alterations (99), prompt “canonical”
activation of the NLRP3 inflammasome, while direct recognition
of intracellular LPS by caspase-11/4/5 triggers “noncanonical”
activation of the inflammasome (100–102). In this latter
pathway, LPS elicits oligomerization of caspase-11/4/5, and its
activation by auto-proteolytic cleavage (103); this then induces
plasma membrane pore formation via gasdermin D (GSDMD)
(104, 105) and subsequent potassium efflux (106) that, in turn,
causes NLRP3 inflammasome activation, pyroptosis and IL-
1b secretion.

Extracellular oxPLs can reach the cytosol via plasma
membrane receptors such as scavenger receptors (107). As
with LPS (108), oxPAPC is also a cargo for CD14 (57), which
induces internalization of the oxPAPC, and triggers an endocytic
process that is mediated by phospholipase C g (PLCg) and spleen
tyrosine kinase (SYK). How oxPAPC leaves the endosome and
enters the cytosol is a mystery. We suggest that other oxPL-
specific receptors, such as Transmembrane Protein 30A
(TMEM30A) (109) mediate this relocation, but we cannot rule
out the possibility that the oxPAPC itself alters the composition
of the endosomal membrane and provokes its own leakage from
intracellular organelles into cytosol (110). Additionally, oxPLs
can be produced intracellularly in response to cellular stress. For
Frontiers in Endocrinology | www.frontiersin.org 4
example, a recent report showed in a model of age-related
macular degeneration that retinal pigmented epithelium cells
produce oxPAPC, which supports their pro-inflammatory
activity and their role in the development of pathology (111).

Once in the cytosol, oxPAPC binds caspase-11/4/5 and
triggers an atypical inflammasome activation, culminating in
active release of IL-1b, in the absence of pyroptosis (56) (Figure
1). This process, called “hyperactivation”, is critical not only for
establishing local long-term inflammation, but also for
promoting a strong adaptive immune response (56, 112). The
persistence of IL-1b-producing DCs in lymph nodes or in the
aortic wall (113), can boost T cell activation, proliferation, and
Th1/Th17 polarization, thereby further sustaining local and
systemic chronic inflammation.

Inflammasome activation governed by hyperactivation differs
from non-canonical inflammasome activation driven by LPS. In
fact, LPS and oxPAPC are believed to interact with different
domains of caspase-11/4/5, and differentially modulate the
downstream effects of this enzyme (56). The highly
hydrophobic lipid A moiety of LPS binds the CARD domain
of caspase-11/4/5, where basic residues are required for
interaction with the phosphate head groups of lipid A (102).
Upon engaging LPS, caspase-11/4/5 undergoes oligomerization
and activation. However, the exact nature of interactions
between oxPAPC and caspase-11/4/5 are still debated (56,
114). The first study on oxPAPC-caspase-11/4/5 of Zanoni
FIGURE 1 | oxPAPC boosts inflammatory responses in LPS-activated macrophages. Upon LPS encounter and/or during atherosclerosis development, oxPAPC
induces a metabolic remodeling state in phagocytes, termed hypermetabolism, that is characterized by 1) boosting of mitochondrial activity via iNOS inhibition and
ETC protection; 2) sustaining the TCA cycle with glutamine and upregulation of IDH; and 3) upregulating ACLY. These events result in the conversion of citrate to
OAA, which in turn stabilizes HIF-1a and increases production of pro-IL-1b. OxPAPC is also transported into the cytosol via the endocytic module CD14-SYK-PLCg,
where it interacts with caspse-11/4 and induces oligomerization of this enzyme. oxPAPC may also interact with caspase-1, to form caspase-11/4/5-1 hetero-
complexes, or to activate the NLRP3 inflammasome. These processes, termed hyperactivation, lead to IL-1b cleavage and release, but not to pyroptosis.
March 2021 | Volume 12 | Article 626842
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et al. using surface plasmon resonance and pull-down
approaches, reported that oxPAPC binds the catalytic domain
of caspase-11/4/5, and not its CARD domain (56), which enables
oxPAPC to promote caspase-11/4/5 oligomerization but does
not trigger its enzymatic activity (56). Later on, Chu et al.
confirmed the interaction between oxPAPC and caspase-11/4/5,
but they found that oxPAPC competes with LPS for the CARD
domain of caspase-11/4/5, thus preventing downstream LPS-
initiated signaling (114). Although more experiments will be
needed to unveil the complex nature of the interactions between
oxPAPC, LPS and caspases, a possible explanation for the
discrepancies described in the previous studies is that
individual oxPAPC constituents bind caspase-11/4/5 in diverse
positions, with different affinity and via more than one
mechanism. In particular, oxPAPC’s interaction with proteins
occurs via at least two mechanisms. Electrophilic oxPAPC
components such as 1-palmitoyl-2-(5, 6-epoxyisoprostane E2)-
sn-glycero-3-phsphocholine (PEIPC) covalently bind cysteine
residues and modulate the activity of their protein targets. This
type of interaction has been previously established for H-Ras
(115), transient receptor potential cation channel, subfamily A,
member 1 (TRPA1) (30), and for Kelch-like ECH-associated
protein 1 (Keap-1) (116). Of note, no cysteine residues are
present in the CARD domain of murine as well as human
caspase-11/4/5 (117), but such residues are relatively abundant
in its catalytic subunit. These data support the observation that
oxPAPC selectively interacts with the catalytic portion of
caspase-11/4/5 rather than competing with LPS for binding to
the CARD domain (56). Alternatively, oxPAPC components that
incorporate a terminal g-hydroxy (or oxo)-a,b-unsaturated
carbonyl in their sn-2 chain interact with proteins via
electrostatic interactions. For example, positively charged
residues in the scavenger receptor CD36 are necessary for
interactions of the receptor with 1-palmitoyl-2-(5-keto-6-octene-
dioyl)-sn-glycero-3-phosphocholine (KOdiAPC) (118, 119).
These interactions mirror LPS binding mechanisms identified
for LPS binding protein (LPB) (120), caspase-11/4/5 (102), and
the newly discovered intracellular LPS receptor guanylate-binding
protein 1 (GBP1) (121), which have also been implicated in the
interaction of oxPAPC with caspase-11/4/5 (114).

