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Abstract: Drimane and coloratane sesquiterpenoids are present in several plants, microorganisms,
and marine life. Because of their cytotoxic activity, these sesquiterpenoids have received increasing
attention as a source for new anticancer drugs and pharmacophores. Natural drimanes and col-
oratanes, as well as their semi-synthetic derivatives, showed promising results against cancer cell
lines with in vitro activities in the low micro- and nanomolar range. Despite their high potential as
novel anticancer agents, the mode of action and structure–activity relationships of drimanes and
coloratanes have not been completely enlightened nor systematically reviewed. Our review aims to
give an overview of known structures and derivatizations of this class of sesquiterpenoids, as well
as their activity against cancer cells and potential modes-of-action. The cytotoxic activities of about
40 natural and 25 semi-synthetic drimanes and coloratanes are discussed. In addition to that, we give
a summary about the clinical significance of drimane and coloratane sesquiterpenoids.

Keywords: natural products; organic synthesis; anticancer activity; mode-of-action

1. Introduction

According to the World Health Organization, cancer is the most common cause of
death in the 21st century and one of the world’s major health challenges [1–3]. Particularly,
the growing world population and increasing life expectancy will lead to a constant increase
in cancer cases per year. Therefore, the development of effective anticancer treatments is
indispensable. Cancer treatment often includes the application of chemotherapeutic drugs,
which have become an essential part of cancer drug therapy [4]. Most chemotherapeutic
agents are cytotoxic compounds targeting fast-dividing cells by impairing processes of cell
division. In general, cytotoxic anticancer drugs include alkylating agents, platinums, anti-
metabolites, topoisomerase I and II inhibitors, tubulin-binding drugs, DNA intercalators,
and DNA cleaving agents [5,6]. Despite the broad clinical use of chemotherapeutics, there
are several drawbacks such as severe side effects due to the lack of selectivity or devel-
opment of drug resistance [7,8]. Consequently, the investigation of improved anticancer
drugs represents a continuous task in medicinal chemistry.

Natural products have proven to be a versatile source of new drugs and pharma-
cophores in recent decades [9–11]. For example, approved chemotherapeutics—such as
paclitaxel, vinblastine, or belotecan—are natural products or contain natural product
pharmacophores. Despite the long history of natural products as anticancer drugs, their
potential has not been exhausted so far. Among natural products, sesquiterpenoids are a
prominent group, which has been shown to exhibit cytotoxic effects against cancer cells [12].
Some sesquiterpenoids—such as artemisinin, thapsigargin, or mipsagargin (G-202)—have
already entered clinical trials as novel chemotherapeutic agents, showing that this class
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of natural products holds great potential in anticancer therapy [13]. In nature, sesquiter-
penoids are formed in higher plants and microorganisms often to act as antifeedants,
deterrents, or attractants [14]. They are 15-carbon compounds derived from the assembly
of three isoprenoid units and can be subdivided into acyclic, monocyclic, bicyclic, and
tricyclic derivatives. Some examples of cytotoxic sesquiterpenoids are depicted in Figure 1.
In this review, we will focus on bicyclic drimane and coloratane sesquiterpenoids.
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Figure 1. Examples for cytotoxic sesquiterpenoids: dehydrovomifol (1), polygodial (2), and lemnalol
(3) [12].

The general structure of drimanes is derived from drimenol (4), which was first isolated
in 1948 from the stem bark of Drimys winterii (Figure 2) [15]. Drimane sesquiterpenoids are
characterized by a trans-decalin core structure and common methyl groups at the C4 and
C10 positions [16]. Natural drimanes are often substituted by different oxygen-containing
groups—such as aldehyde, hydroxy, acetate, and lactone functionalities—which mainly
occur at the C6, C9, C11, and C12 positions [16–21]. Rearranged drimanes—also known as
coloratanes—are closely related compounds characterized by the 1,2 rearrangement of a C4
methyl group, leading to a terminal double bond at the C4 position.
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Sources rich in naturally occurring drimanes and coloratanes are liverworts, ferns and
higher plants including Canellaceae, Polygonaceae, and Winteraceae species [22,23]. Due to the
pharmacological effects of drimane and coloratanes, some of these plants are commonly
used in traditional medicine [24–27]. Other sources of drimanes and coloratanes are
fungi [28–30] and marine sponges [31–33]. Drimane and coloratane sesquiterpenoids have
been shown to exhibit antibacterial [34–36], antifungal [37,38], antifeedant [39–41], and
antimalarial [42–44] activity.

This review focuses on the cytotoxic properties of drimane and coloratane sesquiter-
penoids against cancer cells. We give an overview of the anticancer activity of natural and
semi-synthetic drimanes and coloratanes as well their modes of action. In addition to that,
the clinical significance of this class of sesquiterpenoids will be summarized.
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2. Anticancer Properties
2.1. Natural Drimanes and Coloratanes

Natural sources provide structural diverse and bioactive drimane and coloratane
sesquiterpenoids. In this subsection, cytotoxic drimanes and coloratanes from natural
sources are described and some structure–activity relationships are discussed. All values
that are relevant for the discussion of the cytotoxic activity are summarized in Table 1 at
the end of this subsection.

2.1.1. Plant Sources

In 1980, Mahmoud et al. showed that natural drimanes from Cinnamodendron dinisii—
cinnamodial (7), capsicodendrin (8), and cinnamosmolide (9)—exhibit cytotoxic activities
against P388 leukemia cells and cells of nasopharynx cancer (Eagle’s 9KB-cells, Figure 3) [45].
It is supposed that the cytotoxic activities of 7 and 8 are similar due to the tendency of
the acetal group of 8 to hydrolyze under aqueous conditions to yield 7. Interestingly, no
cytotoxicity was observed for drimanes lacking an α,β-unsaturated double bond at the C7,8
position such as 10. Karmahapatra et al. also obtained cinnamodial (7) and capsicodendrin
(8) from the species Cinnamosma fragrans and tested their cytotoxic and antiproliferative
activity against HL-60 and K562 leukemia cells [46]. Cinnamodial (7) was less cytotoxic
than capsicodendrin (8). Despite that, 7 is supposed to be the active species because it was
shown that 8 is converted to 7 in DMSO. It is suggested that 8 is a prodrug of 7 and the in
situ formation of 7 inside the cell increases its cytotoxic activity.
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Nomoto et al. isolated drimane lactones and lactams from Cinnamosma fragrans and
evaluated their cytotoxicity against A549 carcinoma cells (Figure 4) [47]. Lactone 11 was
more potent than 12 and 13, suggesting that certain hydrophilic substituents could lead to
an increase in cytotoxic activity due to improved bioavailability.
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Figure 4. Cytotoxic drimanes from Cinnamosma fragrans against A549 carcinoma cells [47].

Fratoni et al. purified drimanes from the stem bark of Drimys brasiliensis and investi-
gated their cytotoxic potential against leukemia cell lines K562 and Nalm-6 (Figure 5) [48].
The drimanes 14–19 and 2 were active against both cancer cell lines. Especially, the cin-
namoyl derivatives 18 and 19 exhibited increased cytotoxic activities. Compound 18 was
10- to 20-fold more active than polygodial (2), showing an increase in cytotoxicity by the
conjugated π-substituent. As previously reported, drimanes lacking an α,β-unsaturated
double bond at the C7,8 position lead to no or a strongly decreased cytotoxic activity. In
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further experiments, Fratoni et al. tested derivatives 16, 18, and 19 against 16 human cancer
cell lines [49]. Compound 18 was the most active compound against most of the cancer
cell lines. For seven cancer cell lines, the IC50 values of 18 are located within 1–2 µM.
Interestingly, there are a few exceptions where 19 was more active than 18, suggesting a
cell-type dependent susceptibility.
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smithii [48–50].

Allouche et al. isolated cinnamoyl derivatives 17, 20–22, and polygodial (2) from
the bark and leaves of Zygogynum pancheri and Zygogynum acsmithii and tested their cyto-
toxic activity against KB adenocarcinoma, HL-60 leukemia, and HCT116 colon cancer cell
lines [50]. The cinnamoyl derivatives 17, 20–22 showed increased cytotoxicity compared to
polygodial (2) as reported by Fratoni et al. [48].

The glycosylated drimane 23 was isolated by Dong et al. from seeds of Antairis
toxicaria (Figure 6) and exhibited a moderate cytotoxic activity towards K562 leukemia and
SMMC-7721 HeLa cell lines [51].
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Xu et al. isolated several drimanes from the stem bark of Warburgia ugandensis and eval-
uated their cytotoxicity towards nasopharyngeal cancer cells (KB cells) (Figure 7) [52]. Only
the dialdehyde drimanes polygodial (2), warburganal (24), and mukaadial (25) showed a
strong cytotoxic activity. Compound 24 was more active than 2 suggesting that the C9 hy-
droxyl group leads to an increase in cytotoxicity. On the other side, 25 is less cytotoxic than
2 showing that a C6 hydroxylation is disfavored or there is a critical number of hydrophilic
groups, leading to a loss of anticancer activity by reduced membrane mobility.
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Figure 7. Cytotoxic drimanes and coloratanes from Warburgia ugandensis against KB, MV4-11, THP-1
leukemia, Sk-Mel29 melanoma, and LN-229 glioblastoma cells [52,53].

