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Transcriptome-based repurposing 
of apigenin as a potential anti-
fibrotic agent targeting hepatic 
stellate cells
Daniel F. Hicks1, Nicolas Goossens1,2, Ana Blas-García1,3, Takuma Tsuchida1,4, 
Benjamin Wooden1, Michael C. Wallace1,5, Natalia Nieto6, Abigale Lade1, Benjamin Redhead7, 
Arthur I Cederbaum8, Joel T. Dudley7, Bryan C. Fuchs9, Youngmin A. Lee1, Yujin Hoshida1 & 
Scott L. Friedman1

We have used a computational approach to identify anti-fibrotic therapies by querying a transcriptome. 
A transcriptome signature of activated hepatic stellate cells (HSCs), the primary collagen-secreting 
cell in liver, and queried against a transcriptomic database that quantifies changes in gene expression 
in response to 1,309 FDA-approved drugs and bioactives (CMap). The flavonoid apigenin was among 
9 top-ranked compounds predicted to have anti-fibrotic activity; indeed, apigenin dose-dependently 
reduced collagen I in the human HSC line, TWNT-4. To identify proteins mediating apigenin’s effect, we 
next overlapped a 122-gene signature unique to HSCs with a list of 160 genes encoding proteins that 
are known to interact with apigenin, which identified C1QTNF2, encoding for Complement C1q tumor 
necrosis factor-related protein 2, a secreted adipocytokine with metabolic effects in liver. To validate 
its disease relevance, C1QTNF2 expression is reduced during hepatic stellate cell activation in culture 
and in a mouse model of alcoholic liver injury in vivo, and its expression correlates with better clinical 
outcomes in patients with hepatitis C cirrhosis (n = 216), suggesting it may have a protective role in 
cirrhosis progression.These findings reinforce the value of computational approaches to drug discovery 
for hepatic fibrosis, and identify C1QTNF2 as a potential mediator of apigenin’s anti-fibrotic activity.

The hepatic stellate cell (HSC) represents the major focus for developing anti-fibrotic therapies, whereas other cell 
types, e.g, portal fibroblasts, also contribute to fibrogenesis to a minor extent depending on the site, duration and 
nature of liver injury1,2. HSC-specific genes and proteins likely serve as clues to candidate therapeutic targets and 
will accelerate preclinical testing and clinical development of anti-fibrotic therapies.

Bioinformatic interrogation of public databases is a comprehensive and efficient strategy to identify disease 
molecular signatures, drug targets, and even candidate drugs. There are a growing number of transcriptome data-
sets available for the identification of genes and pathways unique to a variety of biological and clinical contexts 
across multiple assay formats and tissue types, including liver3. Liver disease-specific molecular signatures such 
as regulators of collagen deposition and hepatocellular carcinoma subtype/prognosis classifiers have been identi-
fied to date4–7. Our previous unbiased interrogation of the liver cell transcriptome compendium has identified a 
122-gene HSC-specific molecular signature uniquely expressed in quiescent and/or activated HSCs compared to 
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other cell types in the liver, which was associated with poorer clinical outcome in patients with hepatitis C virus 
(HCV)-related cirrhosis and hepatocellular carcinoma8.

In parallel, molecular signature-based in silico drug screening and repurposing has been successfully utilized 
for quick hypothesis-free identification of novel therapeutics for a variety of cancers and inflammatory diseases, 
among many others diseases3. In the current study, we used an experimentally-defined HSC activation gene 
signature in an unbiased manner as a basis for applying a computational drug discovery approach to identify 
candidate anti-fibrotic drugs that antagonize the HSC gene signature.

Material and Methods
Computational compound screen for candidate anti-fibrotic agents. An HSC activation signa-
ture was defined in transcriptome profiles of freshly isolated HSCs from cirrhotic rat liver treated with repeated 
low-dose diethylnitrosamine (low-dose DEN rat)9 (NCBI Gene Expression Omnibus [GEO] accession number, 
GSE63726). Differentially expressed genes between the cells isolated from cirrhotic and healthy control livers 
were defined after making to human orthologous genes (NCBI HomoloGene database, release 68) by random 
permutation t-test based on significance threshold of false discovery rate (FDR <  0.05) (Supplementary Table 1). 
The gene signature was used to query a database of transcriptome profiles of 1,309 unique FDA-approved drugs 
and bioactive compounds, the Connectivity Map (CMap) database (https://portals.broadinstitute.org/cmap/)10. 
Compounds with significant negative association (enrichment p ≤  0.05) were selected as candidates for subse-
quent experimental evaluation.