The oligomerization of caspase-11/4/5 induced by oxPAPC is
sufficient to stimulate the NLRP3 inflammasome, even in
absence of its catalytic activity. Potassium efflux, a downstream
effect of caspase-11/4/5 activation, is not required for IL-1b
release from oxPAPC-treated DCs (56), which suggests that
“silent” caspase-11/4/5 aggregates can also work in other ways
to activate NLRP3 inflammasome.

oxPAPC also directly binds caspase-1 (56), as was identified
in RAW 264.7 macrophages with use of tandem mass
spectrometry (122). We postulate that the hetero-complexes
are composed of caspase-11/4/5 and caspase-1, in which the
lack of caspase-11/4/5 activity is balanced by the activity of
caspase-1. Also, that engagement of caspase-1 by oxPAPC can
bypass the requirement for caspase-11/4/5 to start or sustain
inflammasome activation. Indeed, after oxPAPC administration,
primed DCs that are caspase-11-deficient can decrease - but not
Frontiers in Endocrinology | www.frontiersin.org 5
abolish - levels of IL-1b, while those that are caspase-1-deficient
completely lose the ability to secrete IL-1b (57). Based on this
finding, we hypothesize that the oxPAPC-caspase-1 complex can
stimulate NLRP3 assembly and activation. However, we cannot
exclude the possibility that certain oxPAPC components,
depending on their concentration and the responding cell type,
can trigger NLRP3 activation also in “canonical mode” (58),
through ROS production (58) or metabolic alterations (58, 60).

Once activated by oxPAPC, neither caspase-11/4/5 nor the
NLRP3 inflammasome provoke pyroptosis, but the cell
nonetheless acquires the ability to secrete IL-1b. How this
cytokine is secreted from living cells is unclear, although
GSDMD pores are reportedly implicated in this process (59).
The pores form small channels for the secretion of cytosolic
cytokines, but the lack of a secondary stimulus, such as
potassium efflux (see above), may dampen the lytic death
program (56, 59). The cell may also activate a repair mechanism
that recruits the endosomal sorting complex required for transport
(ESCRT) machinery to the site of membrane damage, and
eliminate GSDMD pores from the plasma membrane in the form
of ectosomes (121). The rapid turnover of the GSDMD pores
allows IL-1b secretion but prevents them from causing extensive
plasma membrane damage, which thereby protects the cell from
pyroptosis. The effects of oxPAPC on mitochondrial activity (see
previous paragraph) may also interfere with the mitochondrial
damage that is induced by gasdermins (123), and thusmay protect
thecell fromdeath.Moreover, oxPAPC-potentiatedmitochondrial
metabolism can lead to accumulation of specific metabolic
intermediates that can alter GSDMD functionality. For example,
fumarate reacts with GSDMD at critical cysteine residues to form
S-(2-succinyl)-cysteine, thwarting its capacity to induce cell death
(124). As discussed above for caspase-11/4/5 binding, we speculate
that oxPAPCalso directly interactswithGS-DMD via thiol groups,
thus mimicking the effect of cysteine-modifying drugs such as
disulfiram, which block GSDMD pore formation (125).

