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Abstract: The COVID-19 pandemic has spread widely around the world. Many mathematical models
have been proposed to investigate the inflection point (IP) and the spread pattern of COVID-19.
However, no researchers have applied social network analysis (SNA) to cluster their characteristics.
We aimed to illustrate the use of SNA to identify the spread clusters of COVID-19. Cumulative
numbers of infected cases (CNICs) in countries/regions were downloaded from GitHub. The CNIC
patterns were extracted from SNA based on CNICs between countries/regions. The item response
model (IRT) was applied to create a general predictive model for each country/region. The IP days
were obtained from the IRT model. The location parameters in continents, China, and the United
States were compared. The results showed that (1) three clusters (255, n = 51, 130, and 74 in patterns
from Eastern Asia and Europe to America) were separated using SNA, (2) China had a shorter mean
IP and smaller mean location parameter than other counterparts, and (3) an online dashboard was
used to display the clusters along with IP days for each country/region. Spatiotemporal spread
patterns can be clustered using SNA and correlation coefficients (CCs). A dashboard with spread
clusters and IP days is recommended to epidemiologists and researchers and is not limited to the
COVID-19 pandemic.

Keywords: COVID-19; social network analysis; item response model; correlation coefficient; daily
confirmed case; spatiotemporal spread pattern

1. Introduction

The COVID-19 pandemic is spreading widely around the world, causing significant
threats to the public. As of February 20, the world has accumulated more than 0.11 billion
the COVID-19 cases, threatening people’s health, economic development, and social stabil-
ity [1]. Many online real- or near-real-time dashboards have been launched to track the
worldwide spread of the COVID-19 outbreak [2] and to provide the cumulative numbers
of infected cases (CNIC) daily to the public, such as the Johns Hopkins University Center
for Systems Science and Engineering dashboard (JHU) [3], the Leszkiewicz personal dash-
board [4], the World Health Organization dashboard [5], HealthMap [6], and the dashboard
created by Schiffmann, an 18-year-old high school senior from Washington State in the
United States [7].

Although those website owners [3–7] made efforts to launch dashboards, the sites
merely display the basic information on the CNIC of COVID-19 with bubbles on a world
map. Other websites [8–12] also provide common and regular information (e.g., with a
traditional world map and CNIC or daily confirmed cases (DCC)) to the public. None of
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these websites are equipped with spatiotemporal spread patterns (SSP) of COVID-19 and
the inflection points (IP) [13–16] to present the negative impact of COVID-19 (NISHC) on a
world map using an overall score to fulfill the public’s interest. Displaying CNIC bubbles
on world maps in areas is common during the COVID-19 pandemic. Determining how to
display both features (i.e., SSP and IP days) on a world map is challenging. We were thus
motivated to design a dashboard that can simultaneously display both SSP and IP days
and complementarily characterize spread patterns of COVID-19 across the globe.

Furthermore, few authors are willing to provide their detailed experimental data to
readers who are going to replicate the study on their own. Data, along with MP4 videos
and modules in articles, would be an interesting resource and have rarely been seen before
in the literature.

1.1. Social Network Analysis for Identifying Spread Patterns Based on DCC

Social network analysis (SNA) [17] is the process of investigating social structures
through the use of networks and graph theory. It characterizes networked structures in
terms of nodes (individuals, groups of people, or objects within the network) and the
ties, edges, or links (relationships or interactions) that connect them. Examples of social
structures commonly visualized through SNA can be found in many academic disciplines
and fields [18–23]. The use of SNA was thus expected to identify SSP of the COVID-19
cases around the world.

1.2. Item Response Theory and the Infection Point on an Ogive Curve

Many methods [24–32] have been used to build mathematical models for predicting
the CNIC or DCC of COVID-19. None of the previous studies applied the item response
theory (IRT) [33,34] to the pandemic outbreak. The IRT model, using probability to display
the ogive curve (based on CNIC), is emulated as the epidemic trend on the expected CNCI.
Two parameters (i.e., location on the x-axis and slope as the steep of a curve toward the
y-axis represented by item difficulty (b) and discrimination (a), respectively) are involved
in a predictive model. The infected days on the x-axis are transformed to be the so-called
ability parameter (θ) on a continuum scale from the left to the right side (e.g., in a range
from −5 to 5) [32]. As such, the cumulative probabilities on the y-axis can be converted back
to the expected CNIC for a specific country/region that has been impacted by COVID-19.
The inflection point (IP) [13–16,32] can be determined on the IRT ogive curve accordingly.

