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ABSTRACT Organisms must adapt to changes in oxygen tension if they are to ex-
ploit the energetic benefits of reducing oxygen while minimizing the potentially
damaging effects of oxidation. Consequently, organisms in all eukaryotic kingdoms
display robust adaptation to hypoxia (low oxygen levels). This is particularly impor-
tant for fungal pathogens that colonize hypoxic niches in the host. We show that
adaptation to hypoxia in the major fungal pathogen of humans Candida albicans in-
cludes changes in cell wall structure and reduced exposure, at the cell surface, of
�-glucan, a key pathogen-associated molecular pattern (PAMP). This leads to re-
duced phagocytosis by murine bone marrow-derived macrophages and decreased
production of IL-10, RANTES, and TNF-� by peripheral blood mononuclear cells, sug-
gesting that hypoxia-induced �-glucan masking has a significant effect upon C.
albicans-host interactions. We show that hypoxia-induced �-glucan masking is de-
pendent upon both mitochondrial and cAMP-protein kinase A (PKA) signaling. The
decrease in �-glucan exposure is blocked by mutations that affect mitochondrial
functionality (goa1Δ and upc2Δ) or that decrease production of hydrogen peroxide
in the inner membrane space (sod1Δ). Furthermore, �-glucan masking is enhanced
by mutations that elevate mitochondrial reactive oxygen species (aox1Δ). The
�-glucan masking defects displayed by goa1Δ and upc2Δ cells are suppressed by ex-
ogenous dibutyryl-cAMP. Also, mutations that inactivate cAMP synthesis (cyr1Δ) or
PKA (tpk1Δ tpk2Δ) block the masking phenotype. Our data suggest that C. albicans
responds to hypoxic niches by inducing �-glucan masking via a mitochondrial
cAMP-PKA signaling pathway, thereby modulating local immune responses and pro-
moting fungal colonization.

IMPORTANCE Animal, plant, and fungal cells occupy environments that impose
changes in oxygen tension. Consequently, many species have evolved mechanisms
that permit robust adaptation to these changes. The fungal pathogen Candida albi-
cans can colonize hypoxic (low oxygen) niches in its human host, such as the lower
gastrointestinal tract and inflamed tissues, but to colonize its host, the fungus must
also evade local immune defenses. We reveal, for the first time, a defined link be-
tween hypoxic adaptation and immune evasion in C. albicans. As this pathogen
adapts to hypoxia, it undergoes changes in cell wall structure that include masking
of �-glucan at its cell surface, and it becomes better able to evade phagocytosis by
innate immune cells. We also define the signaling mechanisms that mediate
hypoxia-induced �-glucan masking, showing that they are dependent on mitochon-
drial signaling and the cAMP-protein kinase pathway. Therefore, hypoxia appears to
trigger immune evasion in this fungal pathogen.
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The relationship between an opportunistic pathogen and its human host is strongly
influenced by the immune status of the host and the ability of the pathogen to

evade immune detection and clearance. This is particularly evident for major fungal
pathogens such as Candida albicans, Aspergillus fumigatus, and Cryptococcus neofor-
mans which are contained or cleared by most healthy individuals but which can cause
life-threatening disease in immunocompromised individuals, killing more than a million
people worldwide each year (1).

In immunocompetent individuals, potent innate immune defenses provide a first
line of defense against these pathogenic fungi once they have penetrated external
physical barriers. Myeloid cells express an array of pattern recognition receptors (PRRs)
that recognize fungal cells by interacting with specific pathogen-associated molecular
patterns (PAMPs), some of which lie on the fungal cell surface (2, 3). The formation of
an immunological synapse between a PRR and its cognate PAMP triggers signaling
events in the myeloid cell that promote the phagocytosis and killing of the fungal cell
and the activation of downstream immunological effectors (4, 5).

Meanwhile, the fungal pathogen attempts to evade and resist these immunological
defenses. A. fumigatus expresses the RodA hydrophobin on the surfaces of spores to
mask the PAMPs melanin and �-glucan, which would otherwise be detected by the
phagocytic PRRs Dectin-1, Dectin-2, and MelLec (6). C. neoformans attempts to evade
immune detection by enveloping itself in a polysaccharide capsule to mask �-glucan in
its cell wall (7). Similarly, C. albicans modulates PAMP exposure on its cell surface in
response to host-mediated and environmental signals (8–11). The degree of �-glucan
exposure on the surfaces of C. albicans cells changes during the course of systemic
infection (8), and C. albicans appears to actively modify �-glucan exposure at its surface.
For example, the relatively low ambient pHs associated with vulvovaginal niches have
been reported to trigger elevated �-glucan exposure, leading to enhanced innate
recognition of C. albicans cells by macrophages and neutrophils (10). In contrast,
host-derived lactate activates �-glucan masking via a noncanonical signaling pathway
involving the lactate receptor Gpr1 and the transcription factor Crz1, and this leads to
reduced phagocytic recognition and attenuated cytokine responses (9).

Further observations in mice and humans reinforce the importance of the PAMP
�-glucan for the immune recognition of C. albicans. In humans, a Dectin-1 polymor-
phism that truncates this �-glucan receptor has been associated with aberrant cytokine
responses to C. albicans and susceptibility to recurrent vulvovaginitis (12). In mice, the
inactivation of Dectin-1 attenuates inflammatory responses to C. albicans and permits
fungal proliferation in models of systemic, gastrointestinal, and mucosal infection
(13–16). However, the degree to which Dectin-1 defects affect host immunity depends
on the genetic background of the host and the adaptation of C. albicans in vivo (15, 17).

Once a C. albicans cell has been recognized and phagocytosed, the phagocyte
attempts to kill the pathogen by launching a chemical assault upon the phagosome
contents, which includes a burst of reactive oxygen, nitrogen, and other species (18).
Certain combinations of stress appear to promote the killing of C. albicans cells (19).
Nevertheless, the fungus attempts to resist killing by mounting robust oxidative,
nitrosative stress responses that promote fungal survival (20–24).