Lastly, fatty acid epoxycyclopentenone, a sn-2 moiety
identified in some oxPAPC components, induces caspase-8
activation and IL-1b secretion (116). Caspase-8 has emerged as
a new player in inflammasome induction (89): it participates in
an alternative inflammasome activation pathway in human
monocytes, wherein TLR engagement is sufficient to trigger
inflammasome activation and IL-1b release, without pyroptosis
(126). Of note, murine macrophages exposed to oxPAPC for a
long time also acquire this capacity after they are stimulated by
LPS only - the cells rapidly secrete high amounts of IL-1b, but
preserve their viability (60). This phenotype is largely regulated
by the metabolism remodeling induced by oxPAPC that boosts
mitochondrial activity and favors the accumulation of
metabolites; this, in turn, controls transcriptional and
epigenetic programs (see previous paragraph). Nevertheless,
oxPAPC could also alter the signaling hub mediated by
caspase-8, enhance LPS-dependent responses and reshape
NLRP3 activity. Thus, although further work is needed to
understand whether or not oxPAPC interacts with human and
murine caspase-8, and how it does so (directly or indirectly),
oxPLs emerge as possible pleiotropic modulators also of
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alternative inflammasome pathways in both murine and
human phagocytes.
ATHEROSCLEROSIS: ROLES OF
OXIDIZED PHOSPHOLIPID-ACTIVATED
PHAGOCYTES

Atherosclerosis leads to a chronic and progressive deposition of
fatty and fibrous material in arterial walls. This inflammatory
condition can lead to a number of serious pathologies known
collectively as cardiovascular diseases (CVDs) – these include
coronary heart disease, hypertension and stroke (127).
Circulating LDLs that accumulate in the intima layer of blood
vessels and undergo oxidative modifications are the main
initiators of atherosclerosis. However, other stressors may also
contribute to this process. For instance, subclinical endotoxemia,
which results from gut mucosal leakages induced during
chronic infections, obesity, and ageing, may sustain the
development of atherosclerosis (128, 129). oxLDLs start an
enduring inflammatory reaction that involves multiple cell
types, including endothelial cells, smooth muscle cells, resident
macrophages and monocytes (127). In particular, activated
macrophages proliferate locally (87, 130), and later, monocytes
recruited from bloodstream sustain plaque formation (130).
These phagocytes produce inflammatory mediators, and favor
accumulation of lipid and lipid-laden cells called foam cells.
Foam cells originate from macrophages as well as monocytes
(130), and by metaplasia of smooth muscle cells (131), gather
and progressively form a lipid-rich necrotic core, which increases
over time. Non-immune cells also contribute to inflammation
and deposition of extracellular material and promote plaque
instability and rupture, with severe risk of thrombosis or other
complications (132).

Hyperlipidemic humans and animals exhibit high levels of
oxPLs, derived from oxLDLs and dead cells in their plasma and
atherosclerotic plaques (133–135). These modified molecules
control plaque inflammation and progression, and play a key
role in the etiology of atherosclerosis (Figure 2). Selective oxPL
neutralization, mediated by the ectopic expression of E06
antibody (136) single-chain variable fragment (E06-scFv) in
high-fat fed mice that are deficient in LDL receptor (LDLR),
results in severe reduction and slowing of pathology (21). In this
hypercholesterolemic model, E06-scFv binds oxPLs but not
unoxidized PLs, impairs pro-inflammatory macrophage
activation in the aorta, and diminishes the in locus recruitment
of monocytes and lymphocytes – this in turn reduces local and
systemic inflammation. Thus, E06-scFv decreases the formation
of atherosclerotic lesions and prevents valve dysfunction (21).
These findings are supported by a report that quenching of
reactive dicarbonyls also reduces atherosclerosis in LDLR-
deficient mice (137). Indeed, oxidative reactions in the sn-2
unsaturated chain of PLs may generate highly reactive
dicarbonyl moieties such as 4-oxo-nonenal (4-ONE),
malondialdehyde (MDA) and isolevuglandins (IsoLGs) (138),
which covalently bind proteins and other macromolecules. Thus,
Frontiers in Endocrinology | www.frontiersin.org 6
use of the dicarbonyl scavenger 2-hydroxybenzylamine (2-
HOBA) to block the production of molecular adducts induced
by oxPL species reduces systemic inflammation and increases
plaque stability (137).