1.3. Two Phenomena Observed in the COVID-19 Pandemic

We observed that the SARS-CoV-2 (COVID-19) disease began in Wuhan, China [35]
and was spread to West Asia, Europe, North America, and South America. Whether the
spread routes of COVID-19 are evident using SNA is worth studying.

After entering the winter season, starting in January, the deadly coronavirus experi-
enced a new wave (called the second wave) of sporadic cluster cases, especially in colder
cities. For example, the northern and northeastern cities in China, including Shijiazhuang
City in Hebei Province and Suihua City in Heilongjiang Province, began to report new
cluster cases [36]. Shijiazhuang City in Hebei Province has been listed as a high-risk region.
Currently, Shijiazhuang City is the only high-risk region in China, with over 300 new con-
firmed cases, a record high in over 5 months, in the 10 days from 2 to 11 January 2021 [36].
Two questions were raised: (1) Whether both the provinces of Hebei and Heilongjiang in
China have a similar spread pattern, and (2) which countries (or regions) have the same
spread pattern as Hebei Province (China).

1.4. The Aims of This Study

Two parts are involved in this study: Identifying the spread patterns in the two periods
(1) from 22 January to 27 March 2020, and (2) from 1 January to 16 February 2021. The aims
of this study are to (1) illustrate the use of SNA for investigating the association of DCCs
in regions; (2) examine the spread routes of COVID-19 from China to West Asia, Europe,
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North America, and South America; (3) identify countries/regions with the same spread
pattern as Hebei Province in China; and (4) design a dashboard for better interpretation of
CNIC and the corresponding IP days by country/region.

2. Materials and Methods
2.1. Data Source

We downloaded COVID-19 outbreak DCCs in the two periods (1) from 22 January
to 27 March 2020, and (2) from 1 January to 16 February 2021, as mentioned above from
GitHub [8], a site that provides information on newly DCCs in countries/regions around
the world. All the downloaded data with 299 countries/regions are publicly displayed
on the website. Ethical approval is not necessary for this study because all the data are
obtained via the Internet (see Appendix A).

2.2. Spread Routes of COVID-19 across Continents

Although we knew that the spread routes of COVID-19 were from Asia to Europe and
then North and South America, the spread routes are still unknown. In March 2020, the US
Centers for Disease Control and Prevention (CDC) established geographic risk stratification
criteria for the purpose of issuing travel health notices for countries with COVID-19 risk
and guiding management decisions for people with potential travel exposures to COVID-
19 [37]. The restriction on entry to the United States for foreign nationals from China and
Iran was issued on 16 March 2020 or earlier. The lag-behind spread pattern is required for
investigations on a different DCC pattern for COVID-19 between China and the US. The
spread routes are thus tracked with SSP using SNA.

2.3. The Three Steps Below Were to Identify the Spread Patterns of COVID-19

Step 1: Using log (CNIC) to define the correlation coefficients (CCs) in countries/regions

The sequential log (CNICs) in each region were extracted from the data [8] to compare
the pattern with the CCs between countries/regions (see the MP4 video in Appendix A).
For instance, we selected the most similar CNIC patterns (i.e., with higher CCs) for Hubei
(China) in Figure 1. It can be seen that Heilongjiang (China), Xinjiang (China), and other
regions in China were highlighted in Stage I (e.g., in the first one-third of days during the
study period up to 27 March 2020). However, other regions were shown in Stage II (e.g.,
Guangdong (China) and Guangxi (China)) and Stage III (e.g., Egypt, Iran, Sweden, the
Republic of Korea, and Gansu (China)), all of which were dated 27 March 2020. As such,
different spread patterns can be examined using the CCs on CNIC across countries/regions.

Step 2: Applying SNA to classify the spread clusters of COVID-19

The CCs for each paired country were included in SNA (see the control file of Pa-
jeck [38] in Appendix A). The higher CCs that a region was associated with, the closer the
relationship was within a cluster for regions with identical CNIC patterns.

In keeping with Pajek’s guidelines [38] for SNA, we defined a region as a node (or an
actor/vertex) that is connected to another node through an edge (or tie with a line) (i.e.,
the weight denoted by CC on CNIC between 2 entities). Usually, the weight (dented by
CC) is summed (called concentrality degree (CD) by the number of connections between 2
nodes). The more connections (or said co-occurrence) produce a higher CD in the network,
the algorithm of the community partitioning method was used to identify and separate
clusters in SNA. The number of clusters was set at 3 in the SNA based on Pajeck’s criteria.
The SNA file is provided in Appendix A as well.

