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Abstract

Rhacophoridae, a family of morphologically cryptic frogs, with many genetically distinct evolu-

tionary lineages, is understudied with respect to skeletal morphology, life history traits and

skeletal ontogeny. Here we analyze two species each from two sister lineages, Taruga and

Polypedates, and compare their postembryonic skeletal ontogeny, larval chondrocrania and

adult osteology in the context of a well-resolved phylogeny. We further compare these onto-

genetic traits with the direct-developing Pseudophilautus silus. For each species, we differen-

tially stained a nearly complete developmental series of tadpoles from early postembryonic

stages through metamorphosis to determine the intraspecific and interspecific differences of

cranial and postcranial bones. Chondrocrania of the four species differ in 1) size; 2) pres-

ence/absence of anterolateral and posterior process; and 3) shape of the suprarostral carti-

lages. Interspecific variation of ossification sequences is limited during early stages, but

conspicuous during later development. Early cranial ossification is typical of other anuran lar-

vae, where the frontoparietal, exoccipital and parasphenoid ossify first. The ossification

sequences of the cranial bones vary considerably within the four species. Both species of

Taruga show a faster cranial ossification rate than Polypedates. Seven cranial bones form

when larvae near metamorphic climax. Ossification of all 18 cranial bones is initiated by larval

Gosner stage 46 in T. eques. However, some cranial bone formation is not initiated until after

metamorphosis in the other three species. Postcranial sequence does not vary significantly.

The comparison of adult osteology highlights two characters, which have not been previously

recorded: presence/absence of the parieto-squamosal plates and bifurcated base of the

omosternum. This study will provide a starting point for comparative analyses of rhacophorid

skeletal ontogeny and facilitate the study of the evolution of ontogenetic repatterning associ-

ated with the life history variation in the family.
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Introduction

Rhacophoridae (Old World tree frogs), are a monophyletic family [1–8] with a high diversity,

constituting ca. 6% of the world’s anuran species [9]. Liem [10] analyzed the skeletal morphol-

ogy in 420 lineages, representative of 14 rhacophorid genera. However, despite their preva-

lence and existing data for adult morphology, the patterns and processes of skeletal ontogeny

is largely unknown.

Rhacophoridae has been subjected to considerable recent taxonomic revisions, resulting in

the recognition of many new independent evolutionary lineages at genus level [5–6,11–16]; 11

of the 18 recognized rhacophorid genera are recent descriptions. These new generic descrip-

tions are largely based on molecular data and to a lesser extent on molecular data and mor-

phology [13,14,16]. One of the main impediments to new lineage identification, prior to the

advent of molecular phylogenetic techniques, was the lack of consistent external morphologi-

cal characters. In recent phylogenetic reconstructions of rhacophorid relationships, adult skel-

etal data have been sparsely used [13,14], but never skeletal ontogeny.

The evolution of the spectacular diversity of reproductive modes in rhacophorids shows

that both terrestrial direct-developing and foam-nesting species arise through gel-nesting

ancestors, while basal rhacophorids are aquatic breeders [15]. The terrestrial direct-developing

forms, which spend their entire embryonic sequence within eggs, are placed in three well-sup-

ported clades―Philautus, Pseudophilautus and Raorchestes. Basal, fully aquatic-breeding, gen-

era (Buergeria and Liuixalus) exhibit a biphasic lifecycle, i.e., eggs are deposited in water and a

free-swimming larva metamorphoses into an adult. The gel-nesting species that lay terrestrial

eggs with aquatic larvae are in several distinct clades (Kurixalus, Mercurana, Gracixalus, Bed-
domixalus, Frankixalus, Feihyla). Finally, foam-nesting genera are in two paraphyletic clades

(Rhacophorus, Polypedates, Taruga, Ghatixalus in one clade and Chiromantis as another).

These have terrestrial foam nests and postembryonic free-swimming tadpoles [2,5,6,13,15].

Skeletal ontogeny across developmental stages of these forms is not known, except for a single

study on Pseudophilautus silus [17].

Molecular phylogenies are often used to map data such as morphology and life history

traits. However, this has not been applied to many newly recognized taxa, including novel rha-

cophorids. While several classical studies concentrate on osteology and ontogeny to ascertain

higher-level systematics [18,19], ontogeny is not used to resolve the Rhacophoridae [10,20–

22]. It is only now possible to analyze the osteology of Rhacophoridae in a phylogenetic

context.

Sri Lankan rhaocophorids belong to three independent evolutionary lineages representative

of two major life history strategies: foam-nesting Polypedates and Taruga [14], and terrestrial

direct-developing Pseudophilautus [2,5,6,15]. Ontogenetic skeletal development of the newly

recognized genus Taruga, which was previously referred to as a part of Polypedates, has never

been studied. Currently Taruga and Polypedates are recognized as sister lineages [6,13,14,15].

Taruga is an endemic genus, with adult morphological characters (prominent calcar at the dis-

tal end of the tibia, conical tubercles surrounding the cloaca) and tadpole morphologies (fea-

tures of the buccal cavity and vent tube), distinguishing it from Polypedates [14].