Kitte and Tretbar et al. obtained the sesquiterpenoids polygodial (2), warburganal (24),
and muzigadial (26) from the stem bark of Warburgia ugandensis and tested their cytotoxic
activity against leukemia (MV4-11 and THP-1), melanoma (Sk-Mel29), and glioblastoma
(LN-229) cell lines (Figure 7) [53]. Muzigadial (26) exhibited three-to-five-fold higher
activities than polygodial (2). The activity of warburganal (24) was also increased com-
pared to polygodial (2) as previously observed by Xu et al. [52]. The results by Kitte and
Tretbar et al. suggest that a terminal double bond at the C4 position of muzigadial (26)
increases its cytotoxicity.

2.1.2. Marine Sources

Sakio et al. obtained drimane lactones and acetals 27–33 from Dendrodoris carbunculosa
(Figure 8) [54]. Drimanes 27–33 exhibited cytotoxic effects against the lymphoma cell line
P388 and adriamycin-, and vincristin-resistant (ADR, VDR) P388 cells with IC50 values of
4–17 µg/mL. Lactone 33 showed increased cytotoxicity compared to 27–32. Simultaneous
incubation of P388 cells with drimanes 27–33 and adriamycin or vincristine led to no
reversal effects.
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Drimane acetals 34–36 were isolated from Perenniporia maackiae by J. Kwon et al. and
tested against ACHN renal, HCT-15 colon, MDA-MB-231 breast, NCI-H23 lung, NUGC-3
stomach, and PC-3 prostate cancer cell lines (Figure 9) [55]. Compound 35 was shown to
be the most active compound. In general, Kwon et al. observed that only drimane acetals
with an (S)-configuration or a keto group at the C6 position proved to be cytotoxic during
their investigations.
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2.1.3. Fungal Sources

Liu et al. isolated polyene-substituted drimanes 37–39 from the fungus Aspergillus
ustus and investigated their impact on a murine lymphoma cell line (L5178Y) on PC-12 and
HeLa cells (Figure 10) [56]. Compound 37 was shown to be cytotoxic towards all cancer
cell lines, whereas 38 and 39 were less active than 37. In general, L5178 cells were more
susceptible towards 37–39 than PC-12 and HeLa cells.
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Figure 10. Cytotoxic drimanes from Aspergillus ustus against L5178Y-, PC-12-, A549-, HL-60-, and
HeLa cells [56,57].

Lu et al. also obtained the polyene-substituted drimanes 37 and 38 and an additional
compound 40 from Aspergillus ustus and investigated their cytotoxicity against A549 carci-
noma and HL-60 leukemia cell lines (Figure 10) [57]. The highest activities were observed
for 37 and 40. Surprisingly, 37 exhibited no cytotoxicity against A549 cells and 40 no activity
against HL-60 cells. For 38 only a minor impact against A549- and HL-60 cells was observed.
The results by Liu et al. and Lu et al. suggest that hydrophilic and electron-deficient groups
at the terminal position of the conjugated π-system (Figure 10, green circle) are beneficial
for an increase in cytotoxic activity [56,57].

Liu et al. isolated dihydroxylated polyene-substituted drimane lactones 41–44 from
Aspergillus flavus (Figure 11) [58]. All sesquiterpenoids 38–41 displayed IC50 values ranging
from 1.4 to 8.3 µM against HeLa, MCF-7 breast cancer, MGC-803, and A549 cancer cells, of
which 41 exhibited the strongest cytotoxicity.
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cells [58].

W. Feng et al. used Fomes officinalis as a source of drimane sesquiterpenoids (Figure 12) [59].
Only drimane 45 exhibited a moderate cytotoxic activity against HL-60 leukemia, Bel-7402
hepatoma, and KB nasopharyngeal cells.
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S. Ngokpol et al. isolated drimane sesquiterpene-conjugated amino acids 46–48 from
Talaromyces minioluteus and evaluated their cytotoxicity against the human hepatocellular
carcinoma cell line HepG2 (Figure 13) [60]. Compounds 47 and 48 are four-fold more active
than 46.
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Figure 13. Cytotoxic drimane sesquiterpene-conjugated amino acids from Talaromyces minioluteus [60].

All cytotoxic activities of drimane and coloratane sesquiterpenoids from this subsec-
tion are concluded in the following table (Table 1). The compounds are classified by their
source and the anticancer activity of each compound refers to certain cell lines.
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Table 1. Anticancer activity of natural drimane and coloratane sesquiterpenoids 1.

Source Species Comp. Anticancer Activity 2 Value
(Unit) 3 Cell Lines Ref.

Pl
an

ts

A. toxicaria 23 6.60 a, 7.20 b IC50
(µg/mL)

a: K562,
b: SMMC-7721 [51]

C. dinisii
7 2.2 EC50

(µg/mL)
P388

(9: KB) [45]8 2.9
9 1.2

C. fragrans 7 0.48 a, 0.21 b EC50
(µM)

a: HL-60,
b: K562

[46]8 0.20 a, 0.09 b

C. fragrans
11 44.6 IC50

(µM) A549 [47]12 62.0
13 69.6

D. brasiliens

2 78.20 a, 83.85 b

IC50
(µM)

a: Nalm6,
b: K562 [48] 4

14 68.03 a, 16.24 b
15 78.67 a, 16.66 b
16 23.0 a, 26.10 b
18 8.18 a, 3.56 b
19 12.73 a, 12.98 b

W. ugandensis
2 1.0 IC50

(µM) KB [52]24 0.3
25 5.3

W. ugandensis

2 6.91 a, 2.22 b, 7.81 c,
22.40 d

IC50
(µM)

a: MV4-11,
b: THP-1,

c: Sk-Mel29,
d: LN-229

[53]24 3.20 a, 1.12 b, 4.99 c,
4.11 d

26 2.62 a, 0.44 b, 2.46 c,
2.74 d

Z. pancheri,
Z. acsmithii

2 1 a, 1.2 b, 0.7 c

IC50
(µM)

a: KB,
b: HL-60,

c: HCT116
[50]

17 0.5 a, 0.5 b, 0.2 c
20 0.4 a, 0.3 b, 0.1 c
21 0.4 a, 0.3 b, 0.1 c
22 0.4 a, 0.2 b, 0.1 c

M
ar

in
e

lif
e D. carbunculosa

27 10.5

IC50 (µg/mL) P388 [54]

28 17
29 11.5
30 15
31 10.8
32 10
33 3.2

P. maackiae

34 2.0 a, 1.8 b, 2.3 c, 2.1
d, 2.4 e, 6.0 f

GI50
(µM)

a: ACHN,
b: HCT-15, c: MDA-MB-231,

d: NCI-H23,
e: NUGC-3,

f: PC-3

[55]35 1.2 a, 1.6 b, 1.5 c, 1.4
d, 1.9 e, 2.0 f

36 3.6 a, 5.4 b, 4.0 c, 4.3
d, 2.3 e, 4.6 f
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Table 1. Cont.

Source Species Comp. Anticancer Activity 2 Value
(Unit) 3 Cell Lines Ref.

Fu
ng

i

A. flavus

41 3.6 a, 1.4 b, 6.8 c, 5.0 d
IC50
(µM)

a: HeLa,
b: MCF-7,

c: MGC-803,
d: A549

[58]
42 2.9 a, 5.7 b, 1.9 c, 2.5 d
43 8.3 a, 3.1 b, 7.1 c, 6.3 d
44 4.2 a, 6.6 b, 2.3 c, 7.5 d

A. ustus
37 0.6 a, 7.2 b, 5.9 c EC50

(µg/mL)

a: L5178Y,
b: PC-12,
c: HeLa

[56]38 1.9 a, >10 b, 7.5 c
39 5.3 a, >10 b, >10 c

A. ustus
37 >100 a, 9.0 b IC50

(µM)
a: A549,
b: HL-60

[57]38 10.5 a, >100 b
40 30.0 a, 20.6 b

F. officinalis 45 51.2 a, 88.7 b, 146.0 c IC50
(µM)

a: HL-60,
b: Bel-7402,

c: KB
[59]

T. minioluteus
46 193.3 IC50

(µM)
HepG2 [60]47 50.6

48 57.0
1 The comparison of anticancer activities is only possible within the same publication because of varying cell
viability assays. 2 The anticancer activity refers to a specific cell line which is indicated by superscripts (a–f) for
each value within one species. 3 IC50 is the drug concentration causing 50% inhibition of the desired activity and is
primarily applied for a specific target. For whole-cell assays, the use of GI50 and ED50 (or EC50) is recommended.
GI50 is the concentration for 50% of maximal cell proliferation, whereas ED50 (or EC50) is the dose/concentration
causing 50% of a maximum effect for any measured biological activity [61]. 4 See also [49] for more results.

