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Abstract

Chest pain is responsible for 6-10% of all presentations to acute healthcare providers. Triage is inherently difficult and heavily
reliant on the quantification of cardiac Troponin (cTn), as a minority of patients with an ultimate diagnosis of acute myocardial
infarction (AMI) present with clear diagnostic features such as ST-elevation on the electrocardiogram. Owing to slow release and
disappearance of ¢Tn, many patients require repeat blood testing or present with stable but elevated concentrations of the best
available biomarker and are thus caught at the interplay of sensitivity and specificity.

We identified cardiac myosin-binding protein C (¢cMyC) in coronary venous effluent and developed a high-sensitivity assay by
producing an array of monoclonal antibodies and choosing an ideal pair based on affinity and epitope maps. Compared to high-
sensitivity cardiac Troponin (hs-cTn), we demonstrated that cMyC appears earlier and rises faster following myocardial necrosis.
In this review, we discuss discovery and structure of cMyC, as well as the migration from a comparably insensitive to a high-
sensitivity assay facilitating first clinical studies. This assay was subsequently used to describe relative abundance of the protein,
compare sensitivity to two high-sensitivity cTn assays and test diagnostic performance in over 1900 patients presenting with
chest pain and suspected AMI. A standout feature was cMyC'’s ability to more effectively triage patients. This distinction is likely
related to the documented greater abundance and more rapid release profile, which could significantly improve the early triage of
patients with suspected AMI.

Keywords cMyC - Cardiac myosin-binding protein C - Cardiac troponin - Chest pain - Triage - Biomarkers - Acute myocardial
infarction - AMI

Background

Despite it being a frequent occurrence in emergency depart-
ments (ED) around the world, chest pain triage remains a
challenge for patients and physicians alike. Responsible for
6—10% of all presentations to acute healthcare providers
[1-4], the presenting complaint of chest pain results in a high
rate of admissions (1:3, according to data from the UK [5]),
but a paradoxically low probability (10%) of a final diagnosis
of acute myocardial infarction (AMI) [6]. The inability to
make a rapid and accurate diagnosis not only causes financial
but also medical, psychological and social burden to the
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affected patient and the healthcare system. Only 32% of pa-
tients with an ultimate diagnosis of AMI have diagnostic ECG
changes of ST-elevation or depression that facilitate immedi-
ate triage [7, 8], in many cases—and healthcare
environments—directly to heart attack centres. The remaining
two-thirds of all patients eventually diagnosed with an acute
coronary syndrome (ACS) present with non-ST elevation
myocardial infarction (NSTEMI) [6]. Consequently, triage
has become reliant on quantifying the biomarker cardiac
Troponin (c¢Tn). This is enshrined in the Universal
Definition of Myocardial Infarction [9] (now in its fourth iter-
ation [10]) by mandating the detection of a cardiac biomarker
rise and/or fall for the diagnosis of AMI. Historically, patients
tested with contemporary cTn assays had to wait for at least
12 h for a reliable diagnosis—on the basis that the cardiac-
restrict troponin isoforms (¢Tnl and ¢TnT) are released slowly
after myocardial injury and reach their respective peak con-
centration after 18 h [11, 12]. To facilitate earlier rule-in and
rule-out of AMI, the cTn assay vendors then increased the
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analytic performance—to achieve high-sensitivity (hs), or, in
simple terms, quantify cTn in the majority of patients. The
ability to detect ever-lower concentrations of ¢cTn enables di-
rect rule-out of AMI in a specific subgroup—i.e. in patients
with symptoms for more than 3 h, a normal ECG and an
undetectable ¢cTn level. While the European guidelines recom-
mend the ‘measurement of a biomarker of cardiomyocyte in-
jury, preferably high-sensitivity cardiac Troponin’ in all pa-
tients with suspected NSTEMI [13], the clinical implications
of using hs-cTn assays include a 2-fold increase of detection
of type 2 AMI, ~20% relative increase in detection of type 1
AMI and—all according to the ESC’s 2015 guideline—*‘ele-
vations up to 3-fold the upper reference limit (URL)... may be
associated with a broad spectrum of conditions’. The very
definition of a hs-cTn assay—according to the International
Federation of Clinical Chemistry and Laboratory Medicine
Task Force on Clinical Applications of cardiac Bio-Markers
(IFCC TF-CB)—includes (1) a CV <10% at the 99th centile
value and (2) the ability to measure at least 50% of healthy
individuals with concentrations above the assay’s limit of de-
tection (LoD) [14, 15]. Acknowledging the underlying biolo-
gy, the ESC hence advocates the use of its 0/1 h rule-out/rule-
in algorithm only in patients presenting > 3 h after chest pain
onset. Several publications have recently reported on the var-
iable effectiveness of the ESC algorithm in clinical practice—
many patients have to undergo a second blood draw for a more
refined triage, and only 20-30% of patients benefit from im-
mediate rule-out/-in using the cut-offs published [16—-19].
Taken together, technological advances result in many more
patients being tested ‘Troponin-positive’, without necessarily
being ‘AMI-positive’—while impressive with respect to assay
development, cTn was inherently unsuited for early diagnosis
of acute myocardial injury and this has not been mitigated by
moving detection limits to ever-lower levels.