Using an almost complete series of differentially stained tadpoles, metamorphs and adults,

we examine the postembryonic skeletal development and adult skeletal osteology of the four

species belonging to the two sister lineages of foam nesters: Taruga (T. eques and T. longinasus)
and Polypedates (P. cruciger and P. maculatus). Here, we compare the patterns and processes of

ossification in these two genera to facilitate deeper level comparative analyses of morphological

evolution within Rhacophoridae.
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Materials and Methods

Field collection and lab rearing

Four freshly deposited foam nests from two species each of Taruga and Polypedates were

collected from the field: T. eques–Agarapatana, 6.901820˚N, 80.690482˚E; T. longinasus–Kan-

neliya, 6.248910˚N, 80.333669˚E; P. cruciger–Kurunegala, 7.488060˚N, 80.363873˚E; P. macu-
latus–Kantale, 8.351803˚N, 81.004516˚E. The nests, together with the substrate in which they

were laid, were carefully transferred to our lab (University of Peradeniya), in sealed polyethyl-

ene bags placed in a cooler. They were positioned above aquaria containing aged tap water so

that hatching tadpoles would fall directly into the water to undergo further development. The

tadpoles were raised in the lab under identical water quality, light (12 hr day/night) and feed-

ing conditions. They were fed twice per day; food uneaten 10 min after feeding was siphoned

off and the water levels adjusted using aged tap water. They were sampled periodically from

hatching (Gosner [23] stage 24) to a fully metamorphosed froglet (stage 46) to represent every

developmental stage. Two adult males from each species were also collected from the field

(same locations as above).

Research was conducted under the permission of Department of Wildlife Conservation

(permit no. WL/3/2/13/13) and Forest Department (permit no. R&E/RES/NFSRC/14) of Sri

Lanka. Specific methods of collection, euthanasia, tissue sampling and fixation followed the

guidelines for use of live amphibians were approved by the ethical committee of Postgraduate

Institute of Science, University of Peradeniya at its 16th meeting held on 14th November 2014.

Preservation and osteology

Sampled tadpoles were euthanized using tricaine methanesulphonate (MS-222) and preserved

in 10% neutral-buffered formalin. They were stored in 70% alcohol following a graded alcohol

series of 30% and 55%; the specimens were kept overnight at each step. One to three larvae

were taken from each stage between 25 and 46 (S1–S4 Tables). Additionally, two adults from

each representative species, Polypedates cruciger (average snout-vent length (SVL) = 55.30

mm), P. maculatus (average SVL = 54.78 mm), Taruga eques (average SVL = 38.76 mm) and T.

loginasus (average SVL = 38.90 mm) were also differentially stained for bone and cartilage.

Osteological preparations and descriptions are based on 150 specimens (S1–S4 Tables). Speci-

mens were cleared and differentially stained for bone and cartilage using alizarin red and

Alcian blue, respectively [24]. To minimize differences in cleared and stained specimens, all

the specimens were processed at the same temperature and treated with same stock solutions.

Each specimen was scored for presence of bone by using a stereomicroscope within 1–3 days

of the staining process (S1–S4 Tables). Ossification indices were calculated for each stage by

dividing the number of bones observed at a specific stage by the total number of bones. Carti-

lage terminology follows [25–32].

DNA barcoding and genetic analyses

The 16S rRNA mitochondrial gene fragment from a single tadpole from each foam nest was

amplified and sequenced to ascertain species identity. Tadpoles were euthanized in MS-222,

preserved in absolute ethanol and stored at –20˚C in the Department of Molecular Biology &

Biotechnology (DZ), University of Peradeniya. DNA was extracted from ethanol-preserved tail

muscle using a standard protocol [33]. Portions of the mitochondrial 16S ribosomal RNA gene

(600 bp) were amplified by PCR using primer sets 16Sar and 16Sbr [34]. PCR products were

sequenced directly with dye-termination cycle sequencing. Newly generated sequences were

checked using 4peaks (v. 1.7.1).

Skeletal Ontogeny in Two Rhacophorid Lineages

PLOS ONE | DOI:10.1371/journal.pone.0167939 January 6, 2017 3 / 21



Published sequences from 37 closely related species (S5 Table) of Polypedates and Taruga
(following Li et al. [5,6] Meegaskumbura et al. [13]) were included in a dataset. Additionally,

four mantellid species were used as the outgroup (S5 Table). The compiled 16S rRNA dataset

was aligned using ClustalW as implemented in MEGA v. 6.0 [35]. Uncorrected pairwise dis-

tances were calculated using PAUP� 4.0b10 [36] (S6 Table). Highly variable regions were man-

ually removed from the dataset; the final dataset consisted of 465 bp. The best-fit model (GTR

+I+G) was chosen using jModeltest v. 2.1.4 [37]. Maximum likelihood (ML) analysis was per-

formed to infer relationships among the lineages and clades using the software GARLI (Zwickl

2006) on the Cipres Science Gateway.

Results

Phylogenetic position

Phylogenetic relationships among the rhacophorid taxa presented here, agree with previous

analyses [6,13,15]. Tadpole sequences of a given species cluster with their respective adult

sequences, forming two strongly supported clades (Taruga and Polypedates); uncorrected pair-

wise distances between the tadpole sequence (GenBank accession numbers: KY111847–

KY111850; given upon acceptance) and its respective adult sequence range between 0.001–

0.002 (Fig 1; S6 Table).

Fig 1. The 16S Maximum Likelihood phylogram of the closest lineages of Polypedates and Taruga, represented by 33 taxa. Four

mantellid species are used as the outgroup. Tadpole sequences are indicated as “TP.”

doi:10.1371/journal.pone.0167939.g001
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Larval neurocranium and the first oropharyngeal arch (stage 35)

A nearly complete ontogenetic series of tadpoles was examined for each of the four species,

which represent two genera (S1–S4 Tables). Description of the neurocranium and first oropha-

ryngeal arch at stage 35 is followed by descriptions of cranial and postcranial bones.