Step 3: Plotting the SNA to classify the spread clusters of COVID-19

A dashboard was designed for displaying region bubbles colored by cluster types and
sized by the weights (i.e., CD denoted by the summation of CCs) on Google Maps. The line
(or curve) linked to the 2 nodes stands for the closer relation (or CC > 0.8 or more). The
curve disappears if the CC is less than the criterion of 0.8.
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Two types of SNA were drawn according to the research design (i.e., one for data from
22 January to 27 March 2020, and another from 1 January to 16 February 2021), including
(1) the spread routes in stages, and (2) the SSP of other countries/regions related to Hebei
Province (China) and Heilongjiang (China).

Figure 1. Matching the most similar regions using the correlation pattern across three clusters (stages)
(Note: readers are invited to scan the QR-code to examine the detail on a dashboard).

2.4. Building the Model-Based on IRT
2.4.1. Percentage-Type Observed Data (OPi)

The CNIC in a country/region was transformed into a percentage from 0 to 1 [39–41],
as shown in Equation (1).

OPi =
(Oi − Min)
(Max − Min)

× CRi, (1)

where Oi denotes the originally observed case number, and the maximum and minimum
are symbolled by Max and Min, respectively. The CR stands for the adjustment coefficient
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because not all TSCCC equal 1.0 at θ(=5) according to Equation (2) (e.g., at early epidemic
stage [32]).

2.4.2. The IRT Probability Model

Two parameters, a and b, mentioned in Section 1.2, were estimated using the IRT
model in Equation (2), in which a and b (named delta) represent the discrimination (i.e.,
the slope shape) and the item difficulty (i.e., the location toward the left (easier or at an
earlier stage) or the right (harder or at the later stage in epidemic)) with values within 0
and 3, and −5 and 5, respectively. Theta was set at 5 at the modeling process and used to
compute the adjustment coefficient of CRi in Equation (1).

P(θ) =
exp((a(θ − δ))

(1 + exp(a(θ − δ))
(2)

2.4.3. Ogive Curved in a Model

After model parameters were estimated in Equation (2), the Theta denoted by the
location on the scale (Axis X) was determined by Equation (3).

Theta = −5 + (ni−1)×
(5 − (−5))

N
, (3)

where N is the observed days, and ni represents ith day. The probability (or denoted by the
expected percentage, Epi) can be yielded by Equation (2). For instance, the Theta on the
day i in a total N days in epidemic can be obtained by Equation (3).

2.4.4. Transforming Epi into the Number of Expected CNIC

Based on Equation (1), we can obtain the expected CNIC via Equation (4):

Expected CNIC = EPi ÷ CRi × (Max − Min) + Min. (4)

2.5. Model Parameter Estimation
2.5.1. The Attributes of the Ogive Curve

The shorter epidemic drives the ogive curve toward the left. Otherwise, the longer
epidemic drives the curve toward the right side. The length of the IP days affects the
NISHC in a specific country/region.

2.5.2. Parameter Estimation

We applied the Microsoft Solver add-in tool to estimate parameters (see the MP4 video
in Appendix A).

A. To minimize the total residuals, we used the Microsoft function as shown below.

SUMXMY2 ([OPi − Epi]× [OPi − Epi]) =
n

∑
i=1

(OPi − Epi)2. (5)

B. Estimated parameters In Equation (2), a and b were estimated.
C. Constrained terms We set a and b in a range between (0, 4) and (−5, 5), respectively.

In addition, the correlation coefficient (CC) between OPi and Epi was set beyond 0.9.
D. Perform the Solver add-in The Microsoft Solver add-in was performed for each

country/region to estimate the model parameters (see Appendix A for more details).
The ogive curve can be plotted to predict the future CNIC and determine IP days as
explained in the next section.
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2.6. Determining IP Using a Search Scheme

The IP was determined by the computation of the absolute advantage coefficient
(AAC), or the dimension coefficient (DC) [32,39–41], in Equation (6).

AAC =

γ3
γ2
γ2
γ1

, (6)

where AAC is determined by the 3 consecutive Epi, and the IP is located at the minimum
one across all possible AACs on an ogive curve [32].

2.7. Statistical Tools and Data Analysis

A visual representation displaying the comparison of model parameters among conti-
nents/regions was plotted on the Kano diagram [42–44]. The IRT-modeling process was
executed in Microsoft Excel (see Appendix A). The study flowchart is present in Figure 2.

Figure 2. Study flowchart.

