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Immunotherapy is widely used to treat various cancers, but patients with gastric cancer
(GC), which has a high mortality rate, benefit relatively less from this therapy. Platelets are
closely related to GC progression and metastasis. This study aimed to find novel potential
biomarkers related to platelet function to predict GC and immunotherapy efficacy. First,
based on platelet activation, signaling, and aggregation (abbreviation: function)-related
genes (PFRGs), we used the least absolute shrinkage and selection operator (Lasso)
regression method to construct a platelet-function-related genes prognostic score
(PFRGPS). PRFGPS was verified in three independent external datasets (GSE26901,
GSE15459, and GSE84437) for its robustness and strong prediction performance. Our
results demonstrate that PRFGPS is an independent prognostic indicator for predicting
overall survival in patients with GC. In addition, prognosis, potential pathogenesis
mechanisms, and the response to immunotherapy were defined via gene set
enrichment analysis, tumor mutational burden, tumor microenvironment, tumor immune
dysfunction and exclusion (TIDE), microsatellite instability, and immune checkpoint
inhibitors. We found that the high-PRFGPS subgroup had a cancer-friendly immune
microenvironment, a high TIDE score, a low tumor mutational burden, and relatively low
microsatellite instability. In the immunophenoscore model, the therapeutic effect on anti-
PD-1 and anti-CTLA-4 in the high-PRFGPS subgroup was relatively low. In conclusion,
PRFGPS could be used as a reference index for GC prognosis to develop more successful
immunotherapy strategies.

Keywords: platelet function-related gene, gastric cancer, bioinformatics analysis, prognosis, tumor
microenvironment

INTRODUCTION

Gastric cancer (GC) is a common malignancy of the digestive system with high morbidity and
mortality (Sung et al., 2021). The overall survival rate of patients with GC after conventional
chemotherapy is still low, especially since median survival for advanced GC is less than 1 year
(Smyth et al., 2020). In recent years, the rapid rise of immunotherapy has opened new treatment
prospects for patients with GC (Chivu-Economescu et al., 2018). Immunotherapy is characterized
as the stimulation of specific immune responses that inhibit and kill tumor cells, thus reducing the

Edited by:
Zhouxiao Li,

Ludwig Maximilian University of
Munich, Germany

Reviewed by:
Tanya Augustine,

University of the Witwatersrand, South
Africa

Qian Wang,
Helmholtz Association of German
Research Centres (HZ), Germany

*Correspondence:
Yihua Sun

600611@hrbmu.edu.cn

Specialty section:
This article was submitted to

Cancer Genetics and Oncogenomics,
a section of the journal
Frontiers in Genetics

Received: 08 May 2022
Accepted: 13 June 2022
Published: 28 June 2022

Citation:
Xia Y, Lin X, Cheng Y, Xu H, Zeng J,

Xie W, Wang M and Sun Y (2022)
Characterization of Platelet Function-
Related Gene Predicting Survival and

Immunotherapy Efficacy in
Gastric Cancer.

Front. Genet. 13:938796.
doi: 10.3389/fgene.2022.938796

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 9387961

ORIGINAL RESEARCH
published: 28 June 2022

doi: 10.3389/fgene.2022.938796

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.938796&domain=pdf&date_stamp=2022-06-28
https://www.frontiersin.org/articles/10.3389/fgene.2022.938796/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.938796/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.938796/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.938796/full
https://dict.youdao.com/w/abbreviation/
http://creativecommons.org/licenses/by/4.0/
mailto:600611@hrbmu.edu.cn
https://doi.org/10.3389/fgene.2022.938796
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.938796


rates of tumor recurrence and metastasis. As a new cancer
treatment strategy, immunotherapy significantly improves
overall survival (OS) in patients with advanced GC (Fuchs
et al., 2018; Chen et al., 2020). Immune checkpoint inhibitors
(ICIs) are presently the most commonly employed
immunotherapy agents for cancer treatment (Galon and
Bruni, 2019). However, for most cancers, only a third of
patients respond to ICI treatment (Smyth et al., 2020). GC
has a high degree of intratumoral heterogeneity (ITH), which is
the primary cause of tumor cell resistance and survival and is
thus a major obstacle to improving patient prognosis. Through
multi-omics analysis, The Cancer Genome Atlas (TCGA)
classified primary GC into four molecular subtypes, among
which EBV-positive GC and micro satellite-instable GC have
better prognosis (Cancer Genome Atlas Research Network,
2014). However, these two types are very rare in advanced
GC. Patients with same tumor-node-metastasis (TNM)
stratification sometimes have different prognoses; hence,
patient outcomes are influenced by the chosen treatment
strategy. Therefore, it is important to identify biomarkers for
predicting GC and the immunotherapy outcomes.