The neurocranium is slightly longer than wide in each species. The neurocranium is widest

at the midpoint of the arcus subocularis in Taruga eques and T. longinasus but at the posterior

end of the arcus subocularis in Polypedates cruciger and P. maculatus (Fig 2). The chondrocra-

nium of each species is oval-shaped in dorsal view.

Ethmoid region. In all four species the trabecular horns diverge laterally from one

another and form ligamentous attachments to the lateral alae of the suprarostral cartilages.

Anterior ends of the trabecular horns are almost flat. Trabecular horns account for 32.2% of

chondrocranial length in T. eques, 26.7% in P. cruciger, 31.5% in T. longinasus and 29.5% in

P. maculatus. The lamina orbitonasalis is present anterior to the quadratocranial commissure.

The nasal septum is absent.

Braincase. All four species have a single large opening (i.e. frontoparietal fontanelle) in

the roof of the larval braincase. This opening is demarcated anteriorly by the lamina orbitona-

salis, posteriorly by the tectum synoticum, and laterally by the otic capsules and taenia tecti

marginalis. The taenia tecti medialis subdivides the posterior frontoparietal fontanelle into two

lateral halves. The taenia tecti medialis is almost 50% as long as the frontoparietal fenestra

except in P. maculatus (T. eques, 46%; T. longinasus, 41%; P. cruciger, 43%; and P. maculatus,
37%). Two pairs of craniopalatine and primary carotid foramina are present ventrally (not

shown).

Otooccipital region. Each oval-shaped otic capsule possesses a large fenestra ovalis ven-

trolaterally. The prootic and oculomotor foramina are visible in the orbital cartilage; the latter

opening is smaller and directed more ventrally. Laterally projecting crista parotica can be seen

anterolateral to the otic capsules. The crista parotica anteriorly bears a well-developed antero-

lateral process, which is long, finger-like in T. longinasus, stout and triangular in T. eques and

long and triangular in P. cruciger and P. maculatus (Fig 2). A laterally projecting, triangular

posterolateral process is well developed in the two Polypedates species but reduced in the two

Taruga. Paired occipital arches extend ventrally from the posteromedial margins of the otic

capsules and form occipital condyles by fusing with the basal plate.

Palatoquadrate cartilage. The palatoquadrate lies lateral to the braincase; it is oriented

anteroposteriorly and parallel to the longitudinal axis of the chondrocranium. The anterior

quadratocranial commissure, the ascending process and the otic process connect the palato-

quadrate to the neurocranium. The posterior curvature of the palatoquadrate is at the level of

attachment to the ascending process of orbital cartilage. The quadratoethmoidal process is tri-

angular extending from the anterior margin of the anterior quadratocranial commissure. The

processus pseudopterygoideus is absent in all four species. The muscular and articular pro-

cesses constitute the anterior processes of the palatoquadrate. The muscular process is dorsally

expanded; it is 1.74 mm wide in P. cruciger, 1.50 mm in P. macualtus, 1.26 mm in T. eques and

0.94 mm in T. longinasus.
Suprarostral cartilages. Paired suprarostral cartilages are oriented perpendicular to the

longitudinal axis of the chondrocranium and lie between the trabecular horns. They support

the upper horny beaks. Each comprises a flat, rectangular ala laterally and a medial corpus.

Adjacent corpora are fused ventromedially in T. longinasus, T. eques and P. maculatus, and

dorsomedially in P. cruciger. The gap between posterior margins of the medial corpus is 6.8%

of chondrocranial width in P. cruciger; the gap between anterior margins of the medial corpus

is 11.5% in T. longinasus, 9.3% in T. eques and 6.0% in P. maculatus. Lateral alae curve rostrally,

Skeletal Ontogeny in Two Rhacophorid Lineages
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Fig 2. Chondrocrania of the foam-nesting genera, Polypedates and Taruga. (A) A labeled

chondrocranium of Polypedates maculatus. Comparative illustrations of the chondrocrania of the four
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where they fuse with the medial corpus. The suprarostrals of T. longinasus, T. eques and P.

maculatus appear U-shaped in anterior view but assume an inverted U-shape in P. cruciger.
Lower jaw. Paired Meckel’s and infrarostral cartilages form the lower jaw. Infrarostrals

are wedge-shaped and triangular in cross section. Each transverse infrarostral cartilage is con-

fluent with each other medially via a thin bar of cartilage (commissura intramandibularis).

The posterior margins of each infrarostral are connected via a ligament with the anterior mar-

gin of the adjacent, sigmoid-shaped Meckel’s cartilage. Meckel’s cartilage articulates with the

articular process of the palatoquadrate laterally.

Ossification of the skull

The cranial ossification sequence is depicted in Fig 3. The following comparisons of adult

bones among the four species emphasize phylogenetically informative characters (character

matrix is given as S11 Table) recognized by Liem [10] and Scott [38].

Parasphenoid. The parasphenoid is a triradiate, medial and dorsoventrally flattened bone

that invests the basal plate. It is the first bone to ossify in all four species. Ossification begins in

the cultriform process but continues posteriorly along the midventral floor of the braincase to

the exoccipital region, where it extends laterally to form the paired alae. The anterior, bifid tip

of the cultriform process lies posterior to the planum antorbitale; it is serrated in adult T. eques
and T. longinasus and sharply pointed in P. cruciger and P. maculatus. The alae extend laterally

and are moderately long; they are 45.9% of cranial width in P. cruciger, 37% in P. maculatus,
46.2% in Taruga eques and 67.1% in T. longinasus. The caudal edge of the sphenethmoid artic-

ulates with the rostral edge of the parasphenoid seen at stage 46 in P. maculatus but only in

adults in P. longinasus, T. eques and P. cruciger. Alae fuse with the otic capsules at stage 44 in T.