3. Results
3.1. Spread Clusters in Color on Google Maps

Three clusters colored by routes and stages are presented in Figure 3. We can see that the
spread stages were from Asia to Europe and then to the American continent, as shown by the
yellow, green, and red bubbles. Nonetheless, a few bubbles in yellow are located in Canada
(North America) and Finland (Europe). Many red bubbles are present across Europe and
South America. It is worth noting that Indonesia is red with curved lines (i.e., connected to
other associated regions in red) at the middle bottom of Figure 3, which tells us that Indonesia
had the same CNIC pattern as the US. Similarly, many red bubbles (e.g., the UK, Ireland,
Norway, and Brazil) also had the same CNIC pattern as the US. Readers are invited to scan
the QR code in Figure 3 and click on the bubble of interest to inspect the details about regions
with similar COVID-19 CNIC patterns, such as those shown in Figure 1.
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Figure 3. Indonesia compared to three clusters separated by social network analysis (SNA) using the
correlation pattern across three stages in yellow, green, and red, respectively. (Note: the curve means
the close relation (correlation coefficient (CC) > 0.8) between two countries/regions according to SNA
guidelines (Note: readers are invited to scan the QR-code to examine the detail on a dashboard)).

3.2. Details about Indonesia in the CNIC Pattern of COVID-19

We inspected the CNIC patterns in Indonesia from three perspectives at days 49–51,
51–53, and 54–56 (i.e., three stages) in Figure 4. We can see that many CNIC patterns in the
US coincided with those in Indonesia, using the closer CC for identification.

Figure 4. Using the example of Indonesia to interpret the similarities between regions across three
stages (Note: readers are invited to scan the QR-code to examine the detail on a dashboard).
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3.3. Finland’s CNIC Pattern of COVID-19

The CNIC pattern for Finland is presented in Figure 5. We chose Finland because we
were curious why just one yellow bubble appeared in Europe. We can see that the CNIC
pattern for Finland was much closer to those in yellow areas (e.g., regions in China) and
those in green bubbles (e.g., regions in Austria and South America). It is worth noting that
a few red bubbles are connected to Finland.

Figure 5. Finland compared to three clusters separated by SNA using the correlation pattern across
three stages in yellow, green, and red, respectively. (Note: The curve means the close relation
(CC > 0.8) between two countries/regions according to SNA guidelines; readers are invited to scan
the QR-code to examine the detail on a dashboard).

3.4. Using an IRT-Based Model to Examine Spread Patterns

Two parameters (i.e., location b and slope a) in an IRT-based COVID-19 model are
present in Figure 6, in which bubbles are colored by continents and sized by the number
of IP days. Three parts are separated on the Kano diagram, including a higher slope at
the top, which is located at the far-right side and neutral in the middle. We can see that
COVID-19 spreads from Asia (in yellow on the left) to Oceania (in brown) and Europe (in
red), then to North America (in light green), Africa (in darker green), and South America
(in black). Bubbles with similar patterns in the CNIC are closer together in Figure 6. For
example, in Figure 7, Indonesia is similar to the US states of Wisconsin and Missouri. The
observed CNICs are in black, while the predicted CNCIs are in green on the ogive curves.
Readers are invited to click on the link [45]. After the bubble of interest is selected, the
IRT-based ogive curve, like that in Figure 7, immediately appears on the website.

The comparison of location parameters in continents/countries as of 19 October 2020
is displayed in Table 1. We can see that the means of location parameters were lower China
and higher in the US and South America. A significant difference in mean locations on
Axis X in Figure 6 was found between China and the US.
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Figure 6. Similarity of the epidemic trend using the item response model (IRT) and Kano models
to display the results (Note: readers are invited to scan the QR-code to examine the detail on a
dashboard).

Figure 7. Comparison of epidemic trends displayed as ogive curves.
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Table 1. Comparison of location parameters in continents and countries as of 19 October 2020.

Area n Mean SD
Different (p < 0.05) Stage

From Area i

(3) CHINA 31 −2.5382 3.1201 (1)(2)(4)(5)(7)(8) I
(6) OCEANIA 15 −1.6913 2.4752 (2)(4)(5)(7)(8)

(1) AFRICA 53 1.0080 2.3828 (3)(4) II
(2) ASIA 44 1.7731 3.1458 (3)(4)(6)

(5) N. AMERICA 36 1.9385 3.4053 (3)(4)(6)
(8) US 61 2.6096 2.5807 (3)(6)

(7) S. AMERICA 12 2.6469 1.3944 (3)(6)

(4) EUROPE 49 4.2287 1.9927 (1)(2)(3)(5)(6) III
Note. F = 22.366, p < 0.001.

