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Abstract

Despite advances in three-dimensional (3D) imaging, it remains challenging to profile all the 

cells within a large 3D tissue, including the morphology and organization of the many cell 

types present. Here, we introduce eight-color, multispectral, large-scale single-cell resolution 

3D (mLSR-3D) imaging and image analysis software for the parallelized, deep learning-based 

segmentation of large numbers of single cells in tissues, called segmentation analysis by 

parallelization of 3D datasets (STAPL-3D). Applying the method to pediatric Wilms tumor, 

we extract molecular, spatial and morphological features of millions of cells and reconstruct 

the tumor’s spatio-phenotypic patterning. In situ population profiling and pseudotime ordering 

reveals a highly disorganized spatial pattern in Wilms tumor compared to healthy fetal kidney, yet 

cellular profiles closely resembling human fetal kidney cells could be observed. In addition, we 

identify previously unreported tumor-specific populations, uniquely characterized by their spatial 

embedding or morphological attributes. Our results demonstrate the use of combining mLSR-3D 

and STAPL-3D to generate a comprehensive cellular map of human tumors.
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Single-cell resolution volumetric imaging permits the exploration of intact tissues1–4, 

retaining spatial and geometrical information that is often lost through tissue dissociation 

in other single-cell technologies5. It thereby has the important advantage of revealing—in 

a single overview—the relationships between diverse cell types that both normal organ 

development and cellular function depend on, and how this is shifted under pathological 

conditions, such as cancer. Despite advances in 3D image processing, including nuclear 

and membrane segmentation methods6–11 and large-scale nuclei counting of intact human 

organs12, delineating the exact cellular organization of large human tissues at the single

cell level remains a challenge. The high number of cellular subsets and their various 

morphologies and configurations all complicate accurate single-cell identification and 

profiling. While challenging, such an approach would be highly informative, as it creates 

a single-cell readout that retains spatial and morphometric information and can thereby 

phenotype cells in the context of their native tissue environment. Therefore, to fully exploit 

the potential of volumetric imaging, we here developed multispectral Large-scale Single

cell Resolution 3D (mLSR-3D) imaging with ‘on-the-fly’ linear unmixing for single-scan 

acquisition of 8 spectrally-resolved fluorophores. Combined with SegmenTation Analysis 

by ParaLlelization of 3D Datasets (STAPL-3D), an automated pipeline for compartment

specific feature extraction, it enables in situ analysis of millions of cells in tissue (Fig. 1a, 

Supplementary Video 1).

Results

To interrogate the cellular biology and heterogeneity of tissues, we sought for an imaging 

strategy to timely image multiple markers in 3D (Supplementary Fig. 1). We first defined a 

combination of 8 fluorophores (out of 21 fluorophores compatible with linear unmixing of 

lambda-stacks13 that we tested (Fig. 1b, Supplementary Fig. 1b)). Their reference emission 

spectra were used for accurate unmixing during single-scan acquisition (Supplementary Fig. 

2) without the need for individual fluorophore control samples, a major advantage compared 

to recent methods relying on post-acquisition compensation, thereby generating additional 

data files1,2,14. When performing ‘on the fly’ spectral unmixing, equal signal detection is 

required, which is challenging for 8 fluorophores and cannot be achieved through adjusting 

laser power or detection settings. To overcome this issue, we developed a large-content 

intensity equalization assay for mLSR-3D-imaging to ensure balanced fluorescent intensities 

through the immunolabeling process. Using this assay, we tested over 60 antibodies and 

dyes for optimal 8-color staining (Supplementary Fig. 1, Supplementary Table 1) and 

selected 5 markers of interest based on recent scRNAseq data15 to label a broad range of 

early nephrogenic structures of Human Fetal Kidney (HFK) development, as well as DAPI 

to stain nuclei, Phalloidin to label the F-actin network and KI67 to mark cycling cells (Fig. 

1c-f). To facilitate the use of 8 fluorophores, we implemented a 5-day protocol, consisting of 

3 rounds of labeling for flexible use of multiple species of primary antibodies combined with 

fluorescent secondaries, as well as direct conjugates, followed by a non-toxic clearing step 

with FUnGI3 that preserves cell morphology and tissue architecture (Supplementary Fig. 3). 