eques, stage 45 in T. longinasus, stage 42 in P. cruciger and stage 46 in P. maculatus.
Exoccipitals. Ossification of the paired exoccipitals begins along the dorsal regions of the

occipital condyles. It continues around the middle part of the occipital arch dorsally and ven-

trally, and also along the otic capsules and basal plate. Subsequently, ossification extends laterally

into the posteromedial portions of the otic capsules, the occipital condyles and the margins of

the jugular foramen. Exoccipitals and prootics fuse to form the posterolateral parts of the brain-

case and the anterolateral, anteroposterior and anteromedial margins of the otic capsules at stage

44 in Taruga eques, T. longinasus and P. cruciger, and at stage 43 in P. maculatus,
Frontoparietals. Ossification begins near the midpoint of the taenia tecti marginalis and

extends rapidly along the longitudinal axis, growing anteriorly and posteriorly. The frontopar-

ietal ossification also proceeds medially at a comparatively slower rate, thus increasing in

length and breadth while flanking the frontoparietal fenestrae. In adults, frontoparietals are

slender, long, paired bones, which are narrowly separated at the midline. The frontoparietal

fontanelle is bordered by taenia tecti marginalis laterally, nasal cartilages anteriorly and sphe-

nethmoid anterolaterally. The greatest width of the skull (in adults) is achieved posterior to the

otic capsules in all four species. Only the two Polypedates species possess parieto-squamosal

plates, which are placed laterally on the posterolateral ends of the frontoparietals.

Prootics. Osteogenesis of prootics is initiated as a small center along the anteromedial

margin of the otic capsule. These bones are deposited gradually, laterally and posteriorly over

species: Taruga eques (B), Taruga longinasus (C), Polypedates cruciger (D) and Polypedates maculatus (E).

Abbreviations: AP, ascending process; ARP, articular process; ASO, arcus subocularis; IC, infrarostral

cartilage; LON, lamina orbitonasalis; MC, Meckel’s cartilage; MP, muscular process; OC, otic capsule; OP,

otic process; QC, anterior quadratocranial commissure; QEP, quadratoethmoidal process; SA, suprarostral

ala; SC, suprarostral cartilage; SMC, suprarostral medial corpus; TH, trabecular horns; TTD, taenia tecti

medialis; TTM, taenia tecti marginalis; TS, tectum synoticum. Scale bar: 5 mm.

doi:10.1371/journal.pone.0167939.g002
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the anterior and anterolateral margins of the otic capsules. Prootics articulate with the lateral

margins of frontoparietals dorsally (at stage 43 in T. eques, stage 45 T. longinasus, stage 44 in P.

cruciger and stage 42 in P. maculatus). In adults, prootics form the anterolateral and ventrolat-

eral margins of the otic capsules, and posterolateral walls of the braincase.

Septomaxilla. Osteogenesis of the septomaxillae is initiated as tiny centers, located ante-

rolaterally within the nasal capsules (see S1–S4 Tables for ossification sequences of each indi-

vidual species). In adults, paired, dermal, semilunar-shaped septomaxillae lie within the nasal

capsules, below the nasal roof, supporting the external nares. Septomaxillae are clearly visible

Fig 3. Comparison of ossification sequences and ossification indices (cranial bones) of Taruga and Polypedates. (A) Initial appearance of cranial

bones (N = 19) is plotted against the Gosner stage for the four species. (B) Ossification indices of the four species is calculated to each individual (circles)

by dividing the number of present ossified skull bones by the total number of scored elements in the cranium. The initial ossification is relatively slow in the

two species of Polypedates (green and yellow open dots), fast in the two species of Taruga (blue and red open dots). But as development progresses,

ossification rate of Polypedates species increases.

doi:10.1371/journal.pone.0167939.g003
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between the nasals and pars facialis of the maxilla in lateral view, and also can be observed

between the oblique cartilage and nasals in the dorsal view.

Premaxilla. Initial ossification of the alary process is visible dorsal to the trabecular horns

at stage 40 in T. eques, stage 41 in T. longinasus and stage 42 in both P. cruciger and P. macula-
tus. Dentary and palatine processes of the premaxillae appear next, respectively. Premaxillary

teeth arise as short, pointed buds at stage 42 in P. cruciger (number of teeth, left/right: 6/5) and

at stage 46 in P. maculatus (8/8) but after metamorphosis in T. longinasus and T. eques. After

metamorphosis, premaxillae unite syndesmotically, completing the upper jaw anteriorly. The

dentary process of the premaxilla bears a horizontally oriented dental ridge at stage 46 in all

four species. The alary process reorients vertically during metamorphosis, expanding dorsally

when the trabecular horns erode during metamorphosis. In adults, paired premaxillae com-

plete the maxillary arcade anteriorly. The premaxillae are well separated from one another

anteriorly and also from the laterally adjacent maxillae. The premaxillae are located anterome-

dially, and lay dorsal to the proximal trabecular horns. These bones are composed of dentary,

alary and palatine processes. The alary process of the premaxilla is curved laterally and support

the cartilage of the nasal capsules. The palatine process is posteromedially oriented, and serves

as a site for attachment of the soft tissue lining the buccal cavity.

Maxilla. The maxillae are paired, dermal, dentigerous bones containing dentary, palatine

and facial processes. Initial thin ossifications (just posterior to septomaxillae in dorsal view)

are located on either side of the skull along the posterior margin of the suprarostral cartilages.