2.2. Semi-Synthetic Drimane Derivatives

Synthetic modification of natural products provides a valuable strategy for increasing
pharmacological properties [9–11]. For drimane modification, polygodial (2) turned out to
be a suitable target because it can be isolated in sufficient quantities from different sources
and possesses a less complex structure with reactive aldehyde groups [62,63]. Montenegro
et al. isolated polygodial (2), its epimer 9-epipolygodial (49), and drimenol (4) from Drimys
winteri [64]. Based on polygodial (2), three semi-synthetic drimanes were obtained by
acetalization and reduction. Modification of drimenol (4) yielded two cytotoxic drimane
derivatives. Some examples are given in Figure 14.
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All derivatives were evaluated against human prostate cell lines DU-145 and PC-3
as well as the breast cancer cell line MCF-7. An increased cytotoxicity was observed for
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polygodial (2) and the semi-synthetic derivatives 50, 52, and 53. These data allow a more
systematic insight into the structure–activity relationships of drimanes. The electrophilic
position at the C7 position and the configuration of the C9 position are critical for cytotoxic
activity. Reduction of both aldehyde groups of polygodial (2) leads to complete inactivation
of both epimers of 51. Interestingly, acetalization of the C11 aldehyde group of 2 as to 50
has no impact on cytotoxic activity. However, it can be assumed that the acetal group of 50
is converted to 2 under aqueous conditions. Furthermore, 9-epipolygodial (49) showed no
cytotoxicity suggesting a critical role in the configuration of the C9 position. Transforming
the C7 position of drimenol (4) to an electrophilic keto group (52 and 53) leads to cytotoxic
activity compared to 4.

Dasari et al. modified polygodial (2) to increase its antiproliferative activity against
A549-, Sk-Mel28, MCF-7-, U373-, and Hs683 cancer cells [65]. 9-epipolygodial (49) was
obtained by an epimerization reaction of polygodial (2) (Scheme 1). Typical GI50 values of
49 were at 2–6 µM and are 10-to-20-fold smaller than GI50 values of polygodial (2) Thus,
contradictory to Montenegro et al. (Table 2), 9-epipolygodial (49) displayed a high antipro-
liferative activity [64]. Certainly, the impact of anticancer agents is cell line dependent-but
even for the same cancer cell line MCF-7, both groups obtained contrary results [64,65]. The
two groups performed different cell viability assays and control culture treatments to mea-
sure the cytostatic effects of 49 which might lead to different results. Dasari et al. measured
the cell viability as sextuplicate in only one experiment [65]. On the other side, Montenegro
et al. performed three independent experiments in triplicates [64]. Discrepancies in the
data could therefore be due to the lack of biological replicates. Despite that, 9-epipolygodial
(49) also showed antiproliferative effects against the multi-resistant uterus cancer cell lines
MES-SA and MES-SA/Dx5, which were measured in two independent experiments. The
effects are comparable to the chemotherapeutics paclitaxel and vinblastine.
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Table 2. Cytotoxicity of drimanes from Montenegro et al.; IC50 values against DU-145, PC-, and
MCF-7 cancer cells are given [64].

Comp. DU-145
(µM)

PC-3
(µM)

MCF-7
(µM)

2 1 71.4 ± 8.5 89.2 ± 6.8 93.7 ± 9.1
4 1 >200 >200 >200

49 1 >200 >200 >200
50 2 70.6 ± 5.9 65.4 ± 5.5 97.1 ± 7.2
51 3 >200 >200 >200
52 4 93.5 ± 6.7 97.5 ± 10.4 >200
53 5 >200 90.2 ± 8.8 88.4 ± 7.1

1 Obtained from Drimys winteri. 2 Starting material: polygodial (2), p-TosOH, ethylene glycol. 3 Starting material:
polygodial (2), NaBH4 (excess), MeOH, r.t. or KOH, MeOH (50%), NaBH4 (excess). 4 Starting material: drimenol
(4) (i) PCC, CH2Cl2, r.t., 2 h (ii) m-CPBA, CH2Cl2, r.t., 1.5 h 5 Starting material: drimenol (4), (i) Pb(IV)-acetate,
benzol, reflux (ii) m-CPBA, CH2Cl2, r.t. (iii) MeONa, MeOH, rt (iv) PDC, CH2Cl2, r.t.
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Based on 9-epipolygodial (49), Wittig derivative 54 was synthesized leading to reduced
cytotoxicity compared to 49 (Scheme 2) [65]. By selective reduction of the double bond
of polygodial (2), derivative 55 was obtained that is in equilibrium with 56. The reduced
derivatives 55/56 still showed some antiproliferative activity suggesting that the presence
of a dialdehyde structure causes a part of the cytotoxicity. Indeed, Dasari et al. observed
a high reactivity of the dialdehyde compounds with primary amines forming unstable
pyrrole adducts [65]. The authors suggested that dialdehyde drimanes might react with
the ε-amine group of lysine residues of proteins, leading to the alteration of their functions.
However, no protein drimane adducts were identified so far.
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Dasari et al. proposed that the reversible formation of bis-acetals might lead to a
controlled release of reactive dialdehydes inside the cell and an increased cytotoxicity [65].
Therefore, different bis-acetals were formed from polygodial (2) (Scheme 3). Bis-acetals
57a, b, 62a, b, 63a, b and 58 showed comparable or even enhanced antiproliferative effects
compared to polygodial (2). A possible reason is also the enhanced membrane mobility of
the bis-acetals because of the less polar structure compared to polygodial (2).
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In further works, Dasari et al. focused on the Wittig derivatization of the C12 aldehyde
group of polygodial (2) (Scheme 4) [66]. The reactivity of the C12 position is increased
compared to the C11 position, enabling the selective modification of 2. Scheme 4 represents
the C12 Wittig derivatives synthesized. All derivatives were tested against A549-, Sk-Mel28,
MCF-7-, U373-, and Hs683 cancer cells. Best results were obtained for derivative 64 against
MCF-7 cancer (GI50 = 7.0 µM) being 10-fold more active than polygodial (2). In general, GI50
values of all Wittig derivatives 64–71 were about 21–42 µM for A549-, Sk-Mel-28-, U373-,
and Hs683 cancer cells. Additionally, it was demonstrated that 64 forms an isolable pyrrole
product with benzylamine. No Wittig derivatives of 9-epipolygodial (49) were synthesized.
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Scheme 4. Wittig derivatization of polygodial (2) [66].

Antiproliferative effects of 9-epipolygodial (49) and the Wittig derivative 64 were
investigated more intensively [67,68]. In addition to that, the derivative 73 was obtained
by a Horner–Wadsworth–Emmons (HWE) reaction with 72 (Scheme 5). Because of the
basic reaction conditions, 73 is formed as a C9 epimer. HWE derivative 73 showed robust
inhibition of LNCaP prostate cancer cell growth (IC50 = 5 µM) but does not exhibit signif-
icant cytotoxicity towards PC-3, DU-145 prostate cancer cells, and normal prostate cells
(RWPE-1). Compound 73 is also antiproliferative towards oral squamous cell carcinoma
cell lines Cal27 and HSC3 and HeLa cells. GI50 values were observed between 2 and 8 µM.
For H460 lung cancer cells, the antiproliferative effect of 73 is smaller with a GI50 value of
70 µM.
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Scheme 5. HWE reaction of polygodial (2) with phosphonate 72 [67,68].

Recently, Maslivetc et al. synthesized ethylene glycol-linked dimers of polygodial
(2) (Figure 15) [69]. Antiproliferative effects of 74a and 74b were increased compared
to polygodial (2). Against A549-, SkMel-28-, U373-, MCF-7-, Hs683-, and B16F10 cell
lines GI50 values between 4 and 14 µM were obtained for 74a. A longer chain length of
the polyethylene linker leads to a decreased cytotoxicity. Consequently, derivative 74c
shows higher GI50 values than polygodial (2). The increased cytotoxicity of 74a and 74b
is explained by the ability to crosslink antitumor targets by pyrrole formation with lysine
residues. However, no crosslink adducts were identified by Maslivetc et al. [69].



Molecules 2022, 27, 2501 13 of 24Molecules 2022, 27, x FOR PEER REVIEW 14 of 26 
 

 

 
Figure 15. Polyethylene-linked polygodial dimers 74a–c [69]. 

In general, there are certain modifications of polygodial (2) leading to a loss or an 
increase in cytotoxicity (Figure 16). It was observed that the reduction of both aldehyde 
groups extinguishes cytotoxic activity [64,65]. On the other side, the selective reduction of 
the C7–C8 double bond only diminishes the cytotoxicity without a complete loss [65]. 
Current results suggest that the presence of an α,β-unsaturated system at the C7,8 position 
is a key feature for high cytotoxic activity. The conversion of the C9 aldehyde group by 
Wittig- and HWE reactions maintains a π-conjugation with an electron-deficient carbonyl 
function and leads to an increase in cytotoxicity [65,67–68]. It was also shown, that the C9 
configuration influences the anticancer activity but contradictory results are currently pre-
sent [64,65]. Additionally, the bis-acetalization and dimerization of polygodial (2) are 
strategies to increase its cytotoxic effects [65,69]. 