Platelets play important roles in hemostasis and
thrombosis. Platelets are considered to be “accomplices” in
malignancy, as they protect circulating tumor cells from shear
forces and cloak them from leukocytes by forming a thrombus
around them (Mendoza-Almanza et al., 2020). Platelet-tumor-
cell interactions have been identified as important factors in
cancer development, progression, and metastasis (Roweth and
Battinelli, 2021). Tumor cells induce platelet activation and
aggregation, thereby causing thrombosis (Palacios-Acedo
et al., 2019). Tumor cells also recruit platelets into the
tumor microenvironment (TME), and platelets are activated
by tumor cells to release the cytokines VEGF, CCL5, PDGF,
TGFβ, PG, TPM3, LPA, PF4, PAF, and HGF, which promote
the epithelial-mesenchymal transition of tumor cells
(Mendoza-Almanza et al., 2020). VEGF and TGFβ have
strong mitogenic activity, and they directly promote tumor
cell growth and proliferation and enhance neovascularization,
thus contributing to tumor progression and metastasis
(Wojtukiewicz et al., 2017). For these reasons, platelets have
now become a target for cancer therapy.

It is possible that tumor-cell-induced platelets are involved
in several mechanisms of antitumor immunity, promoting an
immunosuppressive TME state (Gockel et al., 2022). The
platelets activated by tumor cells can directly release TGF-β
and downregulate natural killer (NK) cell NKG2D receptors
(Kopp et al., 2009). They can also inhibit NKG2D, NKp30, and
DNAM-1 receptors in a TGFβ1-dependent manner by
releasing exosomes, thereby leading to NK cell dysfunction
(Sadallah et al., 2016). Tumor-cell-activated platelets modulate
the immune activities of CD4+T, CD8+T, and NK cells and
transform them into an immunosuppressive phenotype
(Gockel et al., 2022). It has been shown that regulatory T
(Treg) cells must come into contact with platelets in order to
secrete the effector IL-10 (Rossaint et al., 2021). Therefore,
activated platelets have been implicated as a main reason for
failure of ICI treatment (Metelli et al., 2020).

Few studies have investigated the mechanisms of platelet
activation, characteristics of the regulatory immune
microenvironment, and the impact on immunotherapy
outcome in patients with GC. This study aimed to construct a
platelet-function-related genes prognostic score (PFRGPS)
consisting of five platelet-function-related genes (PFRGs),
using bioinformatics, and explore the relationship between the
PFRGPS and TME. Furthermore, we sought to examine the
relationship between PFRG expression profiles and
immunotherapy. Our findings can provide an effective strategy
for improving the stratification of patients with GC, ultimately
promoting the development of personalized treatments.

MATERIALS AND METHODS

Data Collection and Preprocessing
The flow chart is shown in Figure 1. Platelet activation,
signaling and aggregation (abbreviation: function), related
genes (n = 261) were downloaded from the Gene Set
Enrichment Analysis (GSEA) (http://www.gsea-msigdb.org/
gsea/index.jsp). RNA-Seq data and complete clinical, survival,
and somatic mutation information of patients with GC (375
tumor samples and 32 normal samples) were obtained from
TCGA (https://portal.gdc.cancer.gov/). In addition, external
validation cohorts GSE26901 (n = 109), GSE15459 (n = 192),
and GSE84437 (n = 433) are from the Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). To
ensure the accuracy of the study, patients with 0 days of
follow-up were excluded before the establishment of the
prognostic model. The clinical features of patients who met
the requirements of the model are listed in Supplementary
Table S1.

Construction of Platelet-Function-Related
Genes Prognostic Score and Calculation of
the Prognostic Score
The filter |log2FC| > 1 was used for fold change (FC), and the false
discovery rate (FDR) was set as < 0.05. Next, 261 PFRGs were
crossed with differential GC genes, and 38 differentially expressed
platelet-function-related genes (DEPFRGs) were obtained. The
analysis used the Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways with the R packages
“clusterProfiler,” “org.Hs.eg.db,” and “enrichplot.” Visualization of
enrichment analysis was realized with the R packages “ggplot2” and
“GOplot.” Protein-protein interaction (PPI) network construction
was carried out with String (https://www.string-db.org/).

Univariable Cox regression analysis was used to determine
prognosis-related PFRGs (PPFRGs), and then the R package
“ConsensusClusterPlus” was used to draw a waterfall plot to
show PPFRG mutations. A Circos plot was drawn using the R
package “Rcircos” to show similarities and differences in the
microscopic characteristics of PPFRGs. Least absolute
shrinkage and selection operator (Lasso) regression analyses
were used to determine potential predictors of non-zero
coefficients so as to select the best OS-related PPFRGs
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(Tibshirani, 1997). Next, a 10-fold cross-validation was
performed to determine the core genes ultimately used to
construct the PFRGPS system (Friedman et al., 2010). We
constructed a prognostic risk score formula based on the
weighted linear combination of corresponding mRNA
expression levels and corresponding regression coefficients
obtained via Lasso regression analysis. The formula used to
calculate PFRGPS was as follows:

PFRGPS � ∑
n

i�1
coef(genei) p expr(genei)

Validation of Platelet-Function-Related
Genes Prognostic Score
We used data from TCGA database as a training cohort. We
divided 350 patients with GC from TCGA (excluding patients
with OS = 0) into two subgroups of high and low PFRGPS.

Kaplan-Meier curve was used to analyze survival status
between the high- and low-PFRGPS subgroups. Using the R
packages “survival,” “survminer,” and “timeROC,” the receiver
operating characteristic (ROC) curves for 3 and 5 years were
generated, and the area under the ROC curve (AUC) was
calculated to further evaluate the predictive value of PFRGPS.
In addition, independent prognosis by the PFRGPS was
analyzed via univariable and multivariable Cox regression
analyses. In three validation cohorts, namely, three
independent data sets GSE26901, GSE15459, and GSE84437
from GEO, same process was used to verify the stability of the
prognostic model. The PFRGPS established for the TCGA
cohort was suitable for the GEO cohort. Before establishing
the model, the GEO and TCGA cohorts were processed for
batch effect. R packages “survival,” “survminer,” and
“timeROC,” were used in the above-mentioned analysis.
The R packages used in GEO validation cohorts were
consistent with those in the TCGA training cohort.