This versatile protocol can be applied to a wide range of tissues, as demonstrated by 8-color 

mLSR-3D imaging of xenografted human organoid-derived breast tumors (Supplementary 

Fig. 4a), associated breast cancer organoids cultured in vitro (Supplementary Fig. 4b), 
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and biopsy-derived human central nervous system tumor material (Supplementary Fig. 5). 

Therefore, this method enables acquisition of large-scale, multi-dimensional 3D datasets 

with drastic reduction in overall acquisition time, photobleaching by repetitive illumination, 

and data preprocessing and storage requirements.

We then developed the STAPL-3D pipeline for single-cell feature extraction from large 

3D imaging dataset (Fig. 1a). First, to optimize mLSR3D datasets for subsequent 

analysis, we implemented the STAPL-3D preprocessing module (Supplementary Fig. 6a). 

It includes a novel channel-specific shading correction (Supplementary Fig. 6b and d) and 

a 3D inhomogeneity correction developed for Magnetic Resonance Imaging16 to reduce 

technical background variations (Supplementary Fig. 6c and d). Furthermore, for high 

autofluorescence, observed in the AF488 channel in the kidney, we employed machine 

learning to generate voxelwise probability map17 for KI67, enabling accurate quantification 

of cycling cells (Supplementary Fig. 7, Supplementary Table 2). Next, the STAPL-3D 

segmentation module (Supplementary Fig. 8a) segments the dataset into individual cells 

and subdivides each cell into nucleus and membrane (Fig. 1g). STAPL-3D makes optimal 

use of mLSR-3D data by combining membrane and nucleus channels to generate seeds, 

followed by a two-step watershed procedure expanding the seed into the nucleus and then 

filling the cell to the membrane boundary (Supplementary Fig. 8b & 9). For scalable 

processing, we designed STAPL-3D to be compatible with high performance computing for 

complete segmentation in a couple of hours, by distributing the various analysis steps over 

volumes, channels and datablocks (Fig. 1h, Supplementary Fig. 10). Yet, STAPL-3D also 

runs efficiently on laboratory workstations. Splitting the dataset into blocks generates seams 

of partially segmented cells touching the block borders, either resulting in substantial data 

loss by excluding them18, or introducing artefacts to these cells. Therefore, we developed a 

zipping module that identifies erroneous segments, resegments them, and merges the blocks 

back into a single seamless segmented volume (Supplementary Fig. 8c and 9d).

To achieve maximum utility of STAPL-3D, we provide the option to use state-of-the-art 

deep learning segmentation methods within the pipeline (STAPL-3DDL), by integrating 

3D-UNET10 to predict membrane probability and StarDist11 to predict individual nuclei 

(Supplementary Fig. 11). Because manual segmentation proved practically unfeasible 

for mLSR-3D datasets (with 80 hours of labor required for 569 cells—which was 

insufficient for model training), we also provide a STAPL-3D module to generate large 

training datasets (Supplementary Fig. 11a) by co-acquisition of mLSR-3D data at typical 

resolution (yielding the training data) and at very high resolution (yielding the training 

labels at the same location). Furthermore, using these labeled datasets, we offer a 

segmentation parameter tuning module that uses Bayesian optimization to automatically 

choose parameters that result in the best segmentation quality (Supplementary Table 

3; STAPL-3DFT). Segmentation accuracy of the modules was assessed by comparing 

to an extensive (N=14,717 cells) and diverse set of cells (from 10 different area’s of 

the kidney), that was segmented with high fidelity from datasets co-acquired at high 

resolution and manually curated afterwards to yield a ground truth dataset. Dice overlap, 

precision, recall and F-scores were computed as accuracy metrics (Supplementary Fig. 

12, Supplementary Table 3). We obtained the highest F1.5-score of 0.81 (±0.012 SEM) 

for STAPL-3DDL trained on co-acquired mLSR-3D datasets (Supplementary Fig. 12b) 
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followed by STAPL-3DFT(F1.5=0.75±0.014), both demonstrating a significant increase in 

performance over the generic deep learning model (F1.5=0.71±0.014) and the non-tuned 

STAPL-3D pipeline (F1.5=0.72±0.017). Furthermore, comparing extracted morphological 

features with the ground truth, showed little morphological divergence. Overall average 

percentual increases and decreases with respect to the ground truth were 5.929% (±2.905) 

and 7.198% (±1.740) for STAPL-3DDL trained and 7.821% (±2.768) and 8.912% (±2.220) 

for STAPL-3DFT (Supplementary Fig. 12c). This analysis thus confirms that once trained 

on the appropriate data, STAPL-3DDL increases segmentation accuracy. Nevertheless, 

STAPL-3D already offers a robust segmentation pipeline with a good performance.