 
Figure 16. General trends in cytotoxicity for semi-synthetic derivatives from polygodial (2). Deri-
vatizations leading to an increase in cytotoxicity are depicted in red and functional groups, leading 
to a decrease are shown in blue. Other functionalizations with a minor/moderate impact on cyto-
toxic activity are depicted in purple. 

3. Mode-of-Action–Specific Effects or ‘Just’ Detergents? 
Despite the known cytotoxic effect of natural and semi-synthetic sesquiterpenoids, 

their mode of action is not completely enlightened and different targets are discussed in 
the literature. The following part aims to give a comparative overview of accomplished 
results regarding the mode of action of drimane and coloratane sesquiterpenoids. In Fig-
ure 17, different modes-of-action are summarized and will be discussed in further detail 
during this section. It should be mentioned that a compound can act by more than one 
mechanism, which can change even within the same compound class depending on its 
structural details. Especially, data derived from experiments using plant extracts must be 
interpreted carefully because observed biological activity cannot be exclusively depicted 
to drimane and coloratane sesquiterpenoids. 

Figure 15. Polyethylene-linked polygodial dimers 74a–c [69].

In general, there are certain modifications of polygodial (2) leading to a loss or an
increase in cytotoxicity (Figure 16). It was observed that the reduction of both aldehyde
groups extinguishes cytotoxic activity [64,65]. On the other side, the selective reduction
of the C7–C8 double bond only diminishes the cytotoxicity without a complete loss [65].
Current results suggest that the presence of an α,β-unsaturated system at the C7,8 position
is a key feature for high cytotoxic activity. The conversion of the C9 aldehyde group by
Wittig- and HWE reactions maintains a π-conjugation with an electron-deficient carbonyl
function and leads to an increase in cytotoxicity [65,67,68]. It was also shown, that the
C9 configuration influences the anticancer activity but contradictory results are currently
present [64,65]. Additionally, the bis-acetalization and dimerization of polygodial (2) are
strategies to increase its cytotoxic effects [65,69].
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Figure 16. General trends in cytotoxicity for semi-synthetic derivatives from polygodial (2). Derivati-
zations leading to an increase in cytotoxicity are depicted in red and functional groups, leading to a
decrease are shown in blue. Other functionalizations with a minor/moderate impact on cytotoxic
activity are depicted in purple.

3. Mode-of-Action–Specific Effects or ‘Just’ Detergents?

Despite the known cytotoxic effect of natural and semi-synthetic sesquiterpenoids,
their mode of action is not completely enlightened and different targets are discussed in
the literature. The following part aims to give a comparative overview of accomplished
results regarding the mode of action of drimane and coloratane sesquiterpenoids. In
Figure 17, different modes-of-action are summarized and will be discussed in further detail
during this section. It should be mentioned that a compound can act by more than one
mechanism, which can change even within the same compound class depending on its
structural details. Especially, data derived from experiments using plant extracts must be
interpreted carefully because observed biological activity cannot be exclusively depicted to
drimane and coloratane sesquiterpenoids.
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3.1. Detergent Effects on Mitochondrial Membrane

Quite early, polygodial (2) was described to inhibit the mitochondrial ATP synthesis
in fungus and eukaryotic cells [70–72]. Because of its amphiphilic nature, polygodial
(2) is supposed to act as a non-ionic detergent on the mitochondrial membrane (MM),
leading to the distortion of the mitochondrial membrane potential (MMP). The loss of the
MMP is known to be a common signal for cells to undergo apoptosis [73]. In this context,
Montenegro et al. observed higher mitochondrial membrane permeabilities in cancer cells
after treatment with polygodial (2) and two other drimanes [64]. Additionally, the activity
of caspase 3—a main executor of apoptosis—was increased. Despite that, these results
should be interpreted carefully because the permeabilization of the MM and loss of MMP
are part of several pro-apoptotic signaling cascades and are not restricted to detergent
effects on the mitochondrial membrane, exclusively [73]. Therefore, it must be determined
if the loss of MMP results from the detergent effects of the sesquiterpenoids on the MM or
occurs as a downstream event of another apoptotic pathway. Furthermore, the detergent
effect on subcellular and cellular membranes should be examined.

The susceptibility of cellular membranes strongly depends on their lipid composition
and varies between cell types [74]. Especially, cancer cells show abnormal lipid metabolism
resulting in altered membrane compositions [75]. An interesting target for detergents is
the lysosome which got increasing attention as an anticancer target for lysosomotropic
detergents [76–78]. These agents accumulate in the lysosome and lead to the permeabiliza-
tion of the lysosomal membrane, which is a signal for apoptosis via the lysosomal death
pathway [79]. For the lysosomes of chronic lymphocytic and acute myeloid leukemia cells,
altered membrane composition and expression profiles were observed, leading to higher
susceptibility against detergents [77,80].
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3.2. TRPV1 Ion Channel

Polygodial (2), its epimer 49 and warburganal (24) were found to be agonists of
the non-selective ion channel TRPV1 (transient receptor potential vanilloid 1), which is
expressed on the cell surface of several cancer cell lines as well as on the mitochondrial
membrane of different human cells [81–91]. TRPV1 regulates the influx of Ca2+ ions into
the cytosol and plays a role in inflammation, proliferation, and pain [92,93]. It is known
that Ca2+ signaling is a critical part of the proliferation and apoptosis resistance of cancer
cells [94,95]. On the other side, Ca2+ overload can induce apoptosis [96,97]. In the past,
different TRPV1 agonists, especially capsaicin, were shown to trigger cell death in TRPV1
expressing cancer cells [98–105]. Based on that, Dasari et al. investigated whether the
antitumor effects of different drimanes and derivatives including polygodial (2) and its
epimer 49 correlate with TRPV1 activity [65,66]. They showed that only polygodial (2) and
some drimanes with minor cytotoxicity act as agonists on the TRPV1 ion channel, but at
concentrations much higher than the GI50 values determined. In contrast to previous results,
no TRPV1 activity for 9-epipolygodial (49) was observed. 9-epipolygodial (49) shows high
antiproliferative effects against several cancer cell lines. In addition to that, no TRPV1
activity was observed for the highly active Wittig derivative 64 and HWE derivative 73. To
support their results, Dasari et al. used computer models docking the drimane compounds
into the VBS (vanilloid binding site) of TRPV1, where only for polygodial (2) and some
inactive compounds energetically relevant docking positions were obtained [65,66]. These
results indicate that the anticancer effects of drimanes might be independent of the TRPV1
ion channel.

3.3. TRPA1 Ion Channel

Another potential target of drimanes and coloratanes is the TRPA1 (transient receptor
potential ankyrin 1) ion channel. TRPA1 is related to TRPV1 and leads to the influx of
Ca2+ ions into the cytosol [106,107]. It is overexpressed in different cancer cell lines and
attracts increasing attention in cancer-related processes [108,109]. For several drimanes
and coloratane dialdehyde compounds, the activation of TRPA1 was observed [110,111].
TRPA1 is activated by electrophilic pungent electrophiles, such as isothiocyanates, forming
reversible covalent bonds to cysteine residues of the ion channel protein [112–114]. Espe-
cially, cysteine 621 had been suggested to be most critical for electrophile-binding [115].
For polygodial (2), chemical reactions with cysteine residues have been proposed but no
defined reaction product could be identified [116–118]. Besides cysteine 621, lysine 620
is suggested to be another critical residue for TRPA1 activation. Mathie et al. showed
that polygodial (2) reacts rapidly with the amino group of Lys-Nα-Ac while no reaction
occurred with Cys-Nα-Ac [111]. In a mutational study, the dialdehydes polygodial (2) and
isovelleral retained full activity on a triple cysteine to lysine TRPA1 mutant [110]. These
results suggest that TRPA1 activation of drimane dialdehyde compounds is mediated by
covalent modification of critical lysine residues within TRPA1. However, the contribution
of TRPA1 activation to the anticancer activity of drimane and coloratane sesquiterpenoids
needs to be evaluated in greater detail.

3.4. ROS Generation and DNA Damage

DNA damage results in the activation of a variety of downstream pathways, which
induce either DNA repair mechanisms or cell cycle arrest and apoptosis [119]. Especially,
DNA double-strand breaks (DSBs) are critical events leading to the activation of apoptotic
downstream events. Typical sources for DNA damage and DSBs are methylating agents
and oxidative stress by reactive oxygen species (ROS). In terms of anticancer treatment,
radiation therapy (RT) is closely related to ROS and DNA damage [120]. Due to ionizing
radiation (IR), ROS are generated at localized regions in the nucleus leading to DNA lesions
and consequent cell death. The generation of ROS is not restricted to IR and can also
result from endogenous (e.g., mitochondria) and exogenous sources (e.g., heavy metals,
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xenobiotics) [121–123]. An overload of ROS induces apoptosis and cell cycle arrest in cancer
cells indicating the potential of ROS in anticancer therapy [124].