Can We Do Better?

From the synopsis above, it is clear that new biomarkers are
needed but the only way they can usurp cTn is if they possess
equivalent cardiac selectivity but (1) rise more rapidly after
acute myocardial injury (advances sensitivity) and/or (2) have
alower ‘background’ concentration in those with vascular risk
factors or underlying chronic heart disease (advances
specificity).

The ideal biomarker for early diagnosis of an acute coro-
nary syndrome would have a release profile that is temporally
analogous to cytosolic proteins (such as creatine kinase, fatty-
acid binding protein and myoglobin) but possesses the
cardiac-restricted expression of cardiac Troponins. Our group
has identified cardiac myosin-binding protein C (cMyBP-C,
cMyC; UniProtKB—Q14896) as a candidate marker [20], a
cardiac sarcomeric protein which is at least twice as abundant
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in the heart as ¢Tnl or cTnT [21]. We have shown it is released
into the serum after myocardial infarction in the mouse [20]
and in patients [22], findings which have been confirmed by
others [23].

Discovery and First Description of Cardiac
Myosin-Binding Protein C (cMyC)

Originally described as the C-protein by Offer et al. in 1973
[24], its discovery relied on the characterisation of ‘impurities’
detected alongside myosin in sodium dodecy! sulphate (SDS)
polyacrylamide gel electrophoresis. The resulting bands were
labelled alphabetically, the third heaviest being correctly iden-
tified at the band corresponding to a molecular weight of
140 kDa. Offer et al. hypothesised that the protein’s main
function might be that of a core protein, it might control or
modify the movement of cross-bridges, or ‘serve a purely
mechanical function’ [24]—preserving integrity and
stabilising the filaments.

Structure of cMyC

Three isoforms of MyBP-C exist in adult human muscle—fast
and slow skeletal (encoded by MYBPC1 and MYBPC2 genes
on chromosomes 12q23.3 and 19q33.3, respectively), and a
cardiac isoform (cMyBP-C, gene MYBPC3 on chromosome
11p11.2) [25, 26]. Uniquely, the cardiac isoform contains an
additional immunoglobulin-like domain at the N terminus
(CO0), phosphorylation sites in between domains C1 and C2
(M motif) and a 28 amino acid insertion in the C5 domain. The
whole protein consists of 12 domains, of which there are 8
immunoglobulin (IgC2)-like, 3 fibronectin (FN3) domains,
plus the M domain mentioned above (Fig. 1).

The four phosphorylation sites, designated A-D (residue
code for A, RRTS [272-275]; B, RRIS [281-284]; C, KRDS
[301-304]; D, KKST [259-263]) by Gautel et al. [26], are,
among others, phosphorylated by protein kinase A (PKA; for
sites A, B and C), protein kinase C (PKC) and calmodulin
kinase (CAMK; for site B) [28-30]. It appears that folding
of the protein prohibits access to site D [31].

In 2008, Luther et al., using electron microscopy, imaged
nine bands of cMyBP-C crossing the thick and thin filaments
in perpendicular orientation in the C-zones of the A-band [32].
Still, to date, the exact arrangement in the sarcomere remains
unclear, and two models are being tested: (1) a trimeric collar
model, where three cMyBP-C molecules form a collar around
the thick filament core [33]; and (2) a rod model where
cMyBP-C interacts with its C-terminal domains along the
thick filament axis, with the N-terminal domains extending
towards the thin filament [34].