These rapidly extend anteriorly and posteriorly to form the pars facialis. The maxillary ossifica-

tion reaches the level of the posterior margin of the orbit by stage 43 in all species. The facial

process articulates with the premaxilla, forming a pointed snout in T. eques and T. longinasus
and a blunt snout in both Polypedates. Premaxillae and maxillae begin to overlap at stage 44 in

T. eques, stage 45 in T. longinasus, stage 46 in P. maculatus and in adults in P. cruciger (Fig 4).

In T. eques, the maxilla extends beyond the caudal margin of the eye at stage 45 and it articu-

lates with the quadratojugal at stage 46. This articulation also occurs at stage 46 in P. maculatus
and T. longinasus, but it is seen in adults in P. cruciger. The facial process of the maxilla articu-

lates broadly with the quadratojugal. Maxillary teeth are first visible at stage 42 in P. cruciger
(number of maxillary teeth: 9/8), at stage 46 in P. maculatus (12/13) and in adults in T. longina-
sus (12/12) and T. eques (11/13).

Nasals. The nasals are paired, crescent shaped, expansive bones roofing part of the nasal

capsules. The long axes are arranged transversely, parallel to the maxillae in all four species.

After the formation of cartilaginous tectum nasi, paired centers of ossifications are narrowly

separated from one another. This separation occurs anteriorly to the frontoparietals on the

dorsal borders of the nasal capsules. The long, tapering maxillary process of the nasal extends

ventrolateral, and adjoins facial process of maxilla in adults in all four species. The crescent

shape of the nasals is maintained by equal rates of ossification occurring anteromedially and

anterolaterally, widening along the anteroposterior axes. Nasals do not articulate medially, or

with the frontoparietals posteriorly or the sphenethmoid anteriorly. In later stages (stages 44,

45, 46 in all four species) the anteromedial tip of the nasal grows and stops abruptly. Nasals are

not completely developed by stage 46 in all four species, but nasals overlap the palatines in all

adult specimens and have a more lateral orientation. In adults, nasals do not overlap either the

sphenethmoid or each other.

Angulosplenials and dentaries. The mandible comprises three paired bony elements:

angulosplenial, dentary and mentomeckelian. The angulosplenials are dermal bones that

occupy posterior and anterior regions of the lower jaw. They do not articulate with the den-

taries and mentomeckelians. Osteogenesis is initiated along the center of the ventral side of

transversely oriented Meckel’s cartilage. Ossification proceeds along the ventral and lingual
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sides. The angulosplenials approach the mandibular articulation posteriorly and invest the lin-

gual surface anteriorly after completion of metamorphosis. In adults, the coronoid processes

can be observed in the dorsomedial portion of the posterior end of angulosplenials. The den-

tary is a dermal, small, dentate, slender bone investing anterolateral and external surfaces of

the lower jaw. The dentaries appear as long, thin ossifications associated with the straightening

and fusion of the infrarostrals with Meckel’s cartilages. Initial ossifications appearing along the

fused margin of the infrarostrals and Meckel’s cartilage proceeds posteriorly retaining a medial

separation. The dentary fuses to the mentomeckelians after metamorphosis.

Mentomeckelians. The mentomeckelians are small, paired endochondral bones that

occupy the anteromedial parts of the mandible. Their initial ossification appears on the ventral

Fig 4. Modification and repatterning of the chondrocrania at stages 31, 38 and 43 of Taruga longinasus (A),

T. eques (B), Polypedates maculatus (C), and P. cruciger (D).

doi:10.1371/journal.pone.0167939.g004
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surface of the infrarostrals. In all four species, at stage 46, mentomeckelians remain cartilagi-

nous at their medial tips, appearing neither fused nor articulated.

Columella. A long, laterally oriented columella appears between the fenestra ovalis of the

exoccipital and the otic ramus of the squamosal. The proximal footplate and the basal part

(pars media plectri) of the columella are faintly ossified (see S1–S4 Tables for specific stages).

However, ossification of the columella can be only seen in adults of P. cruciger.
Palatine. The palatines are paired, elongated, edentate, slim, and transversely oriented

dermal bones that lie perpendicular to the longitudinal axis of the skull. They occupy the ven-

tral side of the antorbital process, between the maxilla and the sphenethmoid, posterior to the

paired vomers. Initial ossification is observed along the anterior margin of the planum antorbi-

tale (see S1–S4 Tables for specific stages). As growth proceeds, the palatines thicken and elon-

gate. They are curved dorsally and extend while fusing with the sphenethmoid anteriorly

(fusion of the palatines with the sphenethmoid is seen in adult specimens of P. cruciger, T.

eques and T. longinasus; but observed at the stage 46 in P. maculatus) while terminating

bluntly.

Squamosal. Dermal, paired squamosals invest the cartilaginous palatoquadrate. They are

comprised of three rami: ventral, zygomatic and otic. The ventral ramus is the largest of the

three. It appears as a small ossification on the anterior margin of the larval muscular process.

During the metamorphic reorientation of the palatoquadrate, the squamosal moves from ante-

rior to the orbit to a position lateral to the otic capsule. The final orientation is achieved by

stage 44 in T. eques, stage 43 in T. longinasus, stage 42 in P. cruciger and stage 43 in P. macula-
tus. The squamosals articulate distally with the quadratojugal at stage 46 in both Taruga spe-

cies, and postmetamorphically in both Polypedates species. The short, small zygomatic ramus,

projects anterodorsally from the ventral shaft of the squamosal and articulates with facial pro-

cess of maxilla. Otic ramus ossifies concomitantly with the zygomatic ramus at stage 46 in T.

eques and T. longinasus, and in adults in P. cruciger and P. maculatus; the otic ramus has a

slight posterodorsal orientation, lying laterally adjacent to the anterolateral corner of the carti-

laginous crista parotica. The squamosal arms rapidly elongate to form triradiate T-shaped

bones in adults.