FIGURE 1 | Flowchart of this study. This figure was produced with the assistance of Servier Medical Art (https://smart.servier.com).
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Development of a Nomogram Based on the
Platelet-Function-Related Genes
Prognostic Score and Clinical Factors
Using Cox regression analysis, we constructed a nomogram
taking PFRGPS and clinical variables into account, using the R
packages “RMS” and “regplot”. In addition, we also generated 3-
and 5-year ROC curves. The AUC of the nomogram was
calculated to evaluate the prognostic value of the nomogram.

Gene Set Enrichment Analysis
We performed GSEA on gene expression between the high- and
low-PFRGPS subgroups to help understand the related functional
differences among different groups. Genome alignment was
tested 1,000 times to demonstrate its functional consistency.
Phenotypic labels were used to predict adverse events. The file
c5.go.v7.4.symbols.gmt was downloaded from the Molecular
Signatures Database to run GSEA.

Analysis of Immune Microenvironment
In order to explore changes in the immune microenvironment in
patients with GC, we used the ESTIMATE method to calculate
the ImmuneScore and StromalScore of TCGA-cohort samples.
ESTIMATEScore is the sum of ImmuneScore and StromalScore.

In order to better clarify the relationship between PFRGPS and
immune cell status, immune cells and pathways of each patient
were further explored through single-sample GSEA (ssGSEA).
We further explore their correlation with PFRGPS and five
PPFRGs. In addition, we also used the CIBERSORT algorithm
to obtain a relative proportion of 22 kinds of immune cells in each
patient so as to quantitatively analyze immune cell infiltration.
For the above-mentioned analysis, we used R packages. We used
the R packages “limma,” “GSVA,” “GSEABase,” “e1071,”
“parallel,” and “preprocessCore” for the above analysis.

Immunotherapy Analysis
In order to evaluate the response of patients with GC to
immunotherapy, we analyzed somatic mutation data using
TCGA datasets. The R packages “limma,” “survival,” and
“survminer” were used to analyze differences in tumor
mutational burden (TMB) between the high- and low-PFRGPS
subgroups. Then, TMB was combined with the corresponding
survival information to evaluate the relationship between TMB
and prognosis. We downloaded the tumor immune dysfunction
and exclusion (TIDE), microsatellite instability (MSI), immune
dysfunction, immune exclusion, and cancer-associated fibroblast
(CAF) scores of patients with GC from the TIDE website (http://
tide.dfci.harvard.edu/). Next, MSI status and the
immunophenoscore (IPS) of patients with GC were
downloaded from The Cancer Immunome Atlas (TCIA;
https://tcia.at/home) database. We comprehensively analyzed
the effect of immunotherapy on patients with GC and its
correlation with PFRGPS using the above-mentioned measures.

Expression Analysis of PPFRGs
To verify differential expression of PPFRGs between GC and
normal tissues, we used the Gene Expression Profiling Interactive

Analysis (GEPIA, http://gepia.cancer-pku.cn/) database and the
GSE13911 dataset. The GSE13911 dataset was downloaded from
the GEO database.

Statistical Analysis
All statistical analyses in this study were performed using the R
software (version 4.1.2). Wilcoxon tests were used to compare
differences between two groups. Kaplan-Meier survival analysis
was used for comparing OS among different subgroups. ROC
curve and AUC were used to evaluate the accuracy of the
predictions of the model. Cox regression analysis was used to
test independent prognostic characteristics of PFRGPS.
Spearman correlation tests were used for correlation analysis.
All statistical values with p < 0.05 (two-tailed) were considered to
be statistically significant.

RESULTS

Identification and Functional Enrichment
Analysis of DEPFRGs
We found 38 DEPFRGs (22 upregulated and 16 downregulated)
in GC and adjacent non-tumor tissues in TCGA cohort
(Figure 2A; Supplementary Figures S1A,B). In order to
explore the function of DEPFRGs in GC, we first performed
GO and KEGG enrichment analyses on DEPFRGs. The GO
analysis showed that DEPFRGs were enriched in platelet
activation and aggregation, including “wound healing,”
“regulation of body fluid levels,” and “blood coagulation”
(Figure 2B). Most abundant pathways in the KEGG analysis
were related to “platelet activation,” “focal adhesion,”
“complement and coagulation cascades,” and “rap1 signaling
pathway” (Figure 2C). These findings are related to platelet
activation, aggregation, and tumor progression. In addition, we
constructed a PPI network with 31 nodes and 81 edges, showing
complex interactions among DEPFRGs (Figure 2D).