STAPL-3D extracts molecular marker intensities, as well as spatial and 3D morphological 

properties per segmented cellular compartment. By default, features are computed for the 

cell and the membranal and nuclear subsegments. Moreover, we show that mLSR-3D 

and STAPL-3D pipelines can be adapted to extract features from the cytosolic and even 

mitochondrial compartment when using Airyscan 3D imaging (Supplementary Fig. 13). 

The division into cellular compartments can be exploited to define compound features, for 

example cell polarity, estimated from the centers of mass of cell and nucleus (Supplementary 

Fig. 8d). We can obtain a complete set of approximately 800 features extracted from full 

cell, nucleus and membrane segment (Supplementary Table 4), with the option to select 

the features most relevant for the particular application (Fig. 1i). Altogether, STAPL-3D 

offers a scalable, modular and tunable analysis framework for advanced image preprocessing 

and cellular compartment-specific segmentation, towards reliable 3D feature extraction and 

profiling of millions of cells within tissue.

To showcase the potential of our mLSR-3D and STAPL-3D framework, we next performed 

spatio-phenotypic patterning of Wilms Tumor (WT) – a pediatric kidney cancer (Fig. 2 and 

Supplementary Fig. 14). Prevalence of WT in early childhood has been related to corruption 

of fetal nephrogenesis and, indeed, these tumors present with aberrant fetal cells19,20. 

Therefore, we aim to elucidate the in situ developmental patterning of WT in relation to 

HFK. To create a spatio-phenotypic reference map, we defined 11 known cell populations 

in our HFK sample (gestational week 16), distributed over 3 components of the developing 

kidney: nephrogenesis, collecting system and interstitium15. This was achieved through 3D 

UMAP projection21 and clustering of the 2.1M cells × 19 features data matrix (Fig. 2b, 

Supplementary Fig. 15c), assigning the resulting 20 clusters to a particular population, based 

on molecular markers, but also indispensably aided by morphological features and spatial 

location (Fig. 2c-d, Supplementary Fig. 15, 16a-b). Having captured the spatio-phenotypic 

single-cell landscape of HFK in a classifier, cell types could also be predicted for the 1.8M 

cells segmented from the WT sample. Backprojection of population identity into the dataset 

revealed a highly disorganized spatial pattern in WT compared to HFK (Fig. 2d-e), yet 

nephrogenic-like structures could be identified. These structures consisted predominantly 

of distal tubule (DT), ureteric bud (UB) and renal vesicle/S-shaped-body (RV/SSB) cells 

(Fig. 2f), and sporadically contained cell clusters of more undifferentiated cap mesenchyme 

(CM)-like cells (Fig. 2g). Indeed, in relation to HFK, the epithelial components of this 

particular WT were enlarged: 1.2 times for UB, 1.6 times for DT and, most notably, 2.8 

times for early epithelial RV/SSB (Fig. 2h). Pseudotime ordering of nephrogenic cells 

revealed a single trajectory for early progenitors (CM) to committed progenitors (RV/SSB), 
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branching into three late populations (DT, proximal tubule progenitor/convoluted tubule 

(PTP/PCT) and glomerulus (GL)) (Fig. 2i). The position of the center of mass in this 

pseudotime UMAP showed a shift for the CM node towards the enlarged RV/SSB node in 

WT, indicative of a more committed progenitor fate for this cluster as compared to HFK. 

Inclusion of KI67 in our set of markers allowed us to provide insight into the mechanism 

underlying this developmental pattern (Fig. 2j). From the pseudotime-ordered cells, we 

could identify a peak of cycling cells during the RV/SSB stage in HFK. WT showed 

overall increased cycling compared to HFK; in particular high in RV/SSB, but also in their 

developmental progenitors (CM) (Fig. 2j). Thus, the enlarged RV/SSB cluster in the WT 

sample (Fig. 2h) likely results from both intrinsic cycling properties of this cluster, as well 

as a transitioning progenitor population from CM fueling this compartment. Hence, through 

profiling population distribution and pseudotime ordering, we could begin to untangle the in 
situ heterogeneity of WT in relation to its developmental origin.