For the measurement of DSBs, the amount of phosphorylated histone 2AX (γH2AX)
has proven to be a valuable marker for DSBs [125]. DSBs cause the phosphorylation of neigh-
boring γH2AX which is assumed to be functional for DNA repair by causing the chromatin
to be more accessible for DNA repair [126]. However, there is also evidence that γHA2X
is required for DNA ladder formation during apoptosis [127]. Another protein involved
in DNA repair is poly-(ADP-ribose)-polymerase 1 (PARP1) [128,129]. During apoptosis,
PARP1 is cleaved by caspases 3 and 7, leading to the inactivation of PARP1-mediated DNA
repair. Therefore, the concentration of c-PARP1 levels is a marker for apoptosis.

For the Wittig derivative 64 and HWE derivative 73, increased concentrations of c-
PARP1 and γH2AX were observed after exposure to cancer cells [67,68]. Interestingly,
the antiproliferative effects of 64 and 73 can be terminated by the addition of the antiox-
idant N-acetyl cysteine (NAC), suggesting that ROS play a critical role in the mode of
action of drimanes by inducing DNA damage. Increased ROS and γH2AX levels were
also observed in HT-29 and HCT116 and A549 cells after incubation with extracts of W.
ugandensis [130,131]. In addition to that, extracts of W. ugandensis lead to an increase in
c-PARP1 concentrations.

Contradictory to the previous results, Karmahapatra et al. detected no ROS increase
in HL-60 leukemia cells after incubation with capsicodendrin (8) [46]. Capsicodendrin (8)
forms cinnamodial (7) under aqueous conditions and it was shown that 7 forms covalent
bonds with cysteine residues of glutathione—an intracellular thiol-based antioxidant—
without altering intracellular ROS concentrations. Despite that, DNA damage still occurred
in HL-60 cells after exposure to cinnamodial (7). It is suggested that DNA damage might
be caused by the 2-alkenal motif of 7. In a previous study, it was shown that 2-alkenals lead
to DNA damage in V79 lung fibroblasts and Caco-2 colorectal carcinoma cells [132].

In general, there are still open questions regarding the generation and contribution of
ROS towards the mode-of-action of drimane and coloratane sesquiterpenoids. It needs to
be evaluated whether the generation of ROS depends on specific structural details of the
sesquiterpenoids and if ROS production is cell-type dependent. Furthermore, the origin of
ROS production must be evaluated in further detail.

It is known that ROS can be produced as a response to mitochondrial stress [133].
As mentioned, drimanes and coloratanes might act as detergents on the MM, leading to
mitochondrial stress and ROS generation [70–72]. Therefore, ROS could be a link between
the detergent effects of drimanes and coloratanes on the MM and DNA damage. It is also
possible that mitochondrial-induced ROS are generated by Ca2+ influx after activation
of TRPV1 or TRPA1. An overload of Ca2+ ions is known to induce ROS release from the
mitochondrion. Additionally, it was shown that ROS can trigger Ca2+ release from the
endoplasmic reticulum (ER), resulting in a positive feedback loop with accelerated ROS
production [134].

3.5. Cell Cycle Arrest

The cell cycle comprises a series of cellular events during the growth and division of
cells [135,136]. In general, the cell cycle is divided into different phases (G0, G1-, S-, G2-, and
M-phase) that are characterized by the action of specific proteins. Important regulators of
the cell cycle are cyclin-dependent kinases (CDKs) that require different cyclins for kinase
activity [137].

Zhang et al. observed reduced expression of cyclin D1 and E1 after exposure of A549,
HT-29, and HCT 116 cells to the extract of the W. ugandensis [130,131]. Cyclin D1 and E1 play
an important role in the progression from the G1 to the S phase [138,139]. The expression of
cyclin D1 is tightly regulated by the PI3K/Akt/GSK3β pathway [140]. After incubation of
HT-29 cells with W. ugandensis extract, expression levels of PI3K, Akt, p-Akt, and p-GSK3β
were changed leading to the suppression of the PI3K/Akt/GSK3β pathway and reduced
amounts of cyclin D1 [131]. In addition to that, Zhang et al. measured an increase in
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P27 in A549 cells [130]. P27 is a negative regulator of CDKs and is ubiquitinylated by S-
phase kinase-associated protein 2 (SKP2), reducing its cellular concentration by proteasomal
degradation [141–143]. Furthermore, SKP2 is negatively regulated by Forkhead-Box-Protein
O3 (FOXO3A) [144,145]. An increased expression of FOXO3A was also observed after cell
exposure to extracts of W. ugandensis [130]. In future experiments, it would be important
to evaluate whether these results are caused by drimane and coloratane sesquiterpenoids
or other bioactive compounds from W. ugandensis. In this context, Lohberger et al. have
already shown that a dehydrocostus lactone sesquiterpenoid leads to cell cycle arrest in
soft tissue sarcoma cells by a decrease in CDK2 levels [146]. Therefore, the impairment of
CDK-dependent cell cycle progression could be a more common feature of sesquiterpenoids
including also drimanes and coloratanes.

3.6. Inhibition of DNA-Binding by NF-kB and Stat-3

Felix et al. observed reduced expression of survivin—an antiapoptotic protein critical
in apoptosis resistance of cancer cells—in Colo-320 cells after the addition of the drimane
lactone 75 (Figure 18) [147].
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Figure 18. Drimane lactone 75 inhibits NF-κB and Stat-3 to the promoter of the survivin gene [147].

In further experiments, it was shown that 75 inhibits DNA binding of the transcrip-
tion factors NF-kB and Stat-3 to the survivin promoter. DNA binding of NF-κB and
Stat-3 to the CMV promoter was not impaired. Interestingly, structurally related eudas-
mane sesquiterpenoids and meroterpenoids lead to the attenuation of NF-κB dependent
pathways [148,149]. Tang et al. have shown that upstream of the NF-κB activation the phos-
phorylation of p38 mitogen-activated protein kinases (p38 MAPK) is inhibited by 1,10-seco-
eudesmane sesquiterpenoids [148]. In future studies, it should be evaluated if the inhibition
of NF-κB contributes to the anticancer activity of drimane and coloratane sesquiterpenoids.

4. Clinical Significance

Around half of the small molecules that have been approved for cancer chemother-
apy since 1940 are natural products [150]. All of these compounds were proven to be
effective and safe. The efficacy of a compound can only be evaluated if a proper target is
identified, which is the main step in drug discovery [151]. Selectivity toward tumor cells
preventing off-target effects plays an important role in clinical approval. Although more
than 200 compounds derived from natural products are currently in preclinical and clinical
investigations [152] only a few of them will be used in clinical routines in the future. The
main reason why 95% of small-molecule oncology therapeutics fail in clinical trials is due
to a lack of clinical safety and efficacy [153].

Drimane and coloratane sesquiterpenoids were shown to exert promising anticancer
activity in vitro. However, no preclinical studies evaluating their in vivo cytotoxic activity
nor clinical trials were accomplished until now. In vivo studies are only available for
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antidiabetic and antimalarial activities of some drimane sesquiterpenoids and plant ex-
tracts [44,154]. In these experiments, no unspecific toxicity was observed in rats, indicating
a low risk of severe side effects. In addition to that, plant extracts containing drimanes
and coloratanes are already used in traditional medicine leading to the conclusion that a
clinical application appears feasible [24–27]. Other sesquiterpenoids, such as sesquiterpene
lactones, already made it into clinical trials as chemotherapeutics for their anticancer ac-
tivity such as artemisinin, showing that sesquiterpenoids are indeed a valuable source for
anticancer agents and provide candidates for in vivo studies and clinical trials [13]. We
must then ask: why have none of the aforementioned drimanes or coloratanes made it into
the clinic yet?

Possible reasons are the lack of detailed knowledge about a specific target or modes-of-
action, cancer cell specificity, or insufficient anticancer activities of drimane and coloratane
sesquiterpenoids. Until now, IC50 values in the low nanomolar range were only observed
for a few drimanes and coloratanes against certain cancer cell lines [46,49,50,52,53]. There-
fore, the optimization of the anticancer activity of drimane and coloratane sesquiterpenoids
should be addressed in future projects. Especially, new synthetic methods could provide ac-
cess to novel drimanes and coloratanes with enhanced cytotoxicity and selectivity [155–157].
Furthermore, a detailed understanding of the mode-of-action would be beneficial for the
rational functionalization of the drimane and coloratane scaffold.