Development and Verification of the
Platelet-Function-Related Genes
Prognostic Score System
In order to avoid differences between the gene symbols of GEO
verification cohorts and TCGA cohorts, we first considered the
intersection of gene symbols of two cohorts. We first performed a
univariable Cox regression analysis on the GC group in TCGA
cohort and identified 10 PPFRGs (APOA1, CD36, COL1A1,
COL1A2, DGKI, F2R, F5, MMRN1, SERPINE1, and SPARC)
that were significantly associated with the OS in patients with
GC; high expression of these genes was positively correlated with
a poor prognosis (Figure 3A; Supplementary Figure S1C).
Compared to that in the adjacent normal tissues, we observed
low expression of ApoA1, CD36, and MMRN1 in the GC tissues
from TCGA dataset. Since this observation was contrary to the
results obtained with univariable analysis, we removed these three
genes in order to ensure the accuracy of PFRGPS. Finally, seven
PFRGs (COL1A1, COL1A2, DGKI, F2R, F5, SERPINE1, and
SPARC) were selected. In order to confirm the accuracy of

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 9387964

Xia et al. PFRGPS for Gastric Cancer

http://tide.dfci.harvard.edu/
http://tide.dfci.harvard.edu/
https://tcia.at/home
http://gepia.cancer-pku.cn/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


these PFRGs, we used the GEPIA database and GSE13911 for
verification (Supplementary Figures S2A,B).

In addition, somatic mutation status in GC tissues was analyzed.
The results showed that for these seven PFRGs, 80 of 433 GC
samples had gene mutations (18.48%), of which missense mutations
accounted for largest proportion (Figure 3B). Next, copy number
variations (CNVs) in the seven PFRGs were analyzed, and the
position of each gene was visualized. Among them, the
amplification frequency of CNVs in COL1A1, COL1A2, F5,
SERPINE1, and SPARC was the highest. In contrast, the CNV
deletion frequency in DGKI and F2R was significantly higher
than that in the other PFRGs (Figures 3C,D). Next, we
performed Lasso regression analysis on the seven selected genes
to select the best OS with a non-zero coefficient (Figure 3E). A 10-
fold cross-validation was carried out (Figure 3F). According to the
minimum standard, we finally selected five PFRGs (DGKI, F2R, F5,
SERPINE1, and SPARC) as genes with independent prognostic
significance for PFRGPS system construction. Construction
method of PFRGPS: score = 0.034 × expression quantity of

DGKI + 0.014 × expression quantity of F2R + 0.106 × expression
quantity of F5 + 0.1623 × expression quantity of SERPINE1 + 0.064
× expression quantity of SPARC. Considering median PFRGPS of
the TCGA cohort as a critical value, PFRGPS was divided into two
subgroups: a high-PFRGPS subgroup (n = 175) and a low-PFRGPS
subgroup (n = 175; Figure 3G). In TCGA cohort, patient survival
began to decline as the PFRGPS increased (Figure 3H). Kaplan-
Meier analysis showed that there was a significant difference in
survival between the two subgroups (p < 0.001), and the OS of
patients with GC in the high-PFRGPS subgroup was significantly
lower than that in the low-PFRGPS subgroup (Figure 3I). To further
explore the effectiveness of PFRGPS in predicting GC survival, we
plotted time-dependent ROC curves for patients with GC with
survival periods of 3 and 5 years with AUCs of 0.665 and 0.750,
respectively (Figure 3J). In addition, we stratified the patients
according to clinicopathological features and found that the
PFRGPS was applicable to patients of different ages, genders, and
stages (Supplementary Figure S3). These results show that the
prediction by PFRGPS is highly specific and sensitive.

FIGURE 2 | Identification and functional enrichment analysis of DEPFRGs in TCGA cohort. (A) The heatmap of 38 DEPFRGs in GC and normal tissues. (B) The GO
enrichment analysis. (C) The KEGG pathway analysis. (D) The PPI network was constructed through 38 DEPFRGs. The interaction score was set to 0.4. DEPFRGs,
differentially expressed platelet function-related genes; GC, Gastric cancer; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein-
protein interaction. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 3 |Development of the PFRGPS System. (A) The forest plot of 10 PPFGsmarkers was obtained by univariable Cox analysis. (B) The waterfall plot of seven
PPFGsmutations. (C)Gain (red) or loss (green) CNVs of GC patients. (D) The location and CNVs of seven PPFGs. (E) LASSO coefficient profiles of seven PPFGs. (F) The
tuning parameters were cross-validated in the LASSO model. (G) Distribution of PFRGPS in TCGA cohort. (H) Survival status in the high-PFRGPS and low-PFRGPS
subgroups of the TCGA cohort. (I) Kaplan-Meier survival analysis in TCGA cohort. (J) The ROC curve analysis according to the 3- and 5-year survival of the AUC
value in the TCGA cohort. PFRGPS, platelet function-related genes prognostic score; PPFGs, prognosis-related platelet function-related genes; CNVs, copy number
variations; LASSO, Least Absolute Shrinkage and Selection Operator; ROC, receiver operating characteristic; AUC, area under the curve.
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Three Independent GEO Datasets Validate
Platelet-Function-Related Genes
Prognostic Score
In order to validate the accuracy of PFRGPS in predicting GC,
we used the GSE26901 (n = 109), GSE15459 (n = 191), and
GSE84437 (n = 431) datasets as external validation cohorts
(excluding patients with 0 days follow-up). In these three
validation cohorts, patients with GC were divided into high-
PFRGPS and low-PFRGPS subgroups according to the median
PFRGPS generated in TCGA training cohort (Figures 4A–I).
In three validation sets, PFRGPS distribution, survival state,
and survival time were consistent with the PFRGPS
distribution in TCGA training cohort, suggesting the
accuracy of PFRGPS as a prognostic index for GC.