To dive deeper into the spatio-phenotypic traits specific to WT, we next created a joint 

UMAP for HFK and WT and identified 6 cellular clusters that largely reflect conventional 

WT classification (epithelium, stroma and blastema22) (Fig. 3a-b). Based on their spatio

phenotypic features, we describe them as differentiated and undifferentiated epithelium, 

blastema, two stroma clusters, but also a small GL population (Fig. 3b, Supplementary Fig. 

15). Although varying in contribution, all six clusters contained both healthy kidney and 

tumor cells, confirming the strong fetal resemblance of this tumor (Fig. 3c). Interestingly, 

cluster backprojection reveals one stroma-like compartment surrounding the epithelial/

blastemal clusters (the surrounding stroma) while the other locates within these structures 

(the inner stroma) (Fig. 3d-e). This nicely demonstrates the usefulness of maintaining 

tissue-context to reveal differential spatial embedding of populations. The relative cluster 

sizes resulting from our classification (46.7% epithelium, 51% stroma and 2.3% blastema) 

(Supplementary Table 5), closely agree with histopathological scoring of the WT sample 

(50% epithelium, 45% stroma and 5% blastema), providing confidence in the obtained 

classification. Yet our approach goes beyond conventional classification and offers a more 

in-depth characterization (i.e. differentiated versus undifferentiated epithelium and two 

spatially resolved stromal-like compartments). In addition, we identified a tumor-specific 

population within the surrounding stroma through subclustering (Fig. 3f-g). Unexpectedly, 

cells belonging to subcluster 5 showed a high expression of SIX2, as compared to 

the remaining surrounding stroma (Fig. 3h), and are spindle-shaped (Fig. 3i), unlike 

conventional SIX2+ round-shaped blastemal cells in WT (Fig. 3i-j; high-extent). This may 

be of particular significance, because SIX2 is involved in maintaining the undifferentiated 

and proliferative state of HFK CM and WT blastema cells23, the latter known to be 

associated with poor prognosis if prevalent after chemotherapy22. 24% of WT cells of 

this subcluster 5 expressed SIX2 to a similar intensity as blastema cells (i.e. falling within 

or above the blastema interquartile range). Even though they represent only 2% of the 

entire WT sample, these SIX2-high stromal-like cells are present in substantial and thereby 

perhaps consequential amounts (36,242 cells). Although clinical importance of the identified 

cell profiles remains to be determined, we demonstrated that the combined application 

of mLSR-3D and STAPL-3D offers the potential to generate new insights into tumor 
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biology by accurate cell subset quantification and identification of novel spatio-phenotypic 

signatures.

Discussion

In sum, we here provide a targeted in situ profiling approach to exploit molecular, 

morphological and spatial features of millions of cells from 3D imaging data. In line with 

recent advances in multiplexed proteomics and spatial transcriptomics1,3,4,24–26, we envision 

our single-cell technology a key step forward towards unravelling the complex cellular 

organization of organs and their associated tumors with particular promise for capturing 

essential spatio-phenotypic hallmarks of tumorigenesis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. mLSR-3D imaging and STAPL-3D.
(a) Schematic overview of mLSR-3D and STAPL-3D (b) Normalized emission reference 

spectra. (c) mLSR-3D visualization of HFK (16 weeks of gestation) labeled for DAPI 

(grey), KI67 (cyan), PAX8 (yellow), NCAM1 (blue), SIX2 (green), CDH1 (red), CDH6 

(orange) and F-ACTIN (gradient: red-yellow-white). Scale bar 500 μm. (d-f) 3D zooms of 

masked nephrogenic structures. (d) CM = cap mesenchyme, RV = renal vesicle, SSB = 

S-shaped body, UB = ureteric bud. SIX2 (green), CDH1 (red), PAX8 (yellow), NCAM1 

(blue). (e) Loop of Henle with proximal tubule (PT) connecting to the distal tubule (DT). 
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PAX8 (green), CDH1 (blue), CDH6 (red), F-ACTIN (grey). (f) Proximal tubule (PT) 

connecting to the glomerulus (GL). PAX8 (green), CDH6 (red), F-ACTIN (grey). Scale bars 

50 μm. (g) Optical section demonstrating cell compartment segmentation with STAPL-3D. 