5. Conclusions

In this review, we gave an overview of the cytotoxic activity of drimane and coloratane
sesquiterpenoids against cancer cells. Over the past decades, natural drimanes and col-
oratanes were isolated and their cytotoxic potential was evaluated. Additionally, several
semi-synthetic derivatives were obtained from polygodial to increase its cytotoxic activity.
It is demonstrated that the drimane and coloratane scaffold holds great potential as a lead
structure for anticancer drug development. However, none of the components are used
as a therapeutic agent or in a clinical trial so far. Furthermore, several modes-of-action of
drimane and coloratane sesquiterpenoids were discussed. Detergent effects on subcellular
membranes, DNA damage, and ROS production are commonly observed for drimanes. It
was also shown that cancer cell exposure to drimane-containing plant extracts can cause cell
cycle arrest. Additionally, dialdehyde drimanes activate the TRPA1 ion channel. The related
ion channel TRPV1 was often supposed to be addressed by drimanes, but current data
show that TRPV1 only plays a minor role in the cytotoxic action of this class of sesquiter-
penoids. However, whether there is a relation between these actions or they are caused
independently needs to be further evaluated. Therefore, a detailed analysis of differentially
expressed genes using microarrays or next-generation sequencing methods could be key
methods to reveal targets or mode-of-action of drimane and coloratane type sesquiter-
penoids in anticancer activity. Proper target identification will lay a solid basis for future
lead compound discovery and candidate selection for preclinical and clinical development.

Author Contributions: Writing—original draft preparation, L.B.; Writing—review and editing, U.S.T.,
M.T. and R.K.; Supervision, U.S.T. and M.T.; Project administration, U.S.T. and M.T.; Funding
acquisition, M.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Molecules 2022, 27, 2501 19 of 24

References
1. WHO. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 25 March 2022).
2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

3. Pillerson, S.; Soto-Perez-de-Cellis, E.; Vignat, J.; Ferlay, J.; Soerjomataram, I.; Bray, F.; Sarfati, D. Estimated global cancer incidence
in the oldest adults in 2018 and projections to 2050. Int. J. Cancer. 2021, 148, 601–608. [CrossRef] [PubMed]

4. Chabner, B.A.; Roberts, T.G., Jr. Chemotherapy and the war on cancer. Nat. Rev. 2005, 5, 65–72. [CrossRef] [PubMed]
5. Lind, M.J. Principles of cytotoxic chemotherapy. Medicine 2008, 36, 19–23. [CrossRef]
6. Nussbaumer, S.; Bonnabry, P.; Veuthey, J.-L.; Fleury-Souverain, S. Analysis of anticancer drugs: A review. Talanta 2011, 85,

2265–2289. [CrossRef]
7. Pearce, A.; Haas, M.; Viney, R.; Pearson, S.-A.; Haywood, P.; Brown, C.; Ward, R. Incidence and severity of self-reported

chemotherapy side effects in routine care: A prospective cohort study. PLoS ONE 2017, 12, e0184360. [CrossRef]
8. Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233.

[CrossRef]
9. Cragg, C.M.; Grothaus, P.G.; Newman, D.J. Impact of Natural Products on Developing New Anti-Cancer Agents. Chem. Rev.

2009, 109, 3012–3043. [CrossRef]
10. Lee, K.-H. Discovery and Development of Natural Product-Derived Chemotherapeutic Agents Based on a Medicinal Chemistry

Approach. J. Nat. Prod. 2010, 73, 500–516. [CrossRef]
11. Demain, A.L.; Vaishnav, P. Natural products for cancer chemotherapy. Microb. Biotechnol. 2011, 4, 687–699. [CrossRef]
12. Chen, Q.-F.; Liu, Z.-P.; Wang, F.-P. Natural Sesquiterpenoids as Cytotoxic Anticancer Agents. Mini-Rev. Med. Chem. 2011, 11,

1153–1164. [CrossRef] [PubMed]
13. Ghantous, A.; Gali-Muhtasib, H.; Vuorela, H.; Saliba, N.A.; Darwiche, N. What made sesquiterpene lactones reach cancer clinical

trials? Drug Discov. Today 2010, 15, 668–678. [CrossRef] [PubMed]
14. Fraga, B.M. Natural sesquiterpenoids. Nat. Prod. Rep. 2013, 30, 1226–1264. [CrossRef]
15. Appel, H.H. Estudio químico de la corteza del árbol Drimys winteri Forst. Scientia 1948, 15, 31–32.
16. Jansen, B.J.M.; de Groot, A. Occurrence, biological activity and synthesis of drimane sesquiterpenoids. Nat. Prod. Rep. 2004, 21,

449–477. [CrossRef]
17. Stork, G.; Burgstahler, A.W. The Stereochemistry of Polyene Cyclization. J. Am. Chem. Soc. 1955, 77, 5068–5077. [CrossRef]
18. Parker, W.; Roberts, J.S. Sesquiterpene Biogenesis. Q. Rev. Chem. Soc. 1967, 21, 331–363. [CrossRef]
19. Dawson, G.W.; Hallahan, D.L.; Mudd, A.; Patel, M.M.; Pickett, J.A.; Wadhams, L.J.; Wallsgrove, R.M. Secondary plant metabolites

as targets for genetic modification of crop plants for pest resistance. Pestic. Sci. 1989, 27, 191–201. [CrossRef]
20. Fleck, W.F.; Schlegel, B.; Hoffmann, P.; Ritzau, M.; Heinze, S.; Gräfe, U. Isolation of Isodrimenediol, a Possible Intermediate of

Drimane Biosynthesis from Polyporus arcularius. J. Nat. Prod. 1996, 59, 780–781. [CrossRef]
21. Huang, Y.; Hoefgen, S.; Valiante, V. Biosynthesis of Fungal Drimane-Type Sesquiterpene Esters. Angew. Chem. Int. Ed. 2021, 60,

23763–23770. [CrossRef]
22. Ludwiczuk, A.; Gradstein, S.R.; Nagashima, F.; Asakawa, Y. Chemosystematics of Porella (Marchantiophyta, Porellaceae). Nat. Prod.

Commun. 2011, 6, 315–321. [CrossRef] [PubMed]
23. Asakawa, Y.; Ludwiczuk, A.; Harinantenaina, L.; Toyota, M.; Nishiki, M.; Bardon, A.; Nii, K. Distribution of Drimane Sesquiter-

penoids and Tocopherols in Liverworts, Ferns and Higher Plants: Polygonaceae, Canellaceae and Winteraceae Species. Nat. Prod.
Commun. 2012, 7, 685–692. [CrossRef] [PubMed]

24. Choudhary, R.K.; Oh, S.; Lee, J. An ethnomedicinal inventory of knotweeds of Indian Himalaya. J. Med. Plant. Res. 2011, 5,
2095–2103. [CrossRef]

25. Maroyi, A. The genus Warburgia: A review of its traditional uses and pharmacology. Pharm. Biol. 2014, 52, 378–391. [CrossRef]
26. Hug, A.K.K.M.; Jamal, J.A. Ethnobotanical, Phytochemical, Pharmacological, and Toxicological Aspects of Persicaria hydropiper

(L.) Delarbre. eCAM 2014, 2014, 782830. [CrossRef]
27. Nasir, A.; Khali, A.A.K.; Bhatti, M.Z.; Rehman, A.U.; Li, J.; Parveen, Z. Review on Pharmacological and Phytochemical Prospects

of Traditional Medicinal Plant: Persicaria hydropiper (Smartweed). Curr. Top. Med. Chem. 2021, 21, 1027–1036. [CrossRef]
28. Zhou, H.; Zhu, T.; Cai, S.; Gu, Q.; Li, D. Drimane Sesquiterpenoids from the Mangrove-Derived Fungus Aspergillus ustus. Chem.

Pharm. Bull. 2011, 59, 762–766. [CrossRef]
29. Lacey, H.J.; Gilchrist, C.L.M.; Crombie, A.; Kalaitzis, J.A.; Vuong, D.; Rutledge, P.J.; Turner, P.; Pitt, J.I.; Lacey, E.; Chooi, Y.-H.; et al.

Nanangenines: Drimane sesquiterpenoids as the dominant metabolite cohort of a novel Australian fungus, Aspergillus nanangensis.
Beilstein J. Org. Chem. 2019, 15, 2631–2643. [CrossRef]

30. Ma, M.; Ge, H.; Yi, W.; Wu, B.; Zhang, Z. Bioactive drimane sesquiterpenoids and isocoumarins from the marine-derived fungus
Penicillium minioluteum ZZ1657. Tetrahedron Lett. 2020, 61, 151504. [CrossRef]

31. Montagnac, A.; Martin, M.-Z.; Debitus, C.; Païs, M. Drimane Sesquiterpenes from the Sponge Dysideafusca. J. Nat. Prod. 1996, 59,
866–868. [CrossRef]