Pterygoid. The pterygoids are one of the ventral components of the suspensorium. These

robust, dermal, triradiate bones have anterior, posterior and medial rami. The initial ossifica-

tions are observed along the ventromedial surface of the articular process of the palatoqua-

drate. As larvae grow, ossifications continue along the anterior and posterior margins.

Ossifications along the ventromedial surface of the cartilaginous pterygoid process give rise to

the long anterior ramus, which terminates near the anterior margin of the orbit. The medial

rami, which are much shorter in a dorsomedial direction, extend onto the ventrolateral margin

of the otic capsule. The bones are triradiate after the three rami expand in both Taruga species

at stage 46 and in adults in both Polypedates.
Vomer. The vomers form as tiny, paired ossification centers at the posteromedial corners

of the internal nares. Prechoanal, postchoanal and anterior processes make up the lateral, pos-

terior and anterior components of the vomers, respectively. The prechoanal process forms the

anterior margin of the choana. The postchoanal processes appear after metamorphosis in all

four species. They support the anteromedial margins of the choana. Initial ossifications under-

lying the nasal capsules expand rapidly lateral to the anterior tip of the parasphenoid. Vomer-

ine teeth are seen in adults of T. eques and P. cruciger. However, vomerine teeth are not

distinct in the stained adult specimens of T. longinasus and P. maculatus.
Quadratojugal. The quadratojugals are paired, slender, dermal bones. Laterally, the ante-

rior ends of the quadratojugals overlap the posterior ends of maxillae, completing the maxillary

arcade ventrally (at stage 46 in T. eques and in adults in the remaining three species). The
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posterior ends of the quadratojugal ossify on the ventrolateral surface of the articular process

of the palatoquadrate. These ends articulate with the ventral ramus of the squamosals. Further

bone development occurs by lengthening of the bones, where the quadratojugal, maxillae and

squamosal are interconnected at metamorphosis.

Sphenethemoid. The sphenethmoid is an endochondral bone that contributes to the ante-

rior part of the braincase, placed between the posterior margins of the nasal capsules and the

anterior margins of the frontoparietals. The sphenethmoid originates as two centers of semi-

lunar-shaped ossifications, in faint red color lateral to the anterior most part of the frontopar-

ietals, at stage 46 in P. maculatus and in adults in T. longinasus, P. cruciger and T. eques. Subse-

quently, ossification proceeds dorsoventrally forming a deeply concave sphenethmoid

anteriorly and posteriorly. Dorsally the bones are nearly covered by the frontoparietals and

ventrally invested by the cultriform process of the parasphenoid (Figs 5 and 6).

Development of the hyoid skeleton

The four species possess well-developed hyobranchial skeletons by stage 44 with thin hyoid

plates possessing pairs of hyales, anterolateral (“alary process” [10]), posterolateral and poster-

omedial (“thyrohyal” [10]) processes. Osteogensis of the posteromedial processes are initiated

by stage 45, in all four species, along the center of the cartilaginous shaft and extends along the

anteroposterior axis. Adults of T. eques, T. longinasus, P. cruciger and P. maculatus possess

well-ossified posteromedial processes with cartilaginous epiphyses on the distal ends and

blade-like anterolateral processes (Figs 5 and 6).

Development of the axial skeleton

The axial skeleton is composed of three regions: presacral, sacral and postsacral. There are

eight presacral vertebrae (I–VII procoelous, VIII amphicoelous). The sacrum and sacral diapo-

physes make up the sacral region whereas the post-sacral region consists of the urochord and

hypostyle. Each post-atlas vertebra consists of a cylindrical centrum (oval in a cross section),

dorsal neural arch and three pairs of processes: prezygapophyses (at the anterior end), postzy-

gapophyses (at the posterior end) and transverse processes (expanding laterally from the pedi-

cels). The atlas lacks transverse processes and prezygapophyses in all four species and the

articulation with the occipital condyles of the skull is via a pair of atlantal condyles. The ossifi-

cation of neural arches begins in a single center (see S1–S4 Tables for specific stages for the

four species). This center enlarges into a vertical sheet of bone that later has three components

including a lamina, pedical and a pair of lateral processes. The transverse processes appear as

lateral ossifications in all species, later proceeding further laterally from the center of ossifica-

tion while maintaining cartilaginous tips. The transverse processes of and V are the most well

developed of all four species (see S8 Table). Completion of the ossification of transverse pro-

cesses in all four species occurs at stage 41. The distal end of the sacral diapophyses articulates

with the ilial shaft of the pelvic girdle.

Development of the pectoral girdle

Prior to ossification, each half of the pectoral girdle is composed of the cartilaginous primordia

of the scapula, suprascapula and coracoid. The scapula ossifies along its longitudinal axis,

expanding laterally and articulating with the suprascapula (see S9 Table). Ossification of the

suprascapula is limited to the anterior region; this gives rise to the cleithrum, which has a

wider base adjacent to scapula, where it extends narrowly along the distal margin. The clavicle

appears as a thin ossification along the anterior margin of the cartilaginous procoraccoid,

whereas the coracoid, an endochondral bone, ossifies along the mid portion of the

Skeletal Ontogeny in Two Rhacophorid Lineages

PLOS ONE | DOI:10.1371/journal.pone.0167939 January 6, 2017 12 / 21



Skeletal Ontogeny in Two Rhacophorid Lineages

PLOS ONE | DOI:10.1371/journal.pone.0167939 January 6, 2017 13 / 21



cartilaginous primordia of the coracoid. Ossification of these two bones is observed concur-

rently in all four species. The clavicle and coracoid extend laterally along their cartilaginous

parts without merging or articulating with other bones.