Hypoxia (low oxygen) represents an additional stress that fungal pathogens are
exposed to in the host (25). C. albicans displays a robust response to hypoxia (26–29),
and consequently, this fungus is able to colonize hypoxic niches such as the gastroin-
testinal tract (30, 31), as well as aerobic niches such as the skin and mucosa. C. albicans
cells appear to induce both short- and long-term transcriptional responses to hypoxia.
Sellam and coworkers identified Sit4, Ccr4, and Sko1 as potential regulators of the
short-term response, which includes the induction of the transcription factors Tye7 and
Upc2 (29). C. albicans sit4, ccr4, and sko1 mutants display hypoxic transcriptional

Pradhan et al. ®

November/December 2018 Volume 9 Issue 6 e01318-18 mbio.asm.org 2

https://mbio.asm.org


signatures even under normoxic conditions, presumably because these mutations
compromise mitochondrial functionality and oxygen utilization (29). The long-term
response to hypoxia involves the upregulation of several pathways: glycolysis via Tye7
(32, 33), unsaturated fatty acid metabolism via Efg1 (26, 27), and sterol biosynthesis via
Upc2 (34, 35).

We reasoned that, as low oxygen levels represent a significant input signal for fungal
cells within certain host niches (25), and as hypoxia affects the expression of cell wall
genes and proteins in C. albicans (26, 36), hypoxia might affect �-glucan exposure at
the cell surface. Here we show that hypoxia induces �-glucan masking in C. albicans, we
identify key signaling pathways that mediate hypoxia-induced �-glucan masking, and
we demonstrate that hypoxia-induced �-glucan masking attenuates phagocytic recog-
nition, uptake, and cytokine responses. This phenotype is likely to be important in the
context of fungal immune detection and clearance during infection.

RESULTS
Hypoxia induces �-glucan masking at the C. albicans cell surface. To test the

impact of hypoxia on the C. albicans cell wall, we grew cells under analogous conditions
to those used to examine lactate-induced �-glucan masking (9). Wild-type cells
(SC5314; see Table S1 in the supplemental material) were grown in minimal media
under normoxic conditions and transferred to hypoxic conditions for five hours, and
then cells were harvested for analysis while still in exponential growth phase (Materials
and Methods). Dissolved oxygen levels were approximately 1% of the maximum levels
under these conditions (Fig. 1A). Transmission electron microscopy (TEM) revealed that
hypoxia affects the architecture of the C. albicans cell wall (Fig. 1B). Quantification of
these TEM images revealed significant differences between hypoxic cells and their
normoxic controls with respect to the thickness of the inner glucan-chitin and outer
mannan layers of their cell walls. Hypoxic cells had thinner cell walls. This is consistent
with the observations that hypoxia leads to changes in cell wall gene expression and
the cell wall proteome (26, 36).

We then tested whether hypoxia affects the degree of exposure of the major PAMP
�-glucan at the C. albicans cell surface. First, �-glucan exposure on hypoxic and
normoxic cells was examined by microscopy. Cells growing exponentially under nor-
moxic and hypoxic conditions were harvested and fixed, and the exposed �-glucan was
stained with Fc-Dectin-1 (Fig. 2A). The cells were also stained with wheat germ
agglutinin (for chitin) and concanavalin A (for mannan). Hypoxic cells displayed less

FIG 1 Hypoxia affects the architecture of the C. albicans cell wall. (A) Oxygen levels under the normoxic (pink) and hypoxic
(blue) growth conditions used in this study. Means and standard deviations from three independent replicate experiments are
shown. (B) Transmission electron micrographs of the cell walls of wild-type C. albicans cells (SC5314; see Table S1 in the
supplemental material) grown under these normoxic and hypoxic conditions. (C) Quantification of the thickness of the inner
and outer layers of the C. albicans cell wall using ImageJ from TEM images of SC5314 cells such as those shown in panel B.
Means and standard deviations from images of cells (n � �30) from three independent replicate experiments are shown. The
data were analyzed using ANOVA with Tukey’s multiple-comparison test and are indicated by asterisks as follows: *, P � 0.05;
**, P � 0.01; ***, P � 0.001; ****, P � 0.0001.
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Fc-Dectin-1 staining than the control normoxic cells. This was quantified by flow
cytometry (Fig. 2B), and the change in �-glucan exposure was then expressed in terms
of the fold change in median fluorescence intensity (MFI) for the hypoxic cell popula-
tion compared to the control normoxic population (Fig. 2C). Hypoxic cells displayed a
significant decrease in MFI, indicating that hypoxia induces �-glucan masking in C.
albicans.

Hypoxia-induced �-glucan masking was observed reproducibly in representative
clinical isolates from four major epidemiological clades of C. albicans (Fig. 2D), indicat-
ing that this phenotype is not specific to clade 1 (SC5314). We also observed hypoxia-
induced �-glucan masking in some other pathogenic Candida species, notably in
Candida tropicalis and Candida krusei. However, most Candida glabrata, Candida guil-
liermondii, and Candida parapsilosis isolates did not display masking, and one of the
Candida parapsilosis isolates we tested even displayed �-glucan exposure in response
to hypoxia. The lack of a consistent �-glucan masking phenotype in these C. parapsilosis
isolates might relate to this species’ apparent habitation of diverse environmental