In vitro assessment of candidate anti-fibrotic agents. TWNT-4 (human HSC line) cells11 were seeded 
onto a 96-well plate at 5,000 cells per well in 100 μ l of assay medium (DMEM, 10% FBS, 1% penicillin/streptomycin),  
and cultured at 37 °C and 5% CO2. After 24 hours, the cells were treated with apigenin (Sigma-Aldrich) (≥ 97% 
purity) at final concentrations of 2.5 μ M, 10 μ M, 20 μ M, 40 μ M, 60 μ M, 80 μ M, 100 μ M, and 200 μ M dissolved in 
0.5% DMSO or DMSO control in triplicate for 24 hours. Cell viability was measured by MTS assay using CellTiter 
96® Aqueous One Solution Reagent (Promega) following manufacturer’s instruction. Percentage of mean absorb-
ance of each drug-treated condition over the control was calculated.

Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). RNA was extracted 
from adherent cells using RNeasy Mini kit (Qiagen). Equimolar concentrations of RNA were converted to 
cDNA (Clontech), and quantitative real-time PCR was performed using SYBR green reagent (Roche) on the 
Lightcycler 480 system (Roche). Gene expression level in each sample was internally normalized to GAPDH 
expression. The following PCR primers were used (5′  to 3′ ): GGCTTCCCTGGTCTTCCTGG (forward) and 
CCAGGGGGTCCAGCCAAT (reverse) for human COL1A1; GAGGCTCCTCCCAGTCATCA (forward) and 
GGGATCATGGTGGTTACCCAGA (reverse) for human C1QTNF2; CCAGAAGCCATCAGCAGCAAG (for-
ward) and AGGCCCTGAGAGATCTGTGG (reverse) for human PDGFRB: AGGCACCCCTGAACCCCAA 
(forward) and CAGCACCGCCTGGATAGCC (reverse) for human ASMA; CAAGGGCTACCATGCCAACT (for-
ward) and AGGGCCAGGACCTTGCTG (reverse) for human TGFB1; CGAGTGCCAAATGAAGAGGACC (for-
ward) and AAACCTGAGCCAGAACCTGACG (reverse) for human TGFRB1; CAATGACCCCTTCATTGACC 
(forward) and GATCTCGCTCCTGGAAGATG (reverse) for human GAPDH.

Western blotting. TWNT-4 cells were lysed in RIPA buffer (150 mM NaCl, 50 mM Tris-HCl, 1% IGEPAL, 
0.5% Sodium deoxycholate, 1% SDS) with proteinase inhibitors (Roche) and pelleted. Inguinal adipose tissue was 
dissected from two C57BL/6 mice (Charles River). Whole liver tissue was isolated from 5 control mice fed a nor-
mal diet for 6 weeks and 5 mice fed a Lieber DeCarli ethanol-containing diet for 6 weeks. In both cases, the tis-
sue was lysed mechanically using steel beads in a TissueLyser LT (Qiagen) and with RIPA lysis buffer with the 
proteinase inhibitor. The lysate was sonicated and pelleted and the aqueous supernatant was isolated. Twenty μ g  
of protein from each sample was suspended in NuPAGE LDS sample buffer and heated for 10 min at 70 °C. Samples 
were electrophoresed on 10% BisTris NuPAGE gels (Invitrogen) and then transferred to nitrocellulose mem-
branes (Invitrogen). Membrane blotting was performed using the following primary antibodies, rabbit polyclonal 
anti-COL1A1 antibody (Rockland, Limerick, PA, catalog #600-401-103) (1:5000), rabbit polyclonal anti-C1QTNF2 
antibody (ProSci, catalog #3561) (1:1000), mouse monoclonal anti-GAPDH antibody (Millipore, catalog #CB1001) 
(1:2500), mouse monoclonal anti-β -tubulin (Sigma-Aldrich, catalog #T4026) (1:2500), mouse anti-calnexin 
(Abcam, catalog #75801) (1:2500) and appropriate HRP-conjugated secondary antibody. Bands were visualized with 
chemiluminescent HRP antibody detection reagent (HyGlo e2400, Denville), captured with Amersham Imager 600 
(GE Healthcare Life Sciences), and quantified using ImageJ software (https://imagej.nih.gov/ij/).