Cardiovasc Drugs Ther (2019) 33:221-230

223

a Structure of cMyC and cardiac troponins

Cardiomyocytes

Ischaemia-induced cardiomyocyte damage

Ischaemic
cardiomyocytes ‘

Release of cMyC and
' cardiac troponins into the
bloodstream

Fig. 1 Structure of cMyC and relationship with the cTn complex; adapted from Kaier et al. [27]

Function of cMyC

The uncertainty regarding the exact structural arrangement is
further reflected in an incomplete understanding of the inter-
action between cMyBP-C and thick and thin filaments. Better
understood are the effects of cMyBP-C phosphorylation,
which is necessary for normal myocardial function and ap-
pears to protect from ischaemic injury [35, 36]. These effects
are predominantly mediated by phosphorylation at Ser-273,
Ser-282 and Ser-302 sites, which diminish after ischaemia/
reperfusion injury, or in the context of heart failure and hyper-
trophy [36], atrial fibrillation [37] or in cardiomyopathies [38].
More specifically, mouse models have shown that loss of

phosphorylation (through phospho-ablation by residue substi-
tution) is sufficient to cause hypertrophy and cardiac dysfunc-
tion [36, 39]. In the context of normal function, phosphoryla-
tion itself drives actin—myosin interaction and subsequently
increases cross-bridge cycling rate—which in turn enhances
cardiac contractility [40—43].

Hypertrophic Cardiomyopathy
Gene defects affecting cMyBP-C have been extensively stud-

ied since the first description of two mutations causing hyper-
trophic cardiomyopathy (HCM) in separate kindreds 1995
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[44, 45]. Better understood are the pathological consequences
of gene defects affecting cMyBP-C. HCM affects about 0.25—
1% of the population worldwide [46—48], and mutations in
c¢MyBP-C are responsible for about one-third of symptomatic
cases [49]. There are more than 350 unique mutations affect-
ing cMyBP-C described to date [50] (for an up-to-date list, see
uniprot.org [51]), > 60% of mutations are C'-truncations—and
are, intriguingly, rarely detected by western blot of
myocardium from affected HCM patients [49] (in the mouse
model, a homozygous C'-truncation results in cMyBP-C null
mouse hearts—equivalent to a homozygous knockout). This
observation is attributed to cell surveillance mechanisms that
protect affected cells from the adverse effects of the truncated
proteins [52]. Thus, the phenotype of HCM is felt to be due to
haploinsufficiency (a subtle reduction of the amount of
cMyBP-C protein expressed since the healthy allele cannot
fully compensate for the lack of protein expressed from the
diseased allele) [53]. This reduces the overall amount of
cMyBP-C expressed, but means the protein that is expressed
is normal and unaffected [54]. The other pathogenic variants
of cMyBP-C are missense mutations, resulting in single amino
acid substitutions, with a range of associated phenotypes
(from benign to severe). While they occur throughout the
cMyBP-C protein [49], the domain linking CO and C1
(enriched with proline and alanine residues; PA) seems to be
exempt. More importantly, with a view to immunoassay de-
velopment, most missense mutations affect the C-terminal do-
mains beyond C3. It also remains unclear whether, and how,
individual missense mutations cause disease. Proposed effects
are alteration of domain folding, direct impairment of the
cMyBP-C function or, again, haploinsufficiency. [49]

Development of the In-House cMyC
Immunoassay

Over the past years, our group established and improved the
analytic performance of the assay for cMyC—initially as an
in-house assay which is described in detail by Baker et al. [22]
The best-performing antibodies (clone 3H8 and clone 1A4)
were selected for the creation of a ‘sandwich’
electrochemiluminescence assay (MesoScale Discovery
(MSD), Sector imager 2400). The standard curve was used
to quantify and express cMyC concentrations as nanograms
per litre. This achieved an LLoQ of 80 ng/L (Figs. 2 and 3).