FIG 2 Hypoxia induces �-glucan masking in C. albicans. (A) Fluorescence microscopy of �-glucan
exposure on C. albicans wild-type cells (SC5314: Table S1) grown under normoxic or hypoxic conditions
and stained for exposed �-glucan (Fc-dectin-1; green), mannan (concanavalin A; red), and chitin (wheat
germ agglutinin; blue). (B) Analysis of �-glucan exposure on C. albicans SC5314 cells grown under
normoxic or hypoxic conditions by Fc-dectin-1 staining and flow cytometry. The median fluorescence
intensity (MFI) for each population is indicated. (C) The fold change in �-glucan exposure for C. albicans
SC5314 cells grown under hypoxic conditions was calculated relative to the values for control normoxic
cells. Means and standard deviations from three independent replicate experiments are shown, and the
data were analyzed using ANOVA with Tukey’s multiple-comparison test: *, P � 0.05. (D) Quantification
of hypoxia-induced �-glucan masking in C. albicans clinical isolates from four major clades: clade 1,
SC5314; clade 2, IHEM16614; clade 3, J990102; clade 4, AM2005/0377 (Table S1). (E) Analysis of
hypoxia-induced �-glucan masking in other pathogenic Candida species and in S. cerevisiae. Each box
represents a different isolate (Table S1) (the data for C. albicans were taken from panel D). Masking was
defined as a change in �-glucan exposure to �0.6 fold change (dark blue); partial masking was defined
as a decrease in �-glucan exposure to between 0.6- and 0.8-fold change (light blue); no masking was
defined as a change in �-glucan exposure between 0.8- and 1.2-old change decrease (white); �-glucan
exposure was defined as an increase in �-glucan exposure to �1.4-fold change (pink).
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niches as well as being a skin commensal (37). There was no clear correlation between
the hypoxia-induced �-glucan masking phenotype and phylogenetic relatedness
(Fig. 2E).

Hypoxia-induced �-glucan masking is not dependent on the pathway that
mediates lactate-induced �-glucan masking. Previously we showed that lactate-
induced �-glucan masking is mediated by a noncanonical signaling pathway that
involves lactate receptor Gpr1 and transcription factor Crz1 (9). Therefore, we tested
whether hypoxia-induced �-glucan masking is mediated by the same pathway.
�-Glucan masking was quantified by flow cytometry in C. albicans mutants that lack
Gpr1, its G� protein Gpa2, or Crz1 (Fig. 3) (Table S1). The deletion of CRZ1 affected
�-glucan exposure: both hypoxic and normoxic crz1Δ cell populations displayed ele-
vated levels of exposure relative to wild-type control cells. However, the loss of Crz1 did
not block hypoxia-induced �-glucan masking. Also, gpr1Δ cells retained the �-glucan
masking phenotype (Fig. 3). Therefore, neither Gpr1 nor Crz1 is required for hypoxia-
induced �-glucan masking, indicating that the different cellular inputs, lactate and
hypoxia, trigger �-glucan masking via different signaling pathways. Interestingly, the
G� protein Gpa2 is required for hypoxia-induced �-glucan masking (Fig. 3).

Hypoxia-induced �-glucan masking is not dependent on key morphogenetic or
stress regulators. Key morphogenetic regulators such as Efg1, stress regulators such as
Hog1, and the cell integrity signaling pathway are known to influence cell wall gene
expression and cell wall structure in C. albicans (26, 38–44). Furthermore, Efg1 contrib-
utes to the regulation of the hypoxic response in C. albicans (26, 27), and Hog1
orthologues contribute to hypoxic responses in Saccharomyces cerevisiae and human
cells (45, 46). Therefore, we tested whether these and other related regulators are
required for hypoxia-induced �-glucan masking.

FIG 3 Hypoxia-induced �-glucan masking is not dependent on Gpr1 or Crz1. Analysis of �-glucan
exposure on C. albicans mutants by flow cytometry of Fc-dectin-1-stained cells grown under normoxic
(pink) or hypoxic conditions (cyan). The median fluorescence intensity (MFI) for each population is shown
at the top right and left of each panel, respectively: WT, wild type, SC5314; gpr1Δ, LR2; gpa2Δ, NM6; gpr1Δ
gpa2Δ, NM23; crz11Δ, DSY2195 (Table S1). The wild-type control for each experiment is shown above the
mutants examined in that same experiment. The gpr1Δ and gpa2Δ mutants (middle panels) were
compared together in the same experiment with the wild-type control (upper left panel), whereas the
crz1Δ mutant (middle panel) was compared with wild-type cells in a different experiment (upper right
panel). The fold changes in �-glucan exposure for each strain (lower panels) were calculated by dividing
the MFI under hypoxic conditions by the MFI for the corresponding normoxic cells. Means and standard
deviations from three independent replicate experiments are shown, and the data were analyzed using
ANOVA with Tukey’s multiple-comparison test: *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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Hypoxia-induced �-glucan masking was retained in efg1Δ cells (Fig. 4A). Further-
more, the phenotype was maintained in tec1Δ, cph1Δ, and bcr1Δ cells (Fig. 4A; see also
Fig. S1 in the supplemental material). We note that the basal levels of �-glucan

exposure were perturbed in tec1Δ and efg1Δ cells, presumably because these muta-

tions perturb the yeast cell wall (41, 47). Nevertheless, the tec1Δ and efg1Δ mutants still

displayed �-glucan masking in response to hypoxia (Fig. 4A and Fig. S1). Therefore, the