The epicoraccoid is a cartilaginous arch that adjoins the two halves of the pectoral girdle. It

appears at stage 37 in P. cruciger, P. maculatus and T. eques and in stage 36 in T. longinasus.
The cartilaginous bridge joins the two halves of the pectoral girdle at stage 41 in all four spe-

cies. The omosternum and sternum form anteriorly and posteriorly to this cartilaginous

bridge, respectively; these two bones are ossified at stage 46 in T. eques, T. longinasus and P.

macualtus, whereas in P. cruciger ossification occurs at stage 45. In adults, the base of the

omosternum is clearly forked in both species of Polypedates but not in Taruga (Fig 6). Further-

more, the cartilaginous distal ends differ considerably among the four species (Fig 6). The

adult sternum (“metasternum”; Liem 1970) has a bony stylus and a cartilaginous distal end

(forked in P. cruciger; Figs 5 and 6)

Development of the forelimb

The forelimb consists of the cartilaginous primordia of the humerus, radius, ulna, radiale and

ulnare at stage 36 in P. cruciger and at stage 34 in T. eques and at stage 35 in T. longinasus and

P. cruciger (see S9 Table). Ossification begins in the center of the midline of the cartilaginous

humerus primordium, and extends anteriorly and posteriorly. The radius and ulna ossify sepa-

rately, later fusing proximally (stage 38 in all four species), distally and medially (stage 42 in all

four species) to form the radioulna. Cartilaginous primordia of the proximal phalanges are

present at stage 37 in P. cruciger and at stage 35 in T. eques, T. longinasus and P. maculatus.
Ossifications of all the forelimb elements initiate along the mid portion and expand laterally.

The phalangeal formula of all species is 2-2-3-3, where the proximal phalanges ossify first and

the distal phalanges last. The ossification of the carpals can be observed only in adult speci-

mens of T. eques. Distal phalanges are Y-shaped in all four species (Fig 7). Forelimb phalanges

tend to ossify before those of hind limbs.

Development of the pelvic girdle

The ilium, ischium and pubis unite to form the pelvic girdle. The ilium articulates with the

ventral surface of the well-expanded sacral diapophysis of the axial skeleton. As development

progresses the iliac shaft begins to ossify along with the mid portion of the humerus in all four

species (see S10 Table). The ossifications proceed anteriorly and posteriorly along its longitudi-

nal axis.

Development of the hind limb

In all four species, ossification of the hind and forelimbs start concurrently (S1–S4 Tables).

The femur, being the proximal element of the hind limb, articulates with the pelvic girdle. This

Fig 5. Osteology of Polypedates cruciger, adult male. (A) Cranium, dorsal view. (B) Cranium, ventral

view. (C) Lower jaw. (D) Hyoid skeleton. (E) Pectoral girdle. (F) Left hind limb. (G) Left forelimb. (H) Axial

skeleton. Abbreviations: AG, angulosplenial; AT, atlas; ALP, anterolateral process; CN, centrum; COP,

coronoid process; CP, carpals; CR, coracoid; CT, cleithrum; CV, clavicle; DP, distal phalange digit; DT,

dentary; EX, exoccipital; FP, frontoparietal; HU, humerus; HP, hyoid plate; HY, hyale; IL, illium; MC,

metacarpal; MNT, mentomeckelian; MT, metatarsal; MX, maxilla; NS, nasal; OC, oblique cartilage; OS,

omosternum; PA, parasphenoid; PAR, pars articularis; PH, prehallux; PL, palatine; PLP, posterolateral

process; PM, premaxilla; PMP, posteromedial process; PR, prootic; PT, pterygoid; QJ, quadratojugal; RL,

radiale; RU, radioulna; SC, scapula; SD, sacral diapophysis; SP, sphenethmoid; SQ, squamosal; SS,

suprascapula; ST, sternum; TA, tympanum annulus; TP, transverse process; TR, tarsal; UL, ulnare; US,

urostyle; VM, vomer. Scale bar: 5 mm.

doi:10.1371/journal.pone.0167939.g005
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bone along with tibia, fibula, fibulare, tibiale, metatarsals, tarsals and phalanges form the hind

limbs. The tarsal region consists of the prehallux, element Y and tarsals 2–3. Proximal to the

tarsal region, fibulare and tibiale can be seen, which are fused at its proximal and distal ends.

The phalanges ossify also from proximal to distal. The final phalangeal formula of the hind

limb is 2-2-3-4-3 in all species. The ossifications of the tarsals were not observed even at stage

46, and considered as postmetamorphic bones in all four species of Taruga and Polypedates.

Discussion

This comparison of the skeletal morphology of the two closely related foam-nesting lineages

highlights phylogenetically informative characters at two different levels: between species and

between genera. Adult osteology and chondrocranial morphology of the rhacophorids have

been examined in several studies [10,13, 14,18,19,20–22,38]; however, little information is

available on the skeletal development [39–42,17].

The four species differ in chondrocranial morphology. Polypedates cruciger and P. macula-
tus have larger chondrocrania than Taruga eques and T. longinasus. There are substantial dif-

ferences between the genera in the shape of the anterolateral processes and presence/absence

of posterolateral processes on the otic capsules. Furthermore, the inverted U shape of the

suprarostral cartilage is considerably different in P. cruciger when compared with upright U-

shaped suprarostrals in the other three species. This is due to a dorsomedial fusion of the cen-

tral corpora vs ventromedial fusion of the suprarostrals.