In Vivo Models of Myocardial Infarction

Using the quantitative immunoassay described above, cMyC
release kinetics were investigated in patients with ST-
elevation myocardial infarction (STEMI, n = 20), undergoing
therapeutic ablation of septal hypertrophy (TASH, n = 20) for
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hypertrophic cardiomyopathy (HCM; Fig. 4) or having coro-
nary artery bypass surgery (CABG, n =20; Fig. 5). In both
models of myocardial infarction (STEMI, TASH), we detect-
ed an earlier peak of cMyC when compared to a high-
sensitivity ¢TnT assay (STEMI, 9.3+3.1 vs. 11.8+ 3.4 h,
p <0.007; TASH, 9.7+ 1.4 vs. 21.6+ 1.4 h, p <0.0001), a
quicker accumulation (during first 4 h after TASH, 25.8 £ 1.9
vs. 4.0+ 0.4 ng/L/min, p <0.0001) and faster disappearance
(post-CABG, decay half-time 5.5+£0.8 vs. 22+ 5 h, p <
0.0001) [22].

These data suggest cMyC may fulfil the criteria needed to
usurp troponin as described above. Figure 4 shows cMyC
rises more rapidly after acute myocardial injury. Figure 5
shows cMyC falls more rapidly and this may translate into a
lower background concentration in those with vascular risk
factors and/or underlying chronic heart disease.
Unfortunately, these data also show that the in-house assay
does not have the analytic performance needed to measure
c¢cMyC in serum from healthy patients. This is required to
measure the population-defined 99th centile. Hence, we
commissioned a contract research company to develop an
assay using the same capture/detection monoclonal antibod-
ies, but on a high-sensitivity platform.

Development of a High-Sensitivity cMyC
Immunoassay

The new, high-sensitivity assay was developed on the Erenna
platform (originally by Singulex Inc., California, USA), using
the same antibody-pair (1A4, 3H8) used for the in-house assay
[57]. This achieved a lower limit of detection of 0.4 ng/L and
LoQ of 1.2 ng/L (20% coefficient of variation (CV), and <
10% CV at 99th centile). This was used to measure cMyC in
360 stable patients without significant obstructive coronary
artery disease and (hs-cTnT) < 14 ng/L. cMyC was quantifi-
able in 359 patients (compared to 85 and 307 patients with
quantifiable hs-cTnT and hs-cTnl levels, respectively) and
correlated positively with both Troponin assays (R = 0.56 for
c¢TnT, R =0.77 for ¢cTnl). Further, this facilitated the calcula-
tion of the 99th centile for cMyC at 87 ng/L. The study dem-
onstrated in stepwise multiple logistic regression analysis that
age, gender, creatinine, pulmonary hypertension, as well as
the use of certain medication (statins, loop diuretics, beta-
blockers) all statistically predicted cMyC concentrations.

Is There A Risk of False-Negative Results
in HCM Patients?

As summarised above, cMyBP-C mutations causing HCM are
frequent but cause either truncation mutations resulting in
haploinsufficiency (thus limited expression of the protein
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Fig. 2 Structure of full-length cMyBP-C. Phosphorylation sites involved
in the regulation of myocardial contractility—Ser-273, Ser-282 and Ser-
302—highlighted in the M-domain (where calpain-dependent cleavage
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variant) or missense mutations with a phenotypically broad
range. However, most missense mutations affect the C-
terminal domains of cMyBP-C, and the (purposeful) antibody
alignment with the N-terminal domains CO-C1 makes it very
unlikely that the newly developed assay is at risk of missing
cMyBP-C elevations in a patient with HCM. The only known
variant affecting a domain bound by our antibodies is MET-
158, substituting valine with methionine at position 158 (tar-
get of 3H8)—felt to be a non-pathogenic polymorphism [58,
59]. The affected amino acid sequence is highlighted below

(Fig. 6).

How Sensitive Is the New High-Sensitivity
cMyC Assay—Quantifying the Release

of Biomarkers of Myocardial Necrosis
from Cardiac Myocytes and Intact
Myocardium [60]

Having commissioned a new assay for cMyC, we wanted to
compare its sensitivity to the leading commercial assays for
cTn. The purpose of this study was, among others, to establish
the amount of ¢Tn and cMyC release from cardiomyocytes
and human cardiac tissue undergoing simulated necrosis.
Serum from healthy volunteers was obtained and used as ref-
erence. Rat cardiomyocytes and human cardiac tissue were
subjected to ultrasonication to simulate complete necrosis
and spiked into the healthy reference serum. Samples were
measured with hs-cTnl, hs-cTnT and cMyC assays (human
cardiac tissue spikes only).