Independent Prognostic Analysis
Weperformed univariable andmultivariable Cox regression analysis
to evaluate whether PFRGPS is an independent prognostic factor. In
TCGA cohort, univariable and multivariable regression analyses of

PFRGPS returned hazard ratios (HRs) of 3.203 and 3.266,
respectively (p < 0.001) (Figures 5A,B). Three GEO cohorts were
used for verification, and consistent results were obtained (since no
stage was provided in the clinical information of the GSE84437
cohort, we used the T and N stage in clinical information instead)
(Figures 5C–H). These analyses show that PFRGPS has an excellent
stability and can be used as an independent prognostic factor for
patients with GC.

Nomogram Model and GSEA Analysis
In order to further individualize the prognosis of patients with
GC, we established a nomogram model using TCGA cohort
and predicted the 3- and 5-year OS (Figure 6A). The ROC
curves showed an excellent model sensitivity, with AUC of
0.717 and 0.744 for the 3- and 5-year OS, respectively)
(Figure 6B). We further studied different characteristics of
biological function activation between the high- and low-
PFRGPS subgroups using GSEA. We found that the
biological processes enriched in the high-PFRGPS subgroup
were “cell growth,” “cell substrate adhesion,” and “cell matrix

FIGURE 4 | PFRGPS was validated using three independent GEO datasets. In (A–C)GSE26901, (D–F)GAE15459, and (G–I)GSE84437, distribution of PFRGPS
and survival status analysis, Kaplan-Meier survival analysis, ROC curve analysis were performed in the high- and low-PFRGPS subgroups. PFRGPS, platelet function-
related genes prognostic score; ROC, receiver operating characteristic.
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adhesion” (Figure 6C). The biological processes enriched in
the low-PFRGPS subgroup were “ncRNA metabolig process,”
and “oxidative phosphorylation,” the enriched cellular
components were “inner mitochondrial membrane protein
complex,” and “mitochondrial protein containing complex,”
and the enriched molecular function was “structural
constituent of ribosome” (Figure 6D). These results showed
that the high-PFRGPS subgroup was enriched in pathways
related to tumorigenesis and progression, further suggesting
that PFRGPS can accurately identify tumor progression. Poor
prognosis of the high-PFRGPS subgroup was extrapolated
from mechanism.

Tumor Microenvironment Analysis
The TME and the degree of infiltration of immune and stromal
cells in tumors contribute significantly to prognosis and have
been proposed to be valuable for the diagnosis and prognostic
evaluation of tumors. ImmuneScore is a standard test used to
quantify the density of T cells and cytotoxic T cells in TMEs; it
is of great value in evaluating cancer prognosis. We used the
data from TCGA cohort and the ESTIMATE method. The
ImmuneScore was distributed between −983.38 and 3,143.92,
the StromalScore ranged from −1,730.73 to 2,151.35, and the
ESTIMATEScore ranged from −2,266.61 to 4,969.30. The
high-PFRGPS subgroup showed a relatively high

FIGURE 5 | Independent prognostic analyses of prognostic models were performed. The forestplot of univariable Cox regression analysis of PFRGPS and clinical
characteristics in (A) TCGA, (C) GSE62901, (E) GSE15459, (G) GSE84437. The forestplot of multivariable Cox regression analysis of PFRGPS and clinical
characteristics in (B) TCGA, (D) GSE62901, (F) GSE15459, (H) GSE84437. PFRGPS, platelet function-related genes prognostic score.
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ImmuneScore and StromalScore when compared to low-
PFRGPS subgroup (Figures 7A–C). It is suggested that
there are significant differences in TME between the high-
and low-PFRGPS subgroups, and there is more immune cell
infiltration in the high-PFRGPS subgroups. Next, we observed
differences in survival among patients with different
ImmuneScores, StromalScores, and ESTIMATEScores. OS
decreased significantly in the high-StromalScore group and
the high-ESTIMATEScore group (Supplementary Figure S4).
In addition, we supplemented PFRGPS for joint analysis. We
found that patients with low ImmuneScore, StromalScore, or
ESTIMATEScore and who were in the low-PFRGPS subgroup
had the highest survival rate, while patients with high
ImmuneScore, StromalScore, or ESTIMATEScore and who
were in the high-PFRGPS subgroup had the lowest survival
rate (Supplementary Figure S4). In order to explore the
relationship between PFRGPS and TME in the high- and
low-PFRGPS subgroups, we further analyzed immune cells
and pathways using ssGSEA. We found that DCs, iDCs,

macrophages, mast cells, neutrophils, pDCs, T helper cells,
and Treg cells were enriched in the high-PFRGPS subgroup
(Figure 7D). The high-PFRGPS subgroup was also enriched in
APC co inhibition, APC co-stimulation, CCR,
parainflammation, type I and II IFN response pathways
(Figure 7E). In addition, we also analyzed the relationship
between PFRGPS and five PPFGs and immune cells and
pathways. The DGKI gene is closely related to mast cells
and the type-II interferon response. F2R, SERPINE1, and
SPARC are positively related to immune cells and pathways,
while F5 is negatively related to most immune cells and
pathways. PFRGPS is closely related to immune cells such
as macrophages and mast cells (Figure 7F).