Immunofluorescence staining. A total of 50,000 TWNT-4 cells were plated onto glass coverslips and 
cultured until 90% confluent, and then fixed with 100% acetone for 10 minutes at − 20 °C. The cells were subse-
quently permeabilized in Tween-20 detergent in PBS for 20 minutes and then incubated in the rabbit polyclonal 
anti-C1QTNF2 antibody (1:1000) with negative and positive controls, chicken polyclonal anti-GFAP (Abcam, 
catalog #4674) (1:200), and anti-Desmin (AbCam, catalog #15200) (1:200). Appropriate green fluorescent tagged 
secondary antibodies (Life Technologies) were used and DAPI was used for nuclear staining. Cells were imaged 
under Eclipse TS100 fluorescent microscope (Nikon).

Culture activated mouse HSCs. DNA microarray-based transcriptome profiles of mouse primary 
HSCs before (day 0) and after in vitro culture activation (day 7) were obtained from GEO database (NCBI Gene 
Expression Omnibus [GEO] accession number, GSE34949)12,13.

https://portals.broadinstitute.org/cmap/
https://imagej.nih.gov/ij/
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Clinical HCV cirrhosis cohort. DNA microarray-based transcriptome profiles of 216 patients with HCV-related 
compensated cirrhosis we previously reported were used to evaluate prognostic association of C1QTNF2 expression 
level (GSE15654)6. C1QTNF2-high.group was defined as samples with C1QTNF2 expression higher than one standard 
deviation above mean. Prognostic association was assessed by Kaplan-Meier curve and log-rank test.

Statistical analysis. Continuous values are presented by mean and standard error of mean (SEM). 
Differences were assessed by either t-test or one-way ANOVA followed by Dunnett’s multiple comparisons test. 
Two-tailed p-value less than 0.05 was regarded as statistically significant. All statistical analyses were performed 
using Graph Pad Prism version 7.0a (GraphPad Software).

Results
Computational screen to identify candidate anti-fibrotic agents. A 673-gene in vivo HSC acti-
vation signature was defined in the isolated HSC fraction from the low-dose DEN rat (Supplementary Table 1). 
The gene signature was used to query the compound perturbation transcriptome database (CMap) for candi-
date anti-fibrotic agents that potentially antagonize the HSC activation signature. Eighteen compounds with 
significant negative association (p ≤  0.05) were identified (Table 1). Of note, the majority of the compounds 
(n =  14, 78%) are not recognized for their possible anti-fibrotic effect, highlighting the potential advantage 
of this unbiased in silico screen to efficiently identify candidate drugs. Among them, 9 top hit compounds 
commercially available and without clinically known severe toxicity were chosen for subsequent experimental 
evaluation.

In vitro validation of anti-fibrotic effect of apigenin in a HSC cell line. The 9 computationally 
prioritized candidate compounds were tested for their anti-fibrotic effect in a human HSC cell line, TWNT-4, 
together with a multi-kinase inhibitor, sorafenib, and an mTOR inhibitor, rapamycin, as positive controls14,15. 
Apigenin, a flavonoid with a known anti-fibrotic activity in a mouse model of chronic pancreatitis16,17, was the 
only compound that reduced COL1A1 expression at comparable level to sorafenib, a known anti-fibrotic drug, 
with statistical significance (Fig. 1A). The COL1A1 suppressive effect was dose-dependent (Fig. 1B), which was 
also confirmed at the protein level (Fig. 1C). Expression of PDGFRB, encoding platelet-derived growth factor 
receptor-β , was similarly reduced by 10 μ M of apigenin (Fig. 1D). Cell viability assessment showed that the com-
pound is not toxic at concentrations below 20 μ M (Fig. 1E). Other known liver fibrosis-related genes, ASMA, 
TGFB1, and TGFBR1, were not suppressed at the non-toxic concentration (Fig. 1F–H), suggesting that apigenin’s 
effect is directed to a specific subset of fibrogenesis-related pathways.

C1QTNF2 as a potential intracellular target of apigenin. Next we sought to identify targets of api-
genin in hepatic stellate cells. A 122-gene signature uniquely expressed in HSC8 was overlaid on a list of 160 genes 
encoding intracellular proteins that physically interact with apigenin based on phase display18. C1QTNF2 was 
identified as the only gene common to the 2 gene lists (Fig. 2A). With 20,354 protein-coding genes in human 
genome according to NCBI CCDS database (release 21) (www.ncbi.nlm.nih.gov/projects/CCDS), the number 
of apigenin target genes (160 genes) that could be found within the hepatic stellate cell signature (122 genes) by 