FIG 4 Hypoxia-induced �-glucan masking is not dependent on key regulators of morphogenesis, cell
integrity, or stress adaptation. Analysis of �-glucan exposure on C. albicans mutants by flow cytometry
of Fc-dectin-1-stained cells (upper panels) grown under normoxic (pink) or hypoxic conditions (cyan).
Median fluorescence intensities (MFIs) for hypoxic and normoxic cell populations are shown (top right
and left of each panel, respectively). The corresponding wild-type control is shown above each mutant.
The fold change in �-glucan exposure (lower panels) for each strain was calculated by dividing the MFI
under hypoxic conditions by the MFI for the control normoxic cells. Means and standard deviations from
three independent replicate experiments are shown, and the data were analyzed using ANOVA with
Tukey’s multiple-comparison test: *, P � 0.05; **, P � 0.01. (A) Select morphogenetic mutants are shown
in WT (wild type) (SC5314) and efg1Δ (HLC52) and tec1Δ (CaAS18) mutants (Table S1). Additional mutants
are shown in Fig. S1. (B) Cell integrity pathway in the WT (SN95) and mkc1Δ (CaLC700) cells. (C)
Stress-activated protein kinase pathway in WT (SC5314) and ssk2Δ (JC482), pbs2Δ (JC74), and hog1Δ
(JC50) mutants. The efg1Δ, ssk1Δ, and pbs2Δ strains were analyzed in the same experiment against the
same wild-type control.
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morphogenetic regulators Efg1, Tec1, Cph1, and Bcr1 are not required for hypoxia-
induced �-glucan masking.

The Mkc1 MAP kinase is critical for signaling via the cell integrity pathway (39, 40).
However, hypoxia-induced �-glucan masking was not perturbed in mkc1Δ cells
(Fig. 4B), indicating that this masking is not dependent on the cell integrity pathway.

C. albicans cells lacking the Hog1 stress-activated protein kinase, its MAP kinase
kinase Pbs2, or its MAP kinase kinase kinase Ssk2 (48, 49) retained hypoxia-induced
�-glucan masking (Fig. 4C). Therefore, despite the fact that Hog1 signaling contributes
to cell wall remodelling in C. albicans and to hypoxic responses in other eukaryotes (43,
45, 46), this signaling pathway is not essential for hypoxia-induced �-glucan masking in
C. albicans.

Hypoxia-induced �-glucan masking is dependent on cAMP-protein kinase A
signaling. The cAMP-protein kinase A (PKA) pathway plays important roles in yeast-
hypha morphogenesis, stress adaptation, and cell wall integrity in C. albicans (50–56).
Therefore, we tested whether cAMP-PKA signaling is required for hypoxia-induced
�-glucan masking. First, we examined C. albicans cyr1Δ cells which lack adenylyl cyclase
(51), and then we tested tpk1Δ and tpk2Δ mutants in which one or both types of PKA
catalytic subunit have been inactivated (56). Significantly, hypoxia-induced �-glucan
masking was blocked in cyr1Δ cells and also in the tpk1Δ tpk2Δ double mutant, which
lacks any PKA activity (Fig. 5). This indicates that cAMP-PKA signaling is critical for this
phenotype. Interestingly, the phenotype was retained in the single tpk1Δ and tpk2Δ
mutants (Fig. 5), showing that each type of catalytic subunit of PKA is capable of
mediating hypoxia-induced �-glucan masking.

Mutations that attenuate mitochondrial respiration affect hypoxia-induced
�-glucan masking. Next, we investigated possible mechanisms by which hypoxia
might activate cAMP-PKA signaling. Structural and functional alterations in mitochon-
drial respiratory chain complexes are known to increase superoxide levels. Mitochon-
drial reactive oxygen species (ROS), such as superoxide, become elevated under

FIG 5 Hypoxia-induced �-glucan masking is dependent on cAMP-PKA signaling. Cytometric analysis of
�-glucan exposure on C. albicans cAMP-PKA mutants by Fc-dectin-1 staining of cells grown under
normoxic (pink) or hypoxic conditions (cyan) (upper panels). Median fluorescence intensities (MFIs) for
hypoxic and normoxic cell populations are shown. The corresponding wild-type control is shown above
each mutant: WT, wild type (SN152) and cyr1Δ (CR323), tpk1Δ, tpk2�, and tpk1Δ tpk2Δ mutants (Table S1).
The fold change in �-glucan exposure (lower panels) for each strain was calculated by dividing the MFI
under hypoxic conditions by the MFI for the corresponding control normoxic cells. Means and standard
deviations from three independent replicate experiments are shown, and the data were analyzed using
ANOVA with Tukey’s multiple-comparison test: *, P � 0.05; **, P � 0.01.
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hypoxic conditions, and these mitochondrial ROS are thought to contribute to hypoxic
signaling (57, 58). Therefore, we examined whether mutations that affect mitochondrial
functionality in C. albicans perturb hypoxia-induced �-glucan masking.

We examined ccr4Δ and pop2Δ mutants because the inactivation of this Ccr4-Pop2
mRNA deadenylase (Table S1), which regulates mRNA decay and translation, has been
reported to affect mitochondrial phospholipid homeostasis and to confer sensitivity to
cell wall stressors in C. albicans (59). Presumably, these pleiotropic effects account for
the relatively high levels of �-glucan exposure observed for the ccr4Δ and pop2Δ cells
under basal, normoxic conditions (Fig. 6 and Fig. S1). Nevertheless, hypoxia-induced
�-glucan masking was retained in ccr4Δ and pop2Δ strains and was even enhanced in
pop2Δ cells (Fig. 6 and Fig. S1).

AOX1A and AOX1B are nonsynonymous alleles which encode alternative oxidases
that protect the C. albicans mitochondrion against oxidative damage (60–62), as do
their homologues in other fungi and plants (63, 64). We observed that, like pop2Δ cells,
a C. albicans aox1AΔ/aox1BΔ (hereafter aox1Δ) mutant that lacks both isoforms of Aox1,
display significantly enhanced �-glucan masking in response to hypoxia compared to
the wild-type control (Fig. 6). Normoxic aox1Δ cells displayed high basal levels of
�-glucan exposure, relative to the wild-type control (Fig. 6), potentially because of
abnormally high levels of mitochondrial ROS (60–64).