We thus found that more infiltrated cells in the high-PFRGPS
subgroup were related to tumor progression and immune escape.
We used the CIBERPORT algorithm to confirm that relatively
more M0 macrophages, M2 macrophages, eosinophils, and
neutrophils related to immune escape were enriched in the
high-PFRGP subgroup (Figure 7G).

FIGURE6 |NomographModel and GSEAAnalysis. (A)Nomogram of PFRGPS and clinical factors predicting survival probability of GC patients. (B) The ROC curve
verifies the predictive ability of the nomogram. (C) GSEA enrichment analysis in the high-PFRGPS subgroup. (D) GSEA enrichment analysis in the low-PFRGPS
subgroup. PFRGPS, platelet function-related genes prognostic score. GSEA, Gene Set Enrichment Analysis; PFRGPS, platelet function-related genes prognostic score;
GC, Gastric cancer; ROC, receiver operating characteristic. *p < 0.05, **p < 0.01, ***p < 0.001.
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Immunotherapy Response Prediction in
Multiple Ways
We analyzed differences in somatic mutation distribution between
the high- and low-PFRGPS subgroups in TCGA training cohort to
explore the relationship between PFRGPS and TMB. We found
that TMB was significantly lower in the high-PFRGPS subgroup
than in the low-PFRGPS subgroup (Figure 8A). Correlation
analysis showed that TMB was negatively correlated with
PFRGPS (R = −0.22, p < 0.001) (Figure 8B). When compared
to that of the high-TMB group, the OS of the low-TMB group was
significantly low (Figure 8C). Therefore, our results show that the
PFRGPS is consistent with TMB in evaluating the prognosis of
patients with GC, which further demonstrates that PFRGPS has an
accurate prediction performance.

We used the TIDE score to evaluate the efficacy of
immunotherapy. We found that the high-PFRGPS subgroup

had relatively high TIDE, immune dysfunction, immune
exclusion, and CAF scores and relatively a low MSI score,
which suggested the presence of a rich immune escape
microenvironment in the high-PFRGPS subgroup (Figure 8D).
Next, we found that the TIDE, immune dysfunction, immune
exclusion, and CAF scores were positively correlated with
PFRGPS, while the MSI score was negatively correlated with
NRGPS (Figure 8E). We also found that the high-PFRGPS
subgroup had more patients with microsatellite stable (MSS)
status, and the high-MSI (MSI-H) group had a lower PFRGPS
than the MSS group and low-MSI (MSI-L) group (Figures 8F,G).
Therefore, patients with GC in the high-PFRGPS subgroup
benefitted less from immunotherapy than patients in the low-
PFRGPS subgroup. Next, we used the IPS data obtained from
TCIA to predict most commonly used anti-PD-1 and anti-CTLA-
4 in ICI therapy. Furthermore, we analyzed potential ICI
treatment responses of patients with GC in the high- and low-

FIGURE 7 | Analysis of tumor microenvironment in TCGA cohort. (A) The boxplot of ImmuneScore differences in the low-PFRGPS and high-PFRGPS subgroups.
(B) The boxplot of StromalScore differences in the low-PFRGPS and high-PFRGPS subgroups. (C) The boxplot of ESTIMATEScore differences in the low-PFRGPS and
high-PFRGPS subgroups. (D) The boxplot of 16 immune cell differences in the low-PFRGPS and high-PFRGPS subgroups. (E) The boxplot of 13 immune signaling
pathway differences in the low-PFRGPS and high-PFRGPS subgroups. (F) Correlation analysis of PFRGPS and five PPFGs with immune cells and signaling
pathways. (G) The boxplot of 22 immune cell infiltration differences between high- and low-PFRGPS subgroups. PFRGPS, platelet function-related genes prognostic
score; PPFGs, prognosis-related platelet.
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PFRGPS subgroups. Results showed that the therapeutic effect of
anti-PD-1 or anti-CTLA-4 in the low-PFRGPS subgroup was
better than that in the high-PFRGPS subgroup (Figure 8H).
From these results, it appears that patients with GC in the low-
PFRGPS subgroup may respond better to immunotherapy.
Patients in the high-PFRGPS subgroup may have fewer
exposed immunosuppressant binding sites, potentially leading
to a poor prognosis. In the low-PFRGPS subgroup, anti-PD-1 or
anti-CTLA-4 alone may yield better efficacy, which also shows
that PFRGPS can reliably predict the effectiveness of ICI
treatment.