It was possible to detect the cTn release from the equivalent
of a single cardiomyocyte with both hs-cTn assays, resulting
in a slope of 19 ng L™'/cell (95% CI 16.8-21.2) for hs-cTnT
and 18.9 ng L '/cell (95% CI 14.7-23.1) for hs-cTnl.
Similarly, each microgram of myocardial tissue resulted in
an increase in measured hs-cTn values: 3.9 ng L™'/ug (95%
CI 3.6-4.3) for hs-cTnT and 4.3 ng L '/ug (95% CI 3.8-4.7)
for hs-cTnl. cMyC generated a much greater response on the

occurs) [55], and commonly detected N-terminal fragments, COC2 and
COC1f. Binding sites for antibodies 1A4 (blue) and 3HS8 (red) are
highlighted. Reproduced and adapted from Lipps et al. [S6]

Erenna assay, with a slope coefficient of 41.0 ng L™'/ug (95%
CI 38.0-44.0).

The results are remarkable for two reasons: First, they
demonstrate the exquisite sensitivity of contemporary car-
diac biomarker assays, capable of detecting release from a
single cardiomyocyte, and we extrapolated that necrosis of
only 40 mg of myocardium is sufficient to breach the re-
spective 99th centiles—too little to be detected by modern
cardiac tissue imaging. Second, the experiments suggest
that necrosis of 3-9 mg of human myocardial tissue in-
creases cTnT/I above the LoD as measured by high-
sensitivity assays, and the corresponding value for cMyC
is 0.07 mg. But how would a more sensitive assay translate
into clinical practice?

Is the Relative Abundance and Sensitivity
Relevant in Clinical Practice?

We investigated the performance of the novel cMyC assay
(Erenna) in 174 patients with suspected AMI, presenting very
early after symptom onset [61]. All patients were part of a
subgroup of individuals recruited in the HighSTEACS [62]
study, presenting with chest pain of less than 3 h duration prior
to first blood draw—all underwent blood draws at 0, 3 and 6-
12 h (late); 26 were adjudicated with type 1 myocardial
infarction.

We calculated a cMyC/hs-cTnl ratio for each of the three
sampling time points. This demonstrated a positive linear cor-
relation between the two biomarkers. However, mean and
median ratios in patients with AMI were much greater at pre-
sentation than in the later timepoints (median 2.72 at 0 h,
1.83 at 3 h, 0.63 at 6-12 h), suggestive of a more dynamic
rise of cMyC in the early stages of myocardial infarction than
hs-cTnl. To our knowledge, no study has explored as to
whether this earlier rise is due to a different release mecha-
nism, such as cMyC release prior to cell death—similar to a
myocardial stress signal—or simply a function of greater pro-
tein abundance and a very sensitive assay, allowing for earlier

@ Springer



226 Cardiovasc Drugs Ther (2019) 33:221-230
121 PAPAAELGESAPSPKGSSSAALNGPTPGAPDDPIGLFVMRPQDGEVTVGGSITFSARVAG 180 Q14896 MYPC3 HUMAN
40 PEDQS PT AEEPTGVFLKKPDSVSVETGKDAVVVAKVNG 77 Q14324 MYPC27HUMAN
43 PGEEQ AKQNANSQLSILFIEKPQGGTVKVGEDITFIAKVKA 83 Q00872 MYPC1l_ HUMAN

| 3H8
|
Ka: 4.68+0.17 x 105 M-'s
Kd: 4.47x0.27 x 103s™
KD: 9.55x 1071°M
c '
3H8 1A4 1A4 3H8
100000+
e ®
5 ooy -
& ¥
- 10004 e
B A0, Y
. L
w10
1 1 1 1 T 1
110 100 1000 10000 100000