We then determined whether Goa1 or Upc2 influences the phenotype because both
of these proteins have been implicated in mitochondrial functionality. The exact
biochemical role of Goa1 remains obscure, but a GOA1 gene deletion confers oxidative
stress sensitivity and results in the loss of mitochondrial membrane potential (65). In
addition to its roles in the regulation of ergosterol biosynthesis, the transcription factor
Upc2 regulates the expression of essential mitochondrial chaperones, mediates lipid
homeostasis, and contributes to the hypoxic response in C. albicans (33, 35, 66–68).
Hypoxia-induced �-glucan masking was blocked in C. albicans goa1Δ and upc2Δ

FIG 6 Mutations that perturb mitochondrial functionality affect hypoxia-induced �-glucan masking.
Quantification of �-glucan exposure on C. albicans mutants by Fc-dectin-1 staining and flow cytometry
of cells grown under normoxic (pink) or hypoxic conditions (cyan) (upper panels): WT, wild type
(DAY185), ccr4Δ (YCAT39), aox1Δ (WH324), goa1� (GOA31), upc2Δ (UPC2M4A) (Table S1). Additional
mutants are shown in Fig. S1. The cytometry data for the corresponding wild-type control is shown
above each set of mutants analyzed in the same experiment. Median fluorescence intensities (MFIs) for
hypoxic and normoxic cell populations are shown. The fold change in �-glucan exposure (lower panels)
for each strain represents the MFI under hypoxic conditions divided by the MFI for the corresponding
normoxic cells. Means and standard deviations from three independent replicate experiments are shown,
and the data were analyzed using ANOVA with Tukey’s multiple-comparison test: *, P � 0.05; **, P � 0.01;
***, P � 0.001.
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mutants (Fig. 6 and Table S1). This further implicates mitochondrial signaling in
activating this phenotype.

Changes in mitochondrial superoxide levels have been suggested to contribute to
hypoxic signaling (57, 58). Therefore, we tested whether specific C. albicans superoxide
dismutases affect hypoxia-induced �-glucan masking. C. albicans expresses six super-
oxide dismutases: Sod1 is localized to the intermembrane space and mitochondrial
matrix, Sod2 to the mitochondrial matrix and Sod3 to the cytoplasm, whereas Sod4 to
5 are secreted (21, 62, 69–72). Mutants lacking Sod2, Sod3, Sod4, Sod5, and/or Sod6
displayed no obvious defects in hypoxia-induced �-glucan masking (Fig. 7). Although
no masking defect was observed for sod2Δ and sod3Δ cells, they did display relatively
high levels of �-glucan exposure under basal normoxic conditions (Fig. 7). The basis for
this is not clear, but it might be related to the perturbation of intracellular ROS under
normal growth conditions. However, C. albicans sod1Δ cells, which lack the only
superoxide dismutase that is localized to the intermembrane space (62), displayed a
significant reduction in hypoxia-induced �-glucan masking (Fig. 7). This is consistent
with the view that ROS signaling in the mitochondrial intermembrane space is involved
in activating �-glucan masking.

Both the cAMP-PKA pathway (Fig. 5) and mitochondrial signaling (Fig. 6) are
required for hypoxia-induced �-glucan masking. To test whether the cAMP signaling
might lie upstream or downstream of mitochondrial signaling, we asked whether
exogenous cAMP can suppress the defect in masking observed for goa1Δ and upc2Δ
cells. We used the membrane-permeable derivative, dibutyryl-cAMP (db-cAMP) for
these experiments as described previously (73). Interestingly, exogenous db-cAMP
suppressed the masking defect of goa1Δ and upc2Δ cells (Fig. 8), suggesting that
mitochondrial signaling might lie upstream of the cAMP-PKA pathway.

Hypoxia-induced �-glucan masking attenuates immune recognition and host
responses. The interactions of C. albicans with innate immune cells are affected when
�-glucan masking is activated by lactate (9). In particular, lactate-induced �-glucan

FIG 7 Sod1 is required for hypoxia-induced �-glucan masking. C. albicans superoxide dismutase mutants
were grown under normoxic (pink) or hypoxic conditions (cyan), stained with Fc-dectin-1, and analyzed
by flow cytometry to examine their �-glucan exposure (upper panels). Median fluorescence intensities
(MFIs) for hypoxic and normoxic cell populations are shown. The corresponding wild-type control is
shown above each set of mutants, the triple sod4-6Δ mutant having been analyzed in a separate
experiment from the other sodΔ mutants: WT, SC5314; sod1Δ, CA-IF003; sod2Δ, CA-IF007; sod3Δ, CA-IF011
single mutants; sod4/5/6Δ triple mutant, CA-IF070 (Table S1). The fold change in �-glucan exposure
(lower panels) for each strain represents the MFI under hypoxic conditions relative to the MFI for the
corresponding normoxic control. Means and standard deviations from three independent replicate
experiments are shown, and the data were analyzed using ANOVA with Tukey’s multiple-comparison
test: *, P � 0.05.
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masking reduces neutrophil recruitment, decreases phagocytosis by macrophages,
and attenuates cytokine responses. Therefore, we tested whether hypoxia-induced
�-glucan masking exerts similar effects upon immune responses.

We quantified the phagocytosis of wild-type C. albicans cells by primary murine
bone marrow-derived macrophages (BMDMs) from time-lapse spinning disc video
microscopy. Representative videos can be viewed in Movies S1 and S2 in the supple-
mental material. Over the 4-h period examined, significantly fewer macrophages
phagocytosed the C. albicans cells that had undergone hypoxia-induced �-glucan
masking compared with the unmasked control cells (Fig. 9A). Furthermore, these
macrophages ingested fewer of the masked C. albicans cells than the unmasked cells
(Fig. 9A). This was consistent with the view that hypoxia-induced �-glucan masking
renders C. albicans cells less visible to phagocytes. It was not possible to monitor the
fate of these C. albicans cells after phagocytosis because, for technical reasons, these
cells were fixed (Materials and Methods).