DAPI (grey) and weighted mean of all membrane channels (red-yellow-white gradient). 

Segments are randomly colored. Scale bar 20 μm. (h) Volumetric rendering of the block

wise segmentation. Number of blocks = 182. Scale bar 500 μm. These experiments (c-h) 

were perfomed independently at least 4 times with similar results (Supplementary Fig. 10) 

(i) Pearson correlation heatmap of selected features, reordered by hierarchical clustering.
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Figure 2. Spatio-phenotypic patterning of HFK and WT reveals expanded, cycling, early 
epithelial compartment in WT.
(a) Schematic overview of the analysis strategy. (b) 3D UMAP rendered for 50,000 HFK 

cells. Colors and labels correspond to cell identity. (c) Heatmap of log-scaled median 

feature values (blue-white-red gradient) per identified cluster, subdivided into components 

of the HFK: nephrogenesis (CM = cap mesenchyme, RV/SSB = renal vesicle/S-shaped 

body, PTP = proximal tubule progenitor, PCT = proximal convoluted tubule, DT = distal 

tubule, GL = glomerulus), collecting system (UB = ureteric bud, CD = collecting duct) and 
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interstitium (IP = interstitial progenitors, ICc = interstitial cells cortex, ICm = interstitial 

cells medulla). Clusters are numbered from 1 to 20 according to descending cluster size. 

Typical 3D segmented examples of each cell type are displayed above the heatmap, oriented 

apical to basal. Scale bar 10 μm. (d-e) 3D backprojection of the HFK and WT showing all 

single-cell segments colored for cell type identity. Scale bars 500 μm. (f-g) Optical sections 

showing backprojected cell types (DT, RV/SSB, CM and UB) of representative WT regions. 

Scale bars 70 μm. (h) Bar graph depicting relative cluster sizes per dataset in percentages. 

(i) UMAP depicting pseudotime ordering of HFK (left panel) and WT (right panel) cells 

belonging to nephrogenic clusters. Circle sizes correspond to the number of cells within 

each cluster and pseudotime is depicted by the rainbow gradient (early: blue – red: late). 

(j) KI67 positive fraction for WT (top) and HFK (bottom) plotted along the pseudotime 

trajectory of nephrogenic development. Line colors correspond to cell identities.
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Figure 3. Comparative analysis reveals spindle shaped SIX2+ cells in surrounding tumor stoma.
(a) Joint 3D UMAP rendered for 50,000 HFK and WT cells. Colors and labels correspond to 

cluster identity. (b) Heatmap of log-scaled median feature values (blue-white-red gradient) 

per identified cluster: clusters are numbered 1-6 according to descending cluster size. (c) Bar 

graph depicting relative contribution of each sample per cluster in percentages. (d-e) Optical 

sections showing fluorescent markers KI67 (cyan), PAX8 (yellow), NCAM1 (blue), SIX2 

(green), CDH1 (red), and F-ACTIN (grey) (d) and backprojected cluster identities (e) of a 

representative WT region. Scale bars 70 μm. (f-g) UMAP rendered for 50,000 surrounding 
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stroma cells. Colors and labels correspond to (f) sub-cluster identity or (g) sample identity: 

blue = WT; red = HFK. (h) Boxplots showing log-scaled median SIX2 value of sub-cluster 

‘5’ (n = 194,218 cells) compared to the surrounding stroma main cluster (n = 1,650,651 

cells). Centre: median, bounds: Q1-Q3, whiskers extend to minimum/maximum limited to 

1.5 times the IQR (i) Boxplots showing log-scaled median values for extent, volume, major 

axis length and fractional anisotropy of sub-cluster ‘5’ (n = 194,218 cells) compared to the 

blastema main cluster (n = 342,579 cells). Centre: median, bounds: Q1-Q3, whiskers extend 

to minimum/maximum limited to 1.5 times the IQR (j) Typical 3D segmented examples of 

a SIX2+ blastemal (left) and SIX2+ stromal cell (right). Scale bar 10 μm. (k) Optical section 

showing fluorescent markers NCAM1 (blue), SIX2 (green), CDH1 (red), F-ACTIN (grey) of 

a representative WT region. Scale bar 50 μm. (l) Magnification of indicated yellow area with 

back-projected subcluster ‘5’ identities and SIX2 (grey). Scale bar 50 μm.
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