DISCUSSION

GC is one of most common malignancies of the digestive system.
There is increasing evidence that platelets can regulate the TME
and promote immune escape and, thus, play an important role in
tumor progression and metastasis (Obermann et al., 2021). At
present, mechanisms related to PFRG regulation of the immune
microenvironment are unclear. Immunotherapy is now widely
accepted as a treatment for many types of cancer, including GC
(Miliotis and Slack, 2021). However, not all patients can benefit
from it. Therefore, there is a need to characterize PFRGs to

FIGURE 8 | Prediction of immunotherapy response in TCGA cohort. (A) The boxplot of TMB differences between low-PFRGPS and high-PFRGPS subgroups. (B)
Correlation analysis between TMB and PFRGPS. (C) Difference in survival time between high- and low-TMB groups. (D) The boxplots of differences between TIDE, MSI,
Immune Dysfunction, Immune Exclusion, and CAF scores in low- and high-PFRGPS subgroups. (E) Correlation analysis of TIDE, MSI, Immune Dysfunction, Immune
Exclusion, and CAF scores with PFRGPS. (F) Distribution of patients with different MSI statuses in high- and low-PFRGPS subgroups. (G) The boxplot of PFRGPS
differences between groups with different MSI. (H) The violin plots of IPS differences between low-PFRGPS and high-PFRGPS subgroups. TMB, Tumor mutation
burden; PFRGPS, platelet function-related genes prognostic score; TIDE, Tumor Immune Dysfunction, and Exclusion; MSI, Microsatellite Instability; CAF, cancer-
associated fibroblasts; IPS, immunophenoscore function-related genes. *p < 0.05, **p < 0.01, ***p < 0.001, ns, not significant.
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predict the survival of patients with GC and effective populations
for cancer immunotherapy.

We developed a new GC prognostic model, called PFRGPS,
using TCGA dataset, and it was independently and externally
validated using three GEO datasets. Our results showed that
PFRGPS could effectively evaluate the prognosis and clinical
status of patients with GC. Our model has higher accuracy
than the previous prognostic models that have used PFRGs in
tumor lung and breast cancers (Zhou et al., 2021; Xie et al., 2022).
Nomograms are widely used for cancer prognosis (Balachandran
et al., 2015). Therefore, to further improve the accuracy of
prediction, we integrated the PFRGPS, age, gender, tumor
grade, and pathological stage to construct and validate our
nomogram. Visualization of PFRGPS can help to predict
specific survival risk of individual patients, which is of great
importance in clinical practice (Zhang et al., 2018).

The GSEA results showed that some classical tumor-
associated pathways were significantly enriched in the high-
PFRGPS subgroup, indicating that high-PFRGPS is closely
related to tumorigenesis and progression. Subsequently, we
found that the high-PFRGPS subgroup was enriched with a
large number of immunosuppression-related immune cells,
revealing a close association with tumor immune escape. We
further confirmed the predictive ability of PFRGPS in
immunotherapy efficacy by analyzing the TMB, TIDE,
microsatellite instability, IPS, PD-1, and CTLA4 models. Our
results demonstrate that PFRGPS has satisfactory accuracy,
sensitivity, and authenticity.

PFRGPS includes five mRNAs related to platelet function,
namely DGKI, F2R, F5, SERPINE1, and SPARC, all of which are
expressed more in GC tissues than in paracancerous ones, and
their expression levels are positively correlated with poor
prognosis in patients with GC. DGKI can expressed in the
cytoplasmic matrix of human platelets (Yada et al., 1990);
additionally, DGKI was recently found to be overexpressed in
a variety of cancers, including GC (Huang et al., 2020). Results of
basic experimental studies suggest that MAPK signaling may be a
key pathway associated with DGKI regulation in GC (Rigg et al.,
2019). Coagulation F2R, also known as protease-activated
receptor (PAR)-1, is a member of the PAR family, and F2R
activation through activation of G proteins can lead to platelet
activation, adhesion, and aggregation (Rigg et al., 2019). F2R
activation may facilitate platelet activation, tumor cell
proliferation, apoptosis, and angiogenesis (Ray and Pal, 2016;
Wojtukiewicz et al., 2019; Chang et al., 2020). F2R was found to
enhance GC cell invasion, proliferation, and angiogenesis via the
nuclear factor kappa B and ERK1/2 signaling pathways in a study
of GC (Fujimoto et al., 2010). Coagulation factor V (F5) is a
circulating high-molecular-weight (330 kDa) pro-coagulation
factor (Cramer and Gale, 2012). F5 was recently found to be
capable of being expressed in extravascular tissues, including
breast cancer cells and tumor-permeable immune cells (Tinholt
et al., 2020). Many studies have reported the association of F5
polymorphisms with the risk of developing various cancers,
including colon and gastric cancers (Tinholt et al., 2016).
Serine protease inhibitor family E member 1 (SERPINE1) is a
major inhibitor of tissue fibrinogen activator and urokinase

(Huang et al., 2012) and is associated with the development
and progression of a variety of tumors (Saidak et al., 2021).
SERPINE1 may regulate VEGF and IL-6 expression through the
VEGF signaling pathway and the JAK-STAT3 inflammatory
signaling pathway, ultimately affecting GC cell invasion and
migration (Chen et al., 2022). As an oncogene, it may
promote the proliferation, migration, and invasion of GC
tumor cells by mediating the epithelial-mesenchymal transition
(Yang et al., 2019). Secreted protein acidic and rich in cysteine
(SPARC) is a protein encoded by a single gene in human
chromosome 5q31.1 (Termine et al., 1981). SPARC is a
matricellular protein that regulates cell adhesion, extracellular
matrix production, growth factor activity, and the cell cycle (Sage,
2003). SPARC is a major contributor to tumor progression, drug
resistance, and metastasis (Nagaraju et al., 2014). SPARC is
markedly upregulated in gastric tissue (Liao et al., 2018). In
summary, the use of PFRGPS as a prognostic predictor for
patients with GC has a broad research base.