We then quantified cytokine and chemokine responses for peripheral blood mono-
nuclear cells (PBMCs) isolated from blood samples from healthy human volunteers. We
observed a slight reduction in the levels of TNF-� and possibly MIP-1� induced by the
masked C. albicans cells compared to the control unmasked cells, but these changes
were not statistically significant (Fig. 9B). However, the masked cells induced signifi-
cantly lower levels of the anti-inflammatory cytokine IL-10, and of the chemokine
RANTES (Fig. 9B), which plays an important role in the homing and migration of effector
and memory T cells. Taken together, the data clearly show that hypoxia-induced
�-glucan masking affects immune responses to C. albicans cells.

DISCUSSION

Oxygen levels can vary greatly in healthy tissues, but tissues can become hypoxic
during infection, and oxygen levels approach zero in the lumen of the healthy lower
gastrointestinal tract, permitting colonization by obligate anaerobes (25, 74–78). C.
albicans displays robust adaptation to hypoxic environments, and consequently is able

FIG 8 Exogenous dibutyryl-cAMP suppresses the defects in hypoxia-induced �-glucan masking caused
by mitochondrial mutants. C. albicans (wild type [SC5314] [Table S1]), goa1Δ (GOA31), and upc2Δ cells
(UPC2M4A) were grown under normoxic (pink) or hypoxic conditions (cyan) for 5 h, as described above,
with 0 or 5 mM dibutyryl-cAMP (cAMP). The cells were then stained with Fc-dectin-1 and analyzed by
flow cytometry to quantify their �-glucan exposure (upper panels). Median fluorescence intensities (MFIs)
are shown. The fold changes in �-glucan exposure are shown (lower panels): means and standard
deviations from three independent replicate experiments are analyzed using ANOVA with Tukey’s
multiple-comparison test: *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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to colonize such niches (26–29, 31, 79, 80). As hypoxia has been shown to affect the
expression of cell wall genes and proteins in C. albicans (26, 36), we hypothesized that
this host input might affect cell wall architecture, and in particular, PAMP exposure at
the C. albicans cell surface. We tested this and showed that hypoxia induces significant
changes in the thickness of the inner glucan-chitin and outer mannan layers of the cell
wall (Fig. 1) and that hypoxia also induces �-glucan masking (Fig. 2).

Previously we showed that host-derived lactate triggers �-glucan masking in C.
albicans (9). We reasoned that, given the different nature of these host inputs, lactate
and hypoxia might mediate �-glucan masking via different upstream regulators. As we
predicted, hypoxia-induced �-glucan masking is not dependent on the lactate receptor
Gpr1 (Fig. 3) (9). However, the Gpr1-associated G-alpha protein, Gpa2, does contribute
to both lactate-induced (9) and hypoxia-induced �-glucan masking (Fig. 3). This implies
that Gpa2 must also be regulated by Gpr1-independent mechanisms.

Our data suggest that the hypoxic signal is mediated via the mitochondrion (Fig. 10),

FIG 9 Growth under hypoxia attenuates immune responses against C. albicans. Wild-type C. albicans
cells (SC5314 [Table S1]) were grown for 5 h under normoxic (blue) or hypoxic conditions (red) and fixed.
(A) At t � 0, these C. albicans cells were mixed with murine bone marrow-derived macrophages (BMDMs)
at a ratio of 3:1 (yeast cells/macrophages), and the host-fungus interactions monitored by time-lapse
video microscopy. The proportion of BMDMs that had phagocytosed at least one C. albicans cell (percent
phagocytic macrophages) was quantified at t � 1, 2, 3, and 4 h. Also, the number of C. albicans cells
phagocytosed per BMDM were quantified at t � 1 and 2 h. (B) Duplicate samples of human PBMCs from
6 different individuals were mixed with the C. albicans cells (ratio of 5:1, yeast cells/PBMCs), and TNF-�,
MIP-1�, IL-10, and RANTES levels were assayed after 24 h. These data were analyzed using ANOVA with
Bonferroni’s post hoc test: *, P � 0.05; **, P � 0.01; ***, P � 0.001.
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which would be consistent with data from fungal, plant, and mammalian systems (57,
58, 81–84). First, the inhibition of mitochondrial functionality in C. albicans (goa1, upc2)
blocked hypoxia-induced �-glucan masking (Fig. 6).

Second, C. albicans cells that lack the mitochondrial alternative oxidase, Aox1,
display enhanced hypoxia-induced �-glucan masking (Fig. 6). In C. albicans and other
fungi and in plants, alternative oxidases such as Aox1 limit the superoxide generation
in the respiratory chain, thereby protecting the mitochondrion against oxidative dam-
age (60–64). Therefore, hypoxia-induced �-glucan masking is probably enhanced in
response to the elevated superoxide levels in the mitochondrion of aox1Δ cells.

Third, the masking phenotype is blocked in sod1� cells, but not in C. albicans cells
that lack any of the other superoxide dismutases (Fig. 7). Sod1 is the only superoxide
dismutase that localizes to the mitochondrial intermembrane space (62). This is par-
ticularly significant because respiratory complex III releases superoxide into the mito-
chondrial intermembrane space (57, 85–87) and complex III is critical for hypoxic
signaling (57, 58, 81, 84, 88, 89). Normally, in wild-type cells, Sod1 converts the charged,
nondiffusible superoxide anion into the diffusible ROS, hydrogen peroxide. Thus, in
sod1Δ cells, hydrogen peroxide production would be lowered in the mitochondrial
intermembrane space.