3.5. The Spread Patterns of COVID-19 in January 2021

To identify countries/regions with the same spread pattern as Hebei Province in
China, Figure 8 shows the three spread clusters in color (i.e., all DCCs equal zero in a
yellow, mild epidemic in green, and second wave in red). The curved lines shown in
Figure 8 are subject to the CC of CNIC between entities greater than 0.98.

Figure 8. Spread patterns of COVID-19 in countries/regions using CCs (a = 0.99, b = −2.48) (Note:
readers are invited to scan the QR-code to examine the detail on a dashboard).
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Two findings related to the above phenomena were found: (1) Both the provinces of
Hebei and Heilongjiang in China had a similar spread pattern in red bubbles; and (2) other
countries (or regions), such as Japan, Taiwan, and Qatar, had the same spread pattern as
Hebei Province (China) as well. Readers are invited to scan the QR code in Figure 8 and see
the blue curved line linked to the bubble of Hebei (China). The country of Qatar is uniquely
connected to Hebei (China). The comparison of IP days on the ogive curves is made for
each country/region if the bubble is clicked on, such as the one for Hebei (China) shown at
the bottom panel in Figure 8. The IRT model in MS Excel is shown in Appendix A.

3.6. Online Dashboards Shown on Google Maps

All those plots in Figures appear once the bubble or region of interest is clicked using
the links, similar to those deposited in Appendix A.

4. Discussion

The classification has been used by humans for thousands of years. It is also important
to our everyday life and applies to almost everything we do, allowing us to find and
recognize things more easily. Imagine if we went to a library without classification—
where would we start looking for a particular book? As of 18 January 2021, over 73,021
articles were found by searching the keyword “classification [title]” in Pubmed. Then,
57 articles were searched by “International journal of environmental research and public
health [journal],” such as “machine learning-based activity pattern classification” [46],
“support vector machine classification of drunk driving behavior” [47], and “local climate
zone classification” [48], to name a few.

4.1. Findings and Implications

This study was classified by two periods during the COVID-19 pandemic: (1) From 22
January to 27 March 2020, and (2) from 1 January to 16 February 2021. We observed that
(1) the use of SNA for investigating the SSP is viable; (2) the spread routes of COVID-19
from China to West Asia, Europe, North America, and South America are obvious in
three classifications (255, n = 51, 130, and 74 in stages); (3) those countries/regions of
Heilongjiang (China), Japan, Taiwan, and Qatar are identical in a common cluster with
Hebei Province (China), and (4) a dashboard on Google Maps can be applied to display the
SSP of the COVID-19 around the world.

4.2. What This Finding Adds to What We Already Knew

Many online real- or near-real-time dashboards have been launched for tracking
the worldwide spread of the COVID-19 outbreak [2–7]. Most of them are similar to
other traditional websites [8–12], merely providing the same information as the WHO
COVID-Dashboard [5]. The study of COVID-19 requires further mathematical analyses
of data regarding cases and data (e.g., deaths and fatality rates) reported worldwide [49].
Although dashboards (e.g., JHU [2] and WHO [5], and others [3,4,6,7]) have provided
interesting visualizations for reporting the current state of the COVID-19. However, these
presentations lack important information and analysis approaches using mathematical
models to predict the projection of DCC or CNIC, which would be useful to understand
the trends of COVID-19 [49]. For instance, the COVID-19 Watcher [50] displays detailed
COVID-19 data from every county and 188 metropolitan areas in the US. The drawback of
it is also similar to other dashboards through different types of charts providing basically
necessary information regarding COVID-19.

The COVID-19 Dashboard [49] was designed to offer additional valuable information
(e.g., using a mathematical model to project future cases worldwide and by country). The
mathematical model is based on linear algebra calculations with a quadratic equation using
the last 31-day CNICs. Accordingly, the mathematical model [49] is able to estimate the
number of new cases up to later several or more days.
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There have been criticisms of the UK government for not providing information on
the evidence base used to inform their decision-making [51]. A real-time policy dashboard
to aid global transparency in response to COVID-19 is expected to (1) present the localized
reasoning behind COVID-19 policy decisions, and (2) allow the global health community
to provide further support to governments and international stakeholders [52]. As such,
dashboards only presenting real-time descriptions of new daily cases and risk factors are
insufficient. A scientific approach involving the mathematical model embedded in the
online dashboard is urgently required.