ng/L

Fig.3 The development of a quantitative immunoassay for human cMyC
in serum. a Sequence alignment of cMyC with skeletal myosin binding
protein C isoforms. The sequence recognised by monoclonal anti-cMyC
antibodies 1A4 and 3H8 are shown in bold. The antibodies bind to
cardiac-restricted sequences with organ specificity further verified by
immunoblots (see d). b SPR kinetic sensorgrams demonstrating the ki-
netic parameters of clone 3H8 (left) and 1A4 (right). These antibodies
were selected from over 50 hybridomas, and both antibodies are of high
affinity. ¢ Epitope competition sensorgram of 1 A4 and 3H8 binding to the
CO0C2 region of cMyC conjugated to a CMS5 biosensor chip. Although
antibodies recognise near adjacent epitopes, there is no appreciable inter-
ference between them. Near adjacency is needed since cMyC is
fragmented in the circulation raising the possibility of separation of

detection of smaller increments. Regardless, we hypothesised
that this could enable more rapid and/or accurate triage.
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capture and detection epitopes if they were widely spaced. d
Immunoblot of rat and human tissue demonstrating specificity of 3H8
and 1A4 monoclonal antibodies. GAPDH was used as a loading control.
Samples 1-9 are various rat tissue (1 =ventricle, 2 = atria, 3 =rectus
abdominus, 4 =soleus, 5 =spleen, 6 =kidney, 7 =aorta, 8 =liver, 9=
brain) and 10 is human ventricle. e Representative COC2 standard curve
from ¢cMyC ECL assay indicating the limit of detection (dashed line).
This in-house assay on a MesoScale Discovery enhanced chemilumines-
cent detection platform was used to measure cMyC appearance and dis-
appearance in Figs. 2 and 3 below. Panel (f) demonstrates the perfor-
mance characteristics of the assay, with a LoD of approximately 80 ng/
L. Figures and legend reproduced from Baker et al. [22]

Clearly, a more in-depth evaluation of the diagnostic perfor-
mance of cMyC was required in a larger study.
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Fig. 4 The accumulation of cMyC vs. cTnT after myocardial injury
caused by intracoronary ethanol. Venous blood was collected frequently
over the first 2 h, and up to 24 h, after therapeutic alcohol septal ablation
for hypertrophic cardiomyopathy (TASH) using ethanol infused selec-
tively into a septal perforating branch coronary artery. Summary data of
absolute quantification of cMyC (open symbols) vs. ¢cTnT (closed sym-
bols) over time following TASH (n =20). Inset figure is a zoom of the
first 240 min. Over this time interval, cMyC accumulates in the serum
approximately six times faster than ¢TnT (slope 25.8+1.9 vs. 4.0+
0.4 ng/L/min, p <0.0001). Figure reproduced from Baker et al. [22]

Analysis of cMyC in > 1900 Patients
with Suspected AMI—Direct Comparison
with Cardiac Troponins

We analysed cMyC in 1954 unselected patients presenting
with symptoms suggestive of AMI to emergency departments
in a prospective, diagnostic multi-centre study based in
Europe [27]. We focussed on studying the diagnostic proper-
ties of the presentation blood test alone and compared cMyC
performance to that of hs-cTnT and hs-cTnl. The study was
adjudicated using hs-cTnT and the Universal Definition of MI
[63], the prognostic endpoint being long-term mortality at 3-
year follow-up.

AMI was the final diagnosis in 340 patients (17%), and we
observed a much greater dynamic range of cMyC in AMI
versus non-AMI patients, and in comparison to both hs-cTn
assays. The diagnostic performance was investigated by cal-
culating the area under the receiver-operating characteristics
curve, and cMyC matched the performance of both hs-cTn
assays (cMyC AUC 0.924 vs. 0.927 hs-cTnT and 0.922 hs-
c¢Tnl). We used an internal derivation/validation split of the
cohort to obtain optimal cut-offs for cMyC-guided rule-out
and rule-in of AMI at presentation—10 ng/L for rule-out,
120 ng/L for rule-in. These were used to calculate a Net
Reclassification Improvement, based on re-classification of
patients to rule-out or rule-in categories, where cMyC was
substantially more effective than either hs-cTn assay (NRI +
0.149 vs. hs-cTnT, + 0.235 vs. hs-cTnl). A remarkable signal
was the higher AUC in early presenters (chest pain <3 h)
when compared to the adjudicating biomarker hs-cTnT
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Fig. 5 The accumulation of cMyC (open symbols) vs. cTnT (closed
symbols) after myocardial injury caused by surgical revascularisation.
Venous blood was collected over 3 days following CABG. Summary
data of absolute quantification of cMyC vs. cTnT over time following
CABG (n =20). Inset figure is a zoom of the last five time points
expressed as a % of peak concentration achieved in each patient. This
normalisation was used to remove the visual bias caused by the greater
absolute concentration of cMyC. The decay half-time for cMyC is con-
siderably shorter than for ¢cTnT (5.5+ 0.8 h vs. 22+ 5 h, p <0.0001).
Figure reproduced from Baker et al. [22]