Taken together, these data suggest that the transduction of the hypoxic signal
depends on the generation of hydrogen peroxide in the mitochondrial intermembrane
space (Fig. 10). Hydrogen peroxide is viewed as a candidate signaling molecule because
of its relatively long half-life, its membrane permeability, and its ability to oxidize
cysteines in target proteins (90, 91). Certainly, cysteine oxidative modifications have
been shown to regulate the activities of key proteins in involved in gene expression,
metabolism, cell differentiation, and growth (92, 93). Indeed, perturbations of cyto-
chrome c oxidase or cytochrome c itself could conceivably trigger downstream signal-
ing events, as the inactivation of these proteins has been shown to affect signaling in
other systems (94, 95). Therefore, we suggest that hydrogen peroxide might trigger
downstream signaling events in hypoxic C. albicans cells.

The downstream transduction of the mitochondrial signal generated is not depen-
dent on Hog1 signaling or Efg1 (Fig. 4), which has been implicated previously in

FIG 10 Mechanisms by which hypoxia induces �-glucan masking in C. albicans. Combining our
observations with those of others, we propose the following working model. Hypoxia triggers an increase
in the formation of mitochondrial superoxide by the respiratory apparatus (57, 58). Inactivating Goa1 or
Upc2, which promote mitochondrial functionality, reduces overall respiration rates and hence mitochon-
drial ROS production. The alternative oxidase (Aox1) acts to limit mitochondrial ROS production (60–62)
and therefore inactivating Aox1 enhances the signal. Superoxide dismutase within the mitochondrial
inner membrane space (IMS) converts superoxide into diffusible hydrogen peroxide, which leads to the
generation of a mitochondrial signal that transduces to the cytoplasm (see text). This possibly leads to
the activation of adenylyl cyclase (Cyr1) and cAMP-PKA (Tpk1/2) signaling, which triggers remodelling of
the cell wall and masking of cell surface �-glucan by mechanisms that remain to be elaborated.
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transcriptional responses to hypoxia (26, 29, 45, 46). Instead, hypoxic signal transduc-
tion is dependent on the cAMP-PKA pathway (Fig. 5, 8, and 10). It is conceivable that,
in some way, the mitochondrial and cAMP-PKA pathways act in parallel. However,
hypoxia-induced glucan �-masking is dependent upon both signaling modules.

The involvement of cAMP-PKA signaling in �-glucan masking is entirely consistent
with previous work showing that this pathway influences cell wall gene expression and
integrity (52, 55, 56). Furthermore, our observations reinforce the view that the mito-
chondrion and adenylyl cyclase control virulence phenotypes in C. albicans (96). The
mechanisms by which �-glucan masking is achieved at the cell surface remain obscure
and are under investigation. However, transcript profiling studies of adenylyl cyclase
and PKA mutants suggest that this pathway modulates the synthesis and assembly of
cell wall mannoproteins and mannan (ALS1, ALS2, ALS4, CCW14, CSP37, ECM4, KTR1,
SCW10, WSC1), glucan (KRE6, KRE9, PHR2) as well as chitin (CHS7, CHT3) (52, 55),
potentially providing clues as to these mechanisms.

Changes in �-glucan exposure on C. albicans cells have been observed in vivo,
during systemic infection (8), and in vitro in response to changes in ambient pH or
host-derived lactate (9, 10). It is well-known that �-glucan recognition by Dectin-1 plays
a major role in fungal recognition by innate immune cells (4, 13–16, 97). It has been
reported that C. albicans cells grown overnight under hypoxia with high carbon dioxide
levels (5% CO2) display enhanced immune recognition (17). Here we report that
exponentially growing C. albicans cells, which were exposed specifically to hypoxia
before fixing, elicit attenuated immune responses (Fig. 9), like cells exposed to lactate
(9). We reason that differences in CO2 concentration, cell morphology, and/or growth
state might account for the different immunological outputs in these two studies.
Certainly, high CO2 concentrations are known to affect C. albicans morphology and
physiology (98), and C. albicans morphology affects innate immune responses (99, 100).

We observed different phagocytic responses for BMDMs toward hypoxic C. albicans
cells compared to normoxic control cells. Hypoxic cells evaded phagocytic uptake
despite numerous contacts between yeast cells and phagocytes during their dynamic
interactions over the period examined (see Movies S1 and S2 in the supplemental
material). This was presumably because of the reduced availability of fungal target sites
for host cell Dectin-1 engagement. The impact of hypoxia upon innate immune
responses against C. albicans cells was more subtle than for those previously observed
for lactate exposure. Exposing the fungal cells to lactate led to significant reductions in
the levels of TNF-� and MIP1� released by human macrophages (9). Hypoxia-grown C.
albicans cells also elicited reduced levels of these cytokines compared to control
normoxic cells, but these changes were less dramatic and not statistically significant
(Fig. 9). However, statistically significant decreases in IL-10 and RANTES production
were observed for hypoxic cells (Fig. 9), indicating that hypoxia does affect immune
responses against C. albicans. These differences in cytokine responses between lactate-
and hypoxia-treated C. albicans cells might relate to the different signaling mechanisms
that are activated in response to these host inputs (above). No doubt these different
signaling mechanisms drive subtly different patterns of cell wall remodelling, in addi-
tion to the common �-glucan masking phenotype we have described.

We argue that the effects of hypoxia on �-glucan masking by C. albicans and upon
the innate immune responses against this pathogen will almost certainly have a
significant impact upon host-fungus interactions during colonization and infection. This
view is supported by the accompanying paper (101), which shows that oxygen depri-
vation enhances the successful colonization of host niches by C. albicans in vivo.

MATERIALS AND METHODS
Strains and growth conditions. Strains are listed in Table S1 in the supplemental material. All C.

albicans strains were grown overnight at 30°C and 200 rpm in minimal medium (GYNB [2% glucose,
0.65% yeast nitrogen base without amino acids, containing the appropriate supplements]) (102). On the
day of an experiment, overnight cultures were diluted into fresh minimal medium to an OD600 of 0.2, and
incubated at 30°C at 200 rpm for 5 h for analysis. Normoxic cells were grown with aeration, whereas
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hypoxic cells were grown in screw cap conical flasks under nitrogen. Dissolved O2 was measured using
a Thermo Fisher Scientific Orion RDO probe 3M (087010MD).