More than 36 articles of COVID-19 using SNA were published up to 16 February
2021 [53]. No authors have applied CCs of CNIC to explore the knowledge of spread
patterns in a comparison among countries/regions. The SNA process is simple but useful,
and defines the CCs between countries/regions prior to analysis. Two regions with a
higher CC have a high probability within an identical cluster. Otherwise, these two will
be in two distinctly different clusters [17–23]. The SSP was thus necessary to use SNA to
classify attributes of COVID-19 for countries/regions (e.g., spread stages and occurrences
of stationarity in the second wave during the COVID-19 pandemic).

4.3. What Is Implied and What Should Be Changed

The visual display, combined with SNA (e.g., in Figures 3 and 5), provides more
messages to readers. This is the first study applying SNA to identify SSP of the COVID-19
cases around the world. Two types of SSP were included: (1) Spread stages from 22 January
to 27 March 2020 and (2) occurrences of stationarity in the second wave from 1 January to
16 February 2021. These approaches are recommended to future studies and are not just
limited to COVID-19 as in this study. The online dashboard involving SNA is as promising
and viable as the online SNA illustrated on the website [54].

In addition to many mathematical models [24–31] used for predicting the CNIC in
COVID-19, the IRT-based predictive model has been proposed [32]. The IP [13–16] on
the ogive curve should be (and must be) determined before assessing the NISHC. The
ogive curve [32] using Equation (5) to determine the IP and IPcase-index [32] evaluated the
NISHC, which was different from previous studies [55,56] which have used the DCC or
CNIC alone.

The dashboard provided with SNA and IP on the given ogive curve is modern and
innovative. Visual displays on CNIC using SSP were developed. We can see that red
bubbles are in the UK and the US. The first confirmed case in the UK on 31 January
2020 [57] refers to the SSP in Figures 3 and 5, which is unique when compared to other
COVID-19 dashboards [3,4,58].

4.4. Strengths of This Study

The current study included three main stages: (1) SNA was used to classify the
spread stages and occurrences of stationarity in the second wave during the COVID-19
crisis, (2) comparisons of model parameters (e.g., the location parameter or IP) were made
to differentiate epidemic stages, and (3) an app was developed for understanding the
transmission patterns of COVID-19 across countries/regions using the mathematical IRT
model embedded in dashboards.

4.5. Limitations and Future Studies

Our study has some limitations. First, the CC was determined by NCIC between
countries/regions. Further studies should compare whether the DCC is replaced by NCIC
in the computation of CC.

Second, although we defined the CNIC as the proxy of the confirmed cases on conti-
nents to classify the spread patterns using SNA, we suggest that future research should
include deaths to compare the difference in SSP.

Third, using the Microsoft Solver add-in to estimate IP days in the IRT model is not
a unique approach. Many other methods can be applied to estimation, such as Warm’s
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weighted mean likelihood estimate [59], anchored maximum likelihood estimation [60],
and weighted likelihood estimation [61]. These methods are worthy of comparison in
future studies.

Fourth, visual dashboards are shown on Google Maps. However, these installments
are not free of charge. For example, the Google Maps application programming interface
(API) requires a paid project key for the cloud platform. Thus, the limitations of the
dashboard are that it is not publicly accessible, and it is difficult for other authors or
programmers to mimic for use in a short period of time.

Fifth, although IRT is common and popular in the educational and psychometric field,
many readers in public health are unfamiliar with IRT. The IRT 2-parameter model requires
some effort to understand through the data and MP4 videos provided in the Appendix A.

Sixth, only two periods, (1) from 22 January to 27 March 2020 and (2) from 1 January
to 16 February 2021, were included in this study. The spread pattern would be varied if
different periods were observed because the SARS-CoV-2 virus mutates fast [62,63].

Finally, the mathematical model was proposed in a previous study [49]. Further
verification is required to determine whether the model residual is smaller than the IRT
model [32]. The comparison study is easy to conduct if the study period is identical (e.g.,
31 days [49]) in these two scenarios.

5. Conclusions

Two aspects, (1) the spread stages from 22 January to 27 March 2020, and (2) the
occurrences of stationarity of second wave in January 2021, were observed using SNA
techniques. An app was applied to display the cluster features during the COVID-19
pandemic. More details about the application are given in Appendix A with an MP4
video. An online dashboard developed for displaying the transmission patterns across
countries/regions is recommended for future research.
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Appendix A: Resource of data, Excel modules, Pajek file, and MP4 videos involved
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