Interfering with the metabolic program induced in
phagocytes also indirectly dampens the pro-atherogenic effects
of oxPLs. oxPAPC induces glutamine utilization, ACLY-
dependent OAA accumulation, and HIF-1a stabilization, and
also boosts IL-1b expression. Systemic administration of
glutaminolysis or ACLY inhibitors in hypercholesterolemic
mice reduces early plaque formation and decreases the
production of IL-1b by macrophages in the aorta (60).
Additionally, peripheral blood transcriptional signatures from
Framingham Heart Study (FHS) (139) participants with pro-
atherogenic lipidemia reveal an enrichment of genes that control
the same metabolic pathways described for oxPAPC-treated
murine macrophages (60) - this indicates that similar
metabolic rearrangements are shared between humans and
mice, and that metabolic intervention could be a new clinical
tool for treating atherosclerosis.

IL-1b produced by myeloid cells is a crucial mediator of
atherosclerosis progression (140–142): it acts systemically and in
the plaque on bystander cells to augment expression of adhesion
molecules and proliferation (143–146). The essential role of this
cytokine in atherosclerosis and CVDs has been recently
highlighted in the Canakinumab Anti-Inflammatory
Thrombosis Outcomes Study (CANTOS) trial: treatment with
a monoclonal antibody against IL-1b (canakinumab) proved to
be protective against cardiovascular dysfunctions in patients with
a history of myocardial infarction (MI) and elevated high-
sensitivity C-reactive protein (CRP) (147). Single-cell
transcriptome analyses of human and murine atherosclerotic
lesions have mapped immune populations that participate in
plaque inflammation, and underscore the major role of IL-1b
(148–151). Of note, lipid-laden macrophages (described as
“foamy” BODIPYhiSSChi or TREM2hi cells) are not pro-
inflammatory, while “non-foamy” CCR2+ macrophages are
strongly enriched in inflammatory transcripts, including for
IL-1b (148, 149, 151). Notably, macrophages treated with
oxPAPC do not acquire a foamy phenotype and hugely
upregulate IL-1b (60). Based on these reports, we speculate
that the phenotype of inflammatory lesional non-foamy
macrophages is driven by the metabolic program induced by
oxPLs. And despite our lack of knowledge about the exact
mechanisms that control the cellular and molecular dynamics
induced by oxPLs in atheroma, we also propose that IL-1b release
from these cells is due either to the direct action of oxPLs on
macrophages (hyperactivation) or to canonical inflammasome
activation. In the latter case, progressive accumulation of
extracellular material such as cholesterol crystals (140) may
provide the initiation signals for the activation of the NLRP3
inflammasome. In addition, macrophages and endothelial cells
can form a functional circuit controlled by oxPLs (Figure 2).
Indeed, oxPLs reportedly trigger the production of chemotactic
mediators such as CCL2 and CXCL8 from endothelial cells (152–
155), and recruit monocytes, thereby increasing the number of
March 2021 | Volume 12 | Article 626842
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oxPL-responsive cells. oxPLs also stimulate purine release from
endothelial cells and, via a metabolic reprograming that is
controlled by mitochondrial methylenetetrahydrofolate
dehydrogenase/cyclohydrolase (MTHFD2), also compensate for
loss of ATP (156). The extracellular ATP released by endothelial
cells can, then, activate the NLRP3 inflammasome in
macrophages and trigger IL-1b secretion (89). We also posit
that the nature and magnitude of inflammasome activation
reflects the progression status of the atherosclerotic plaque:
thus, following a dramatic increase of extracellular material in
the arterial wall, a prevalence of hyperactivated macrophages is
observed at early stages, and then a slow shift toward a pyroptotic
phenotype takes place at later stages.