Microscopy. For fluorescence microscopy, cells were fixed in 50 mM thimerosal (Sigma-Aldrich) and
stained for �-glucan (1.5 �g/ml Fc-Dectin-1 plus anti-human IgG conjugated to Alexa Fluor 488; green),
chitin (50 �g/ml wheat germ agglutinin conjugated to Alexa Fluor 350; blue), and mannan (25 �g/ml
concanavalin A conjugated to Texas Red; red). All samples were examined by phase differential
interference contrast (DIC) and fluorescence microscopy using a Zeiss Axioplan 2 microscope. Images
were recorded digitally using the Openlab system (Openlab v 4.04: Improvision, Coventry, UK) with a
Hamamatsu C4742- 95 digital camera (Hamamatsu Photonics, Hamamatsu, Japan).

High-pressure freeze substitution transmission electron microscopy on normoxic and hypoxic C. albicans
cells was performed as described previously (103, 104), cutting ultrathin sections of 100 nm in thickness.
Samples were imaged with a Philips CM10 transmission microscope (FEI, United Kingdom) equipped with a
Gatan Bioscan 792 camera, and the images were recorded using a Digital Micrograph (Gatan, Abingdon Oxon,
United Kingdom). The thicknesses of the inner chitin-glucan and outer mannan layers of the cell wall were
measured by averaging �30 measurements for each cell (n � 30 cells) using ImageJ.

�-Glucan exposure. To assess the exposure of �-glucan on the C. albicans cell surface, strains were
grown in YNB plus 2% glucose overnight and then grown in fresh medium for 5 h under hypoxic or
normoxic conditions. These exponentially growing cells were fixed immediately with 50 mM thimerosal
(Sigma-Aldrich, Dorset, UK) to capture the cell surface architecture. They were then stained for �-glucan
exposure using Fc-Dectin-1 and anti-human IgG conjugated to Alexa Fluor 488, and their fluorescence
was quantified using a BD Fortessa flow cytometer as described previously (9). The plots represent three
biological replicate experiments, in each of which 10,000 events were acquired. Normoxic cells of the
congenic wild-type control were used as a control for each run. As a secondary control, cells were treated
as descrbied above but without the addition of Fc-Dectin-1. Median fluorescence intensities (MFI) were
determined using FlowJo v. 10 software.

Cytokine assays. Cytokine assays on PBMCs were performed as described previously (9). Briefly,
PBMCs were isolated from nonheparinized whole-blood samples (20 ml) collected from healthy donors
using Ficoll-Paque centrifugation according to the manufacturer’s instructions (Sigma-Aldrich). Purified
PBMCs were cultured for 5 days in MACS medium (Dulbecco’s modified Eagle’s medium containing 10%
serum, 2 mM glutamine, 5 mg/ml penicillin and streptomycin). Normoxic and hypoxic C. albicans cells
were fixed with 50 mM thimerosal (Sigma) and washed 4 times with sterile 1� PBS (Sigma-Aldrich). These
yeast cells were incubated with PBMCs (ratio of 5:1, yeast cells/PBMCs) for 24 h, whereupon 100 �l of
supernatant was collected and the cytokines and chemokines were quantified using the Luminex
screening kit (R&D Systems, Abingdon, UK) in the BioPlex 200 system (Bio-Rad, Watford, UK) according
to the manufacturer’s recommendations.

Phagocytosis assays. Bone marrow-derived macrophages (BMDMs) were prepared following ex-
traction of bone marrow from the femurs and tibias of 12-week-old male C57BL/6 mice aged and
differentiated for 7 days as described previously (105). Normoxic and hypoxic C. albicans cells were fixed
with thimerosal (described above), mixed with macrophages at a ratio of 3:1 (yeast cells/macrophages),
and imaged at 1-min intervals for up to 4 h using established protocols with a Nikon Eclipse Ti UltraVIEW
VoX spinning disk microscope (99, 106, 107). The C. albicans cells were fixed to allow subsequent
confirmation, by cytometry, that these specific hypoxic cell populations displayed �-glucan masking. The
percentages of macrophages phagocytosing yeast cells and the number of yeast cells engulfed per
macrophage were quantified at hourly time intervals. The difference between conditions for each time
point was determined using ANOVA with Bonferroni’s post hoc test.

Ethics statement. Blood samples from healthy volunteers were collected with the informed consent
of these donors and according to local guidelines and regulations that were approved by the College
Ethics Review Board of the University of Aberdeen (CERB/2012/11/676).

Three 7-week-old male C57BL/6 mice were used for the preparation of BMDMs. These mice, which
were selected randomly, were bred in-house, housed in stock cages under specific-pathogen-free
conditions. They underwent no surgical procedures prior to culling by cervical dislocation. All animal
experimentation was approved by the UK Home Office and by the University of Aberdeen Animal Welfare
and Ethical Review Body.

Statistical analyses. Statistical analyses were performed in GraphPad Prism 5. Results from inde-
pendent replicate experiments are expressed as means � standard deviations. One-way ANOVA (Tukey’s
multiple-comparison test) was used to test the statistical difference between two sets of data with a
nonparametric distribution. The following P values were considered statistically significant and indicated
as follows: *, P � 0.05; **, P �0.01; ***, P � 0.001; ****, P � 0.0001.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.01318-18.
FIG S1, PDF file, 0.2 MB.
TABLE S1, PDF file, 0.1 MB.
MOVIE S1, AVI file, 18.4 MB.
MOVIE S2, AVI file, 18.3 MB.
MOVIE S3, AVI file, 18.6 MB.
MOVIE S4, AVI file, 18.9 MB.
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