TMEs have been shown to be important in anti-tumor
immunity (Murciano-Goroff et al., 2020). The platelets in
TMEs have the ability to regulate tumor immune escape
(Rachidi et al., 2017). We used three different algorithms in
this study to show that the high-PFRGPS subgroup had relatively
high ImmuneScores and StromalScores. While the high-
ESTIMATEScore PFRGP patients had high ImmuneScore and
StromalScore, they had the lowest survival rates. In addition,
there was a significant difference in the abundance of immune cell
infiltration between the high-PFRGPS and low-PFRGPS
subgroups.

Patients in the high-NRGPS subgroup showed a relatively high
infiltration of immune cells, among which Treg, M2, and
neutrophils are well known immunosuppressive cells, while
the role of Tfh in TME is not yet clear. Some studies have
found that a high expression of Tfh is positively correlated
with the survival of patients with breast, lung, and colorectal
cancers (Bindea et al., 2013; Gu-Trantien et al., 2013; Germain
et al., 2014). However, in another study based on a mouse model
of hepatocellular carcinoma, Tfh cells were found to be negatively
associated with survival (Shalapour et al., 2017). We found that
Tfh was more infiltrated in the high-PFRGPS subgroup; hence, it
is clear that there are interesting complexities associated with Tfh
in the context of cancer.

Thus, based on differences in the immune microenvironment
between the high- and low-PFRGPS subgroups, it is reasonable to
speculate that there may be differences in the effects of
immunotherapy between these two subgroups. Both basic
research and clinical practice have recently shown that cancer
patients who respond to immunotherapy have durable efficacy
and longer OS than those who do not respond (Gettinger et al.,
2018). Therefore, identifying which patients could benefit from
immunotherapy is an important issue.

TMB is the number of genetic mutations within a tumor. TMB
is a stable predictor of immunotherapy success, and thus
expression of predictive marker is consistent with TMB
alterations in order to have high reliability (Chan et al., 2019).
Increased TMB is found in a majority of cancer patients who
benefit from immunotherapy (Zhao et al., 2019). Consistent with
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this, we found that the low-PFRGPS subgroup had a higher TMB.
The TIDE has a higher accuracy than PD-1 expression levels and
TMB in predicting immunotherapy outcomes in cancer patients.
A lower TIDE score suggests that a patient may derive greater
benefits from immunotherapy; our results are in agreement with
this, since we found that the high-PFRGPS group did not benefit
much from immunotherapy (Jiang et al., 2018). MSI is a
molecular signature of cancer that usually occurs when DNA
mismatch repair (dMMR) is disrupted (Boland and Goel, 2010).
Evidence is mounting that MSI status affects the survival and
treatment of patients with several cancers, including GC (Polom
et al., 2018). It is reported that the majority of tumors in Chinese
patients with GC (about 95%) are characterized by high MSS (Li
et al., 2021). Patients with GC in the MSI-H group had higher
survival rates than patients in theMSS or low-MSI groups (Zhang
et al., 2022). In patients with colon cancer, it was found that
patients in the MSI-H group benefited significantly more from
immunotherapy than patients in the MSS or MSI-L groups (Cao
et al., 2022). Our study found that patients with GC in the high-
PRFGPS subgroup had a higher proportion of MSS and a lower
proportion of MSI-H. This may suggest that the high-PRFGPS
subgroup had a relatively poor prognosis and poorer
immunotherapeutic outcomes. ICI has emerged as a
potentially effective cancer treatment (Llovet et al., 2018).
Targeting immune checkpoint molecules such as PD-1 and
CTLA-4 can reinvigorate anti-tumor immunity (Choi et al.,
2019). In order to predict the effect of ICI treatment in
patients with GC, we analyzed the relationship between
PFRGPS and both PD-1 and CTLA4 using IPS in patients
with GC. We found that the IPS scores of anti-CTLA4 or
anti-PD-1 were higher in the low-PFRGPS subgroup than in
the high-PFRGPS subgroup, which means that immunotherapy
may be more effective in the low-PFRGPS subgroup. There was
no difference in IPS between the high- and low-PFRGPS
subgroups during combined treatment.

Our study has some limitations. Firstly, we only used data
from databases and did not perform relevant experimental
validation. Secondly, the mechanism of platelet action in the
TME of patients with GC is still unclear, with a view to future
experimental studies.

Our results showed that, relative to the low-PFRGPS
subgroup, the high-PFRGPS subgroup had a pro-cancer
immune microenvironment, low TMB, high TIDE, high MSS,
low MSI-H characteristics, and relatively poor anti-PD-1 and
anti-CTLA-1 therapeutic effects, suggesting that the high-
PFRGPS subgroup was associated with immune escape in GC.
Therefore, PFRGPS could be used as a new tool to effectively

evaluate the prognosis of and immunotherapeutic efficacy in
patients with GC.

CONCLUSION

Our study defined a novel prognostic signal consisting of five
platelet activation, signaling and aggregation-related platelet
function-related genes, which was independently and
externally validated using three GEO datasets GSE26901,
GSE15459, and GSE84437. The signal was independently
associated with OS in both the TCGA cohort and the GEO
validation cohort, and further demonstrated GC prognosis and
immunotherapy efficacy. It can be used as a predictive tool for the
selection and outcome of clinical therapies for GC patients.
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