Besides production of IL-1b and other pro-inflammatory
mediators, phagocytes carry out numerous functions that are
dysregulated in atherosclerosis. For example, removal of dead
cells is an essential anti-inflammatory process that slows down
the progression of atherosclerotic lesions (157). oxPAPC alters
actin polymerization in macrophages, and thereby reduces their
phagocytic activity (158). oxPLs may decrease the clearance of
dead cells, and thus favor inflammation and plaque widening.
Lastly, long-lived inflammatory phagocytes induced by oxPLs
promote and sustain the activation and proliferation of CD4+ T
cells (56, 113), which in turn maintain chronic inflammation.
This effect is further fueled by the capacity of some oxPAPC
components, such as 1- palmitoyl-2-glutaroyl-sn-glycero-3-
phosphorylcholine (PGPC), to enhance the ability of antigen
presenting cells to migrate to the draining lymph nodes and thus
potentiate T cell-dependent responses (112).
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In sum, the above findings collectively establish the role of
oxPLs in the induction and progression of atherosclerosis, but
the proposed cellular and molecular mechanisms that underlie
these effects remain to be verified.
LUNG INFECTIONS: PERSPECTIVES
ON A NEW ROLE OF OXIDIZED
PHOSPHOLIPID IN COVID19

Pulmonary surfactant forms a film at the alveolar air-liquid
interface and lowers surface tension, thereby preventing
atelectasis during breathing. Surfactant is a complex mixture of
lipids and proteins, whose primary components (90-80%) are
saturated PLs (such as 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine (DPPC)), which are active tension-lowering
agents and are unreactive to air oxidation (7–9). Surfactant also
contains (4-6%) unsaturated PLs (such as PAPC (7–9)) that can be
oxidized (as discussed above). Under physiological conditions,
surfactant is protected from atmospheric oxygen by antioxidant
processes and by its rapid turnover. The first mechanism is
mediated by specific proteins, for example surfactant protein A
(SP-A) (159). The secondone is carried out by type II pneumocytes
and alveolarmacrophages,which control the production/recycling
and degradation of surfactant respectively (160–162).

Under stress, surfactant/lung homeostasis can be altered,
leading to oxidation of PUFA moieties contained in pulmonary
PLs. Several infections and treatments, such as acid aspiration,
March 2021 | Volume 12 | Article 626842
FIGURE 2 | oxPAPC triggers and sustains inflammation in atherosclerosis and viral lung infections. During atherosclerosis (left) oxPAPC released from dying cells or
contained in oxLDL induces the release of chemokines and ATP from endothelial cells (red). Phagocytes (blue) become hyperinflammatory, modify their metabolism, and
produce pro-inflammatory cytokines such as IL-1b and IL-6. IL-1b can also be induced by extracellular stressors such as ATP. In this manner, the endothelial cell-phagocyte
circuit sustains inflammation. During viral infections (right), oxPAPC released from infected-dead cells or from surfactant oxidation interacts with endothelial cells (red) that
produce chemokines and TF. Low doses of oxPAPC (early steps of infection) elicit barrier function, while high doses of oxPAPC (late steps of infections) disrupt the endothelial
barrier. Phagocytes (blue) activate inflammasome-dependent responses, secrete cytokines and TF and lead to inflammation and coagulation.
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influenza viruses (H5N1, H1N1 and H3N2), Monkeypox virus,
Yersinia pestis, Bacillus anthracis and severe acute respiratory
syndrome coronavirus (SARS-CoV) (20, 163) can induce
pulmonary oxPAPC accumulation, which is associated with a
detrimental pro-inflammatory response, acute injury, and organ
failure (20) (Figure 2). These detriment effects are triggered
primarily by pathogen-induced generation of ROS from alveolar
macrophages. Indeed, the genetic absence of NCF1 (neutrophil
cytosolic factor 1) (a key component of the NADPH oxidase
complex that is required for ROS production) in mice treated
with H5N1 virus reduces generation of oxPL in the lung and
alleviates lung dysfunctions (20). Once produced, oxPAPC
modulates the inflammatory responses of macrophages, and
boosts the production of cytokines such as IL-6 (20). oxPAPC
also acts on endothelial cells. Although low doses of oxPAPC
enhance the function of the lung endothelial barrier by
remodeling the cytoskeleton and tightening cell-cell contacts
(164–167), higher doses of oxPAPC, or its fragmented
products, have opposite effects, disrupting endothelial barrier
integrity (168, 169). This explains how pathogen-induced
damage, inflammatory mediators secreted by macrophages and
endothelial cell alterations can drive acute lung injury (ALI).