32. Paul, V.J.; Seo, Y.; Cho, K.W.; Rho, J.R.; Shin, J.; Bergquist, P.R. Sesquiterpenoids of the Drimane Class from a Sponge of the Genus
Dysidea. J. Nat. Prod. 1997, 60, 1115–1120. [CrossRef] [PubMed]

https://www.who.int/news-room/fact-sheets/detail/cancer
http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
http://doi.org/10.1002/ijc.33232
http://www.ncbi.nlm.nih.gov/pubmed/32706917
http://doi.org/10.1038/nrc1529
http://www.ncbi.nlm.nih.gov/pubmed/15630416
http://doi.org/10.1016/j.mpmed.2007.10.003
http://doi.org/10.1016/j.talanta.2011.08.034
http://doi.org/10.1371/journal.pone.0184360
http://doi.org/10.3390/ijms21093233
http://doi.org/10.1021/cr900019j
http://doi.org/10.1021/np900821e
http://doi.org/10.1111/j.1751-7915.2010.00221.x
http://doi.org/10.2174/138955711797655399
http://www.ncbi.nlm.nih.gov/pubmed/22353224
http://doi.org/10.1016/j.drudis.2010.06.002
http://www.ncbi.nlm.nih.gov/pubmed/20541036
http://doi.org/10.1039/c3np70047j
http://doi.org/10.1039/b311170a
http://doi.org/10.1021/ja01624a038
http://doi.org/10.1039/qr9672100331
http://doi.org/10.1002/ps.2780270209
http://doi.org/10.1021/np960220j
http://doi.org/10.1002/anie.202108970
http://doi.org/10.1177/1934578X1100600303
http://www.ncbi.nlm.nih.gov/pubmed/21485266
http://doi.org/10.1177/1934578X1200700601
http://www.ncbi.nlm.nih.gov/pubmed/22816285
http://doi.org/10.5897/JMPR.9000068
http://doi.org/10.3109/13880209.2013.837935
http://doi.org/10.1155/2014/782830
http://doi.org/10.2174/1568026621666210303145045
http://doi.org/10.1248/cpb.59.762
http://doi.org/10.3762/bjoc.15.256
http://doi.org/10.1016/j.tetlet.2019.151504
http://doi.org/10.1021/np9603737
http://doi.org/10.1021/np9703297
http://www.ncbi.nlm.nih.gov/pubmed/9392880


Molecules 2022, 27, 2501 20 of 24

33. Schmitz, F.J.; Lakshmi, V.; Powell, D.R.; Van der Helm, D. Arenarol and arenarone: Sesquiterpenoids with rearranged drimane
skeletons from the marine sponge Dysidea arenaria. J. Org. Chem. 1984, 49, 241–244. [CrossRef]

34. Rabe, T.; van Staden, J. Isolation of an antibacterial sesquiterpenoid from Warburgia salutaris. J. Ethnopharmacol. 2000, 73, 171–174.
[CrossRef]

35. Kubo, I.; Fujita, K.; Lee, S.H.; Ha, T.J. Antibacterial activity of polygodial. Phytother. Res. 2005, 19, 1013–1017. [CrossRef] [PubMed]
36. Neuhaus, G.F.; Loesgen, S. Antibacterial Drimane Sesquiterpenes from Aspergillus ustus. J. Nat. Prod. 2021, 84, 37–45. [CrossRef]
37. Kubo, I.; Himejima, M. Potentiation of antifungal activity of sesquiterpene dialdehydes against Candida albicans and two other

fungi. Experientia 1992, 48, 1162–1164. [CrossRef]
38. Edouarzin, E.; Horn, C.; Paudyal, A.; Zhang, C.; Lu, J.; Tong, Z.; Giaever, G.; Nislow, C.; Veerapandian, R.; Hua, D.H.; et al.

Broad-spectrum antifungal activities and mechanism of drimane sesquiterpenoids. Microb. Cell 2020, 7, 146–159. [CrossRef]
39. Montenegro, I.; Pino, L.; Werner, E.; Madrid, A.; Espinoza, L.; Moreno, L.; Villena, J.; Cuellar, M. Comparative Study on the

Larvicidal Activity of Drimane Sesquiterpenes and Nordrimane Compounds against Drosophila melanogaster til-til. Molecules 2013,
18, 4192–4208. [CrossRef]

40. Moreno-Osorio, L.; Cortés, M.; Armstrong, V.; Bailén, M.; González-Coloma, A. Antifeedant Activity of Some Polygodial
Derivatives. Z. Naturforsch. 2008, 63, 215–220. [CrossRef]

41. Inocente, E.A.; Nguyen, B.; Manwill, P.K.; Benatrehina, A.; Kweka, E.; Wu, S.; Cheng, X.; Rakotondraibe, L.H.; Piermarini, P.M.
Insecticidal and Antifeedant Activities of Malagasy Medicinal Plant (Cinnamosma sp.) Extracts and Drimane-Type Sesquiterpenes
against Aedes aegypti Mosquitoes. Insects 2019, 10, 373. [CrossRef]

42. Claudino, V.D.; da Silva, K.C.; Filho, V.C.; Yunes, R.A.; Monache, F.D.; Giménez, A.; Salamanca, E.; Gutierrez-Yapu, D.; Malheiros,
A. Drimanes from Drimys brasiliensis with leishmanicidal and antimalarial activity. Mem. Inst. Oswaldo Cruz 2013, 108, 140–144.
[CrossRef] [PubMed]

43. Corrêa, D.S.; Tempone, A.G.; Reimão, J.Q.; Taniwaki, N.N.; Romoff, P.; Fávero, O.A.; Sartorelli, P.; Mecchi, M.C.; Lago, J.H.G.
Anti-leishmanial and anti-trypanosomal potential of polygodial isolated from stem barks of Drimys brasiliensis Miers (Winteraceae).
Parasitol. Res. 2011, 109, 231–236. [CrossRef] [PubMed]

44. Nyaba, Z.N.; Murambiwa, P.; Opoku, A.R.; Mukaratirwa, S.; Shode, F.O.; Simelane, M.B.C. Isolation, characterization, and
biological evaluation of a potent anti-malarial drimane sesquiterpene from Warburgia salutaris stem bark. Malar. J. 2018, 17, 296.
[CrossRef]

45. Mahmoud, I.I.; Kinghorn, A.D.; Cordell, G.A.; Farnsworth, N.R. Potential anticancer agents. XVI. Isolation of bicyclofarnesane
sesquiterpenoids from Capsicodendron dinisii. J. Nat. Prod. 1980, 43, 365–371. [CrossRef] [PubMed]

46. Karmahapatra, S.; Kientz, C.; Shetty, S.; Yalowich, J.C.; Pakotondraibe, L.H. Capsicodendrin from Cinnamosma fragrans Exhibits
Antiproliferative and Cytotoxic Activity in Human Leukemia Cells: Modulation by Glutathione. J. Nat. Prod. 2018, 81, 625–629.
[CrossRef] [PubMed]

47. Nomoto, Y.; Harinantenaina, L.; Sugimoto, S.; Matsunami, K.; Otsuka, H. 3,4-seco-24-homo-28-nor-Cycloartane and drimane-type
sesquiterpenes and their lactams from the EtOAc-soluble fraction of a leaf extract of Cinnamosma fragrans and their biological
activity. J. Nat. Med. 2014, 68, 513–520. [CrossRef]

48. Fratoni, E.; Claudino, V.D.; Yunes, R.A.; Franchi, G.C., Jr.; Nowill, A.E.; Filho, V.C.; Monache, F.D.; Malheiros, A. Further drimane
sesquiterpenes from Drimys brasiliensis stem barks with cytotoxic potential. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2016, 389,
791–797. [CrossRef]

49. Fratoni, E.; de Athayde, A.E.; da Silva Machado, M.; Zermiani, T.; Venturi, I.; dos Santos, M.C.; Lobato, F.; Filho, V.C.; Franchi,
G.C., Jr.; Nowill, A.E.; et al. Antiproliferative and toxicological properties of drimanes obtained from Drimys brasiliensis stem
barks. Biomed. Pharmacother. 2018, 103, 1498–1506. [CrossRef]

50. Allouche, N.; Apel, C.; Martin, M.-T.; Dumontet, V.; Guéritte, F.; Litaudon, M. Cytotoxic sesquiterpenoids from Winteraceae of
Caledonian rainforest. Phytochemistry 2009, 70, 546–553. [CrossRef]

51. Dong, W.-H.; Mei, W.-L.; Zhao, Y.-X.; Zeng, Y.-B.; Wang, H.; Dai, H.-F. A new drimane sesquiterpenoid glycoside from the seeds
of Antiaris toxicaria. J. Asian Nat. Prod. Res. 2011, 13, 561–565. [CrossRef]

52. Xu, M.; Litaudon, M.; Krief, S.; Martin, M.-T.; Kasenene, J.; Kiremire, B.; Dumontet, V.; Guéritte, F. Ugandenial A, a New
Drimane-type Sesquiterpenoid from Warburgia ugandensis. Molecules 2009, 14, 3844–3850. [CrossRef] [PubMed]

53. Kitte, R.; Tretbar, M.; Dluczek, S.; Beckmann, L.; Marquardt, P.; Duenkel, A.; Schubert, A.; Fricke, S.; Tretbar, U.S. Chemical and
Cytotoxic Activity of three main Sesquiterpenoids from Warburgia ugandensis. Results Chem. 2021, 3, 100242. [CrossRef]

54. Sakio, Y.; Hirano, Y.J.; Hayashi, M.; Komiyama, K.; Ishibashi, M. Dendocarbins A–N, New Drimane Sesquiterpenes from the
Nudibranch Dendrodoris carbunculosa. J. Nat. Prod. 2001, 64, 726–731. [CrossRef] [PubMed]