(AUC 0.915 vs. 0.892, p =0.022), also reflected in an even
higher NRI in this subgroup.

This was the first study to comprehensively study cMyC
performance in comparison to the best available biological
signals for the diagnosis of AMI. Notably, the study was ad-
judicated using hs-cTnT and yet triage classification was more
efficient (based on smaller observe-zone) and as accurate
using cMyC. Furthermore, the patients recruited overall rep-
resent a cohort of late presenters, with a median chest pain
time of 5 h prior to admission. Findings including subgroup
analysis corroborate our previous observations in the
HighSTEACS subgroup—a marked advantage in early pre-
senters, with an at least as good diagnostic performance but
better triage capability.

Conclusions

Cardiac myosin-binding protein C is a novel biomarker of
myocardial injury with great potential for assisting in the early
rule-out of AMI—other groups [64—66] have investigated the
use of cMyC in the diagnosis of myocardial infarction with
confirmatory findings [20, 22], but were limited by poor assay
sensitivity. Despite careful selection of monoclonal antibodies
and initially promising results on our
electrochemiluminescence platform, cMyC sensitivity was
outperformed by the increasingly available high-sensitivity
Troponin assays. Kuster et al. [64] independently reached a
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Fig. 6 Amino acid sequence of

c¢MyBP-C with variant MET-158
underlined; antibodies 1A4 (blue) 100
and 3HS (red) at binding location

EPMLAPAPAP AEATGAPGEA PAPAAELGES APSPKGSSSA

140 ALNGPTPGAP DDPIGLFYMR PQDGEVTVGG SITFSARVAG
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comparable LoD on the same device (MesoScale Discovery),
making the translation of the assay onto a platform with great-
er sensitivity the natural next step. Given the binding sites of
the two monoclonal antibodies are only affected by a single
known mutation causing a non-pathogenic polymorphism of
HCM, the risk of false-negative results appears diminishingly
small.

Our work in migrating onto the Singulex Erenna enabled—
for the first time—reliable cMyC quantification in stable out-
patients. As demonstrated [57], this assay enabled two leaps in
the translational phase: (1) quantify the cMyC level in all but
one of 360 individuals without acute cardiovascular disease,
thus allowing (2) the derivation of a 99th centile (87 ng/L, as
published [57]). The assay, performed by a contract research
organisation, achieved a LoD 200 times lower than our in-
house assay and laid the foundation for clinical studies as
described.

Favourable release kinetics and a higher sensitivity than hs-
cTn assays are likely responsible for the better performance in
patients presenting early after chest pain onset [57, 60, 61].
The greater analytic bandwidth of the assay could, in turn, be
responsible for a better calibration against acute myocardial
injury versus the chronic release of myocardial necrosis
markers often observed in clinical practice [27]. This would
explain the net reclassification benefit observed in the largest
cohort study testing cMyC to date—both in all-comers and
early presenters [27]. As demonstrated in a single-centre pro-
spective cohort study investigating the use of hs-cTnT in the
emergency department at our institution [67], 52% of patients
are assigned to an ‘observe’ zone after the first blood draw (~
4000 patients annually; triage modelled on the 2015 ESC
NTEMI guidelines [13]). These patients—quasi-automatical-
ly—require repeat blood testing and therefore ongoing obser-
vation until a level of diagnostic certainty can be reached. Any
admission avoided, employing more dynamic but equally spe-
cific cardiac necrosis markers, should be in the best interest of
healthcare providers and patients alike. Extrapolating from
findings to date, the gains might not be marginal!
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