Coronavirus disease 2019 (COVID-19) that is caused by
SARS-CoV-2 has become a global pandemic that threatens the
lives of hundreds of millions of individuals around the world.
SARS-CoV-2 causes mild respiratory symptoms, including fever
and cough; but in some subjects it can degenerate to viral
pneumonia and acute respiratory distress syndrome (ARDS).
Uncontrolled pathology can lead to a cytokine storm, multi-
organ failure, septic shock and coagulation abnormalities, which
can lead to severe thromboembolic events (170).

SARS-CoV-2 shares 79.6% genomic sequence identity with
SARS-CoV, and these two viruses likely share many features of
their biology and pathogenesis (170). Notably, quantitative
lipidomic and metabolomic profiling of plasma from COVID-19
patients reveals profoundmetabolic dysregulation, with enhanced
oxidative stress and alteration of PUFA-PC homeostasis (171).
These data suggest that oxPLs, which accumulate during SARS-
CoV infections, also form during SARS-CoV-2 infections, and
play a central role in maintaining harmful inflammatory
responses. COVID-19 patients show high neutrophilia (172,
173). Since neutrophils are the major producers of ROS (174),
we hypothesize that surfactant composition is extremely altered
with the massive oxPAPC formation during SARS-CoV-2
infections. Moreover, high levels of IL-1b and IL-6 have been
identified in SARS-CoV-2-infected subjects (175), and single-cell
transcriptomic analysis of peripheral blood in COVID-19 patients
also show increased subsets of IL-1b-producing monocytes (176).
In addition, pulmonary arterial thrombosis has been detected in
autopsy from SARS-CoV-2 patients (177, 178). In fact, all of these
effects can be credited to inflammasome activation (179), which
also drives the release of tissue factor (TF) (180, 181), an initiator
of the coagulation cascade. Thus, oxPAPC, as an inflammasome
modulator, could elicit IL-1b and TF, and coordinate
inflammation as well as hemostasis during COVID-19 infection.
Indeed, CD14, that regulates inflammasome activation in
Frontiers in Endocrinology | www.frontiersin.org 8
phagocytes in response to oxPAPC (182), as been proposed
as a possible therapeutic target against COVID-19 (183). Lastly,
phagocytes infected with SARS-CoV-2 remodel their metabolism
and activate HIF-1a to sustain the cytokine storm (182).
Accordingly, we propose that the oxPAPC that is produced
during viral infections could also act on cellular metabolism,
favoring ROS production – in a feed-forward loop. Although
not yet validated experimentally, we propose that this detrimental
loop feeds PUFA-PC oxidation and controls transcriptional
responses via regulation of metabolite production.
CONCLUSIONS AND FUTURE
DIRECTIONS

Immune cells control tissue homeostasis and respond rapidly to
noxious stimuli to maintain physiological conditions. oxPLs are
endogenous stressors that reprogram phagocyte metabolism and
boost their pro-inflammatory responses, inducing a novel
hyperinflammatory phenotype that sustains chronic inflammatory
diseases. Several studies focused on oxPAPC have elucidated several
molecular events that underlie its effects on phagocytes, but some
questions remain unresolved: 1) Given that oxPAPC consists of a
mix of biomolecules, and single oxPAPC components can have
redundant or even antagonistic effects, what are the metabolic and/
or inflammatory responses of unique oxPAPC species? 2) What are
the receptors/targets/pathways of oxPAPC that are necessary for
inducing its metabolic and/or inflammatory activities? 3) How does
oxPAPC modulate the responsivity of phagocytes to other
endogenous or exogenous stressors? 4) How does oxPAPC
sustain cell viability when the NLR3 inflammasome is activated?
5) Does oxPAPC modulate other processes in phagocytes, such as
differentiation, proliferation, motility or migration?

Since oxPLs are virtually always present during inflammation
(i.e. through neutrophil-dependent ROS release or tissue
damage), we anticipate that identifying their biological targets
will be vital for creating new therapies against pathologies
initiated by exogenous agents, such as sepsis or cytokine storm,
or by endogenous moieties, such as atherosclerosis.
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