55. Kwon, J.; Lee, H.; Seo, Y.H.; Yun, J.; Lee, J.; Kwon, H.C.; Guo, Y.; Kang, J.S.; Kim, J.-J.; Lee, D. Cytotoxic Drimane Sesquiterpenoids
Isolated from Perenniporia maackiae. J. Nat. Prod. 2018, 81, 1444–1450. [CrossRef] [PubMed]

56. Liu, H.; Edrada-Ebel, R.; Ebel, R.; Wang, Y.; Schulz, B.; Draeger, S.; Müller, W.E.G.; Wray, V.; Lin, W.; Proksch, P. Drimane
Sesquiterpenoids from the Fungus Aspergillus ustus Isolated from the Marine Sponge Suberites domuncula. J. Nat. Prod. 2009, 72,
1585–1588. [CrossRef]

57. Lu, Z.; Wang, Y.; Miao, C.; Liu, P.; Hong, K.; Zhu, W. Sesquiterpenoids and Benzofuranoids from the Marine-Derived Fungus
Aspergillus ustus 094102. J. Nat. Prod. 2009, 72, 1761–1767. [CrossRef]

http://doi.org/10.1021/jo00176a005
http://doi.org/10.1016/S0378-8741(00)00293-2
http://doi.org/10.1002/ptr.1777
http://www.ncbi.nlm.nih.gov/pubmed/16372365
http://doi.org/10.1021/acs.jnatprod.0c00910
http://doi.org/10.1007/BF01948015
http://doi.org/10.15698/mic2020.06.719
http://doi.org/10.3390/molecules18044192
http://doi.org/10.1515/znc-2008-3-410
http://doi.org/10.3390/insects10110373
http://doi.org/10.1590/0074-0276108022013002
http://www.ncbi.nlm.nih.gov/pubmed/23579790
http://doi.org/10.1007/s00436-010-2229-8
http://www.ncbi.nlm.nih.gov/pubmed/21243506
http://doi.org/10.1186/s12936-018-2439-6
http://doi.org/10.1021/np50009a008
http://www.ncbi.nlm.nih.gov/pubmed/7400822
http://doi.org/10.1021/acs.jnatprod.7b00887
http://www.ncbi.nlm.nih.gov/pubmed/29406734
http://doi.org/10.1007/s11418-014-0828-x
http://doi.org/10.1007/s00210-016-1241-7
http://doi.org/10.1016/j.biopha.2018.04.103
http://doi.org/10.1016/j.phytochem.2009.01.012
http://doi.org/10.1080/10286020.2011.573479
http://doi.org/10.3390/molecules14103844
http://www.ncbi.nlm.nih.gov/pubmed/19924033
http://doi.org/10.1016/j.rechem.2021.100242
http://doi.org/10.1021/np000639g
http://www.ncbi.nlm.nih.gov/pubmed/11421732
http://doi.org/10.1021/acs.jnatprod.8b00175
http://www.ncbi.nlm.nih.gov/pubmed/29878761
http://doi.org/10.1021/np900220r
http://doi.org/10.1021/np900268z


Molecules 2022, 27, 2501 21 of 24

58. Liu, Y.-F.; Yue, Y.-F.; Feng, L.-X.; Zhu, H.-J.; Cao, F. Asperienes A–D, Bioactive Sesquiterpenes from the Marine-Derived Fungus
Aspergillus flavus. Mar. Drugs 2019, 17, 550. [CrossRef]

59. Feng, W.; Yang, J.-S. A new drimane sesquiterpenoid and a new triterpene lactone from fungus of Fomes officinalis. J. Asian Nat.
Prod. Res. 2015, 17, 1065–1072. [CrossRef]

60. Ngokpol, S.; Suwakulsir, W.; Sureran, S.; Lirdprapamongkol, K.; Aree, T.; Wiyakrutta, S.; Mahidol, C.; Ruchirawat, S.; Kittakoop,
P. Drimane Sesquiterpene-Conjugated Amino Acids from a Marine Isolate of the Fungus Talaromyces minioluteus (Penicillium
Minioluteum). Mar. Drugs 2015, 13, 3567–3580. [CrossRef]

61. Brooks, E.A.; Galarza, S.; Gencoglu, M.F.; Cornelison, R.C.; Munson, J.M.; Peyton, S.R. Applicability of drug response metrics for
cancer studies using biomaterials. Philos. Trans. R. Soc. B 2019, 374, 20180226. [CrossRef]

62. Hagendoorn, M.J.M.; Geelen, T.A.M.; van Beek, T.A.; Jamar, D.C.L.; Tetteroo, F.A.A.; van der Plas, L.H.W. Occurrence of
polygodial in plant organs and tissue culture of Polygonum hydropiper. Physiol. Plant. 1994, 92, 595–600. [CrossRef]

63. Just, J.; Jordan, T.B.; Paull, B.; Bissember, A.C.; Smith, J.A. Practical isolation of polygodial from Tasmannia lanceolata: A viable
scaffold for synthesis. Org. Biomol. Chem. 2015, 13, 11200–11207. [CrossRef] [PubMed]

64. Montenegro, I.; Tomasoni, G.; Bosio, C.; Quinones, N.; Madrid, A.; Carrasco, H.; Olea, A.; Martinez, R.; Cuellar, M.; Villena, J.
Study on the Cytotoxic Activity of Drimane Sesquiterpenes and Nordrimane Compounds against Cancer Cell Lines. Molecules
2014, 19, 18993–19006. [CrossRef] [PubMed]

65. Dasari, R.; de Carvalho, A.; Medellin, D.C.; Middleton, K.N.; Hague, F.; Volmar, M.N.M.; Frolova, L.V.; Rossato, M.F.;
de la Chapa, J.J.; Dybdal-Hargreaves, N.F.; et al. Synthetic and Biological Studies of Sesquiterpene Polygodial: Activity of
9-Epipolygodial against Drug-Resistant Cancer Cells. ChemMedChem 2015, 10, 2014–2026. [CrossRef] [PubMed]

66. Dasari, R.; de Carvalho, A.; Medellin, D.C.; Middleton, K.N.; Hague, F.; Volmar, M.N.M.; Frolova, L.V.; Rossato, M.F.; de la
Chapa, J.J.; Dybdal-Hargreaves, N.F.; et al. Wittig derivatization of sesquiterpenoid polygodial leads to cytostatic agents with
activity against drug resistant cancer cells and capable of pyrrolylation of primary amines. Eur. J. Med. Chem. 2015, 103, 226–237.
[CrossRef] [PubMed]

67. Dasari, S.; Samy, A.L.P.A.; Narvekar, P.; Dontaraju, V.S.; Dasari, R.; Kornienko, A.; Munirathinam, G. Polygodial analog induces
apoptosis in LNCaP prostate cancer cells. Eur. J. Pharm. 2018, 828, 154–162. [CrossRef] [PubMed]

68. De la Chapa, J.; Singha, P.K.; Sallaway, M.; Self, K.; Nasreldin, R.; Dasari, R.; Hart, M.; Kornienko, A.; Just, J.; Smith, J.A.; et al.
Novel polygodial analogs P3 and P27: Efficacious therapeutic agents disrupting mitochondrial function in oral squamous cell
carcinoma. Int. J. Oncol. 2018, 53, 2627–2636. [CrossRef]

69. Maslivetc, V.; Laguera, B.; Chandra, S.; Dasari, R.; Olivier, W.J.; Smith, J.A.; Bissember, A.C.; Masi, M.; Evidente, A.;
Mathieu, V.; et al. Polygodial and Ophiobolin a Analogues for Covalent Crosslinking of Anticancer Targets. Int. J. Mol. Sci. 2021,
22, 11256. [CrossRef]

70. Lunde, C.; Kubo, I. Effect of Polygodial on the Mitochondrial ATPase of Saccharomyces cerevisiae. Antimicrob. Agents Chemother.
2000, 44, 1943–1953. [CrossRef]

71. Kubo, I.; Fujita, K.; Lee, S.H. Antifungal Mechanism of Polygodial. J. Agric. Food Chem. 2001, 49, 1607–1611. [CrossRef]
72. Castelli, M.V.; Lodeyro, A.F.; Malheiros, A.; Zacchino, S.A.S.; Roveri, O.A. Inhibition of the mitochondrial ATP synthesis by

polygodial, a naturally occurring dialdehyde unsaturated sesquiterpene. Biochem. Pharmacol. 2005, 70, 82–89. [CrossRef]
[PubMed]

73. Kim, R.; Emi, M.; Tanabe, K. Role of mitochondria as the gardens of cell death. Cancer Chemother. Pharmacol. 2006, 57, 545–553.
[CrossRef] [PubMed]

74. Casares, D.; Escribá, P.V.; Rosselló, C.A. Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function
and Compartmentalization and Therapeutic Avenues. Int. J. Mol. Sci. 2019, 20, 2167. [CrossRef] [PubMed]
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