Ossification sequences do not vary significantly within a single species, but considerable

interspecific variations are observed between the four foam nesters. Differences in the ossifica-

tion sequence of the cranial bony elements in particular are seen towards the end of metamor-

phosis. For all four species, the parasphenoid, frontoparietals and exoccipitals are the first

bones to ossify, coinciding with the other observations of metamorphic cranial ossification

[26]. Paired prootics are the fourth bony elements to form in Taruga and Polypedates; septo-

maxilla, maxilla, premaxilla, nasals, dentaries and angulosplenials follow next, showing slight

variations in the order of their initial appearance (S1–S4 Tables). Our results show that the

major modifications of the chondrocrania occur early in Taruga (stages 40–41) when com-

pared with Polypedates (stage 42). However, interpretation of metamorphic acceleration or

delay is dependent on the ancestral ossification sequence, which cannot be inferred from the

Fig 6. Comparison of the osteology of Polypedates and Taruga, adult males. (A) Cranium, dorsal view.

(B) Cranium, ventral view. (C) Lower jaw. (D) Hyoid skeleton. (E) Pectoral girdle. (F) Axial skeleton of

Polypedates cruciger, P. maculatus, Taruga eques and T. longinasus.

doi:10.1371/journal.pone.0167939.g006

Fig 7. Comparison of the distal phalanges of the forelimb and hind limb. (A) Taruga eques. (B) T.

longinasus. (C) Polypedates cruciger. (D) P. maculatus.

doi:10.1371/journal.pone.0167939.g007
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existing data. In anurans, it has been recorded that premaxilla, maxilla, septomaxilla and nasals

ossify after the underlying nasal cartilages are formed [43], which is also true for these four spe-

cies. Similarly, the squamosals appear before the metamorphic remodeling of the palatoqua-

drate in all four species; however, T. eques shows a comparatively slow ossification rate of this

bone. However the order of the appearance of the bones, vomer, pterygoid, quadratojugal, pal-

atine, sphenethmoid, and columella vary considerably among the studied four species (S1–S4

Tables). Ossification of the maxillary arcade commences at the same time in all four species,

where maxillae ossify first; however, premaxillae show a slow ossification rate in P. cruciger
and P. maculatus compared to T. eques and T. longinasus.

Regardless the differences in the ossification sequences, the four species studied are similar

in the relative timing of the skeletal units; the very first bones are formed in the cranium, fol-

lowed by the axial skeleton, and next, with a clear delay, the ossification of the forelimbs and

hind limbs progress.

Forelimb and hind limb start ossifying simultaneously in all species except in T. longinasus,
where ossification of the forelimbs is initiated first. The osteogensis of the limbs begins only

after the I–VIII neural arches are formed. In all four species, the postcranial skeleton is well

developed prior to the completion of the ossification of the cranium. Interestingly, tarsals and

carpals are only ossified in Polypedates maculatus by stage 46, the species with the widest distri-

bution (even across India), whereas in the other three species, these bones were ossified only

in adults.

The adult osteology of the two genera also shows several conspicuous differences, helping

outline the generic-level boundaries using osteological characters; some of these characters

were also used by Liem [10] to define family and generic-level boundaries of rhacophorids.

Furthermore, Meegaskumbura et al. [14] highlighted some cranial morphological characters

(e.g., shape of the skull, frontoparietal, pterygoid, and orbit) to distinguish the two genera. In

our study, we highlight two additional characters, which have not been discussed before, i.e.,

the posteriorly extending parieto-squamosal arch (present in Polypedates vs. absent in Taruga),

and structures of the sternum (“metasternum” [10]) and omosternum. The distinguishable,

forked, distally dilated sternum of P. cruciger is conspicuous among the four; the forked base

of the omosternum is broadly forked in Polypedates, whereas in Taruga, this is not evident.

These results are comparable to published data of the direct developing Pseudophilautus
silus [17]―a related lineage of Taruga and Polypedates. The order of cranial bone formation in

Pseudophiluauts silus is similar to the patterns found in metamorphic anurans rather than the

unique sequences found in other well-studied direct developers (e.g., Eleutherodactlyus coqui
[44]). Direct development removes the need of larval specializations, which can permit devel-

opmental repatterning [44]. However, in P. silus most of the larval specific characters are sig-

nificantly reduced rather than entirely lost.

Among the deviated characteristics seen in P. silus, the jaw suspension exhibits the greatest

departure from the typical tadpole morphology in its modifications of the palatoquadrate carti-

lage [17]; the palatoquadrate is present as an initial thin horizontal cartilage (later orienting in

a vertical position), where the posterior end of the palatoquadrate is not connected to the neu-

rocranium via ascending and otic processes. Both processes are present in Taruga and

Polypedates.
Initiation of bone formation occurs prior to hatching in this direct-developing species,

unlike the foam nesters described here, where the ossification begins after hatching. The for-

mation of the jaw bones (maxilla, premaxilla, dentary, angulosplenial) is accelerated in P. silus
[17], possibly facilitating jaw-usage for active feeding in newly hatched froglets [45]. Vomer,

quadratojugal and palatine are absent in hatchlings of P. silus but are present in adults [17].

However, these three bones are observed by stage 46 in Taruga and Polypedates. These
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conspicuous variations between the direct developers and foam nesters, which have been stud-

ied so far, indicate the extent of developmental changes associated with these life histories

despite sharing a common gel-nesting (GN) ancestor [15].

Characters such as the number of bones present at the end of metamorphosis, ossification

sequence and adult cranial morphology are of systematic value, as they tend to consistently

vary between species. Our study highlights the variation of these developmental features as

they are analyzed in a phylogenetic context.
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