Drug Enrichment score p value Regulatory approval Test in human Known adverse effects Published anti-fibrotic effect

leflunomide − 0.20 0.002 Yes Yes29 Diarrhea, nausea, alopecia, rash29 No

AH-23848 − 0.19 0.005 No Yes30 Heartburn, nausea, vomiting31 No

xamoterol − 0.18 0.008 No Yes32 Nausea32 No

6-benzylaminopurine − 0.18 0.01 No No Uncertain No

irinotecan − 0.17 0.015 Yes Yes33 Bone marrow suppression, diarrhea, 
alopecia, fatigue, nausea, vomiting33 No

hydroxyachillin − 0.17 0.015 No No Uncertain No

aceclofenac − 0.17 0.024 Yes Yes34 Moderate epigastric discomfort and 
dyspepsia34 Yes35

methylergometrine − 0.16 0.028 Yes Yes36 Rare Acute Coronary Syndrome, 
Myocardial Infarction37 No

CP-86318738 − 0.16 0.036 No No Uncertain No

estrone − 0.16 0.028 Yes Yes39 CHD, stroke, breast cancer, PE39 No

apigenin − 0.16 0.041 No Yes40 Uncertain Yes16,17

PHA-00767505E41 − 0.16 0.053 No No Uncertain No

digoxigenin − 0.16 0.045 No No Uncertain No

525291742 − 0.16 0.031 No No Uncertain No

3-aminobenzamide − 0.16 0.04 No No Uncertain Yes43

zuclopenthixol − 0.16 0.042 Yes Yes44 Extra-pyramidal symptoms44 No

bucladesine − 0.16 0.054 No Yes45,46 Vasodilation45,46 Yes47

erastin − 0.15 0.048 No No Uncertain No

Table 1.  Compounds predicted to be antifibrotic by an in silico screen with key pharmacological and 
clinical characteristics. *Approval by any international agency.

http://www.ncbi.nlm.nih.gov/projects/CCDS
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Figure 1. Anti-fibrotic effect of apigenin in human HSC line (TWNT-4 cells). (A) Modulation of COL1A1 
expression by nine computationally selected candidate compounds together with sorafenib and rapamycin 
(positive controls) compared to DMSO-treated controls (qRT-PCR, n =  3). *p <  0.05, t-test. (B) Dose-
dependent suppression of COL1A1 expression by apigenin (qRT-PCR, n =  3). *p <  0.001, Dunnett’s test.  
(C) Suppression of collagen 1 protein by sorafenib and apigenin (Western blotting, n =  1). Relative intensity 
to GAPDH was calculated. (D) Modulation of PDGFRB expression by apigenin and sorafenib (qRT-PCR, 
n =  3). *p <  0.001, Dunnett’s test. (E) Cell viability in association of apigenin dose (MTS assay, n =  3). *p <  0.01, 
**p <  0.001, Dunnett’s test. (F) Modulation of ASMA expression by apigenin and sorafenib (qRT-PCR, n =  3). 
(G) Modulation of TGFB1 expression by apigenin and sorafenib (qRT-PCR, n =  3). (H) Modulation of TGFRB1 
expression by apigenin and sorafenib (qRT-PCR, n =  3). Bar graphs show mean and standard error of mean 
(SEM) (error bars) of replicated experiments.
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chance is less than 1 (0.959), although it does not reach statistical significance (p =  0.37, hypergeometric test). 
To date, C1q and tumor necrosis factor related protein 2 encoded (C1QTNF2) protein is an adipokine that has 
been identified previously in adipose tissue, where it has effects on lipid metabolism and insulin activity19, but 
upregulation of C1QTNF2 mRNA expression unique to HSC was confirmed in a panel of various cell types 
presenting in fibrotic liver, which were assembled in our previous study8 (Fig. 2B). Furthermore, immunoflu-
orescence staining showed strong cytoplasmic expression of C1QTNF2 in TWNT-4 cells (Fig. 2C). Apigenin 
treatment did not alter C1QTNF2 mRNA and protein abundance (Fig. 2D,E). These results suggest that apigenin 
elicits its COL1A1-suppressive effect in HSC without modulating C1QTNF2 expression levels.. However, api-
genin could interfere with the function of C1QTNF2 protein via a physical interaction. Interestingly, baseline 
C1QTNF2 mRNA expression was reduced during the process of in vivo HSC activation by carbon tetrachlo-
ride (CCl4) treatment or bile duct ligation (BDL) (Fig. 2B) and in vitro culture activation13 (Fig. 3A). C1QTNF2 
protein expression was similarly reduced in the livers from mouse model of alcoholic injury by Lieber DeCarli 
ethanol-containing diet for 6 weeks20 (Fig. 3B). Furthermore, in a clinical cohort of 216 patients with HCV-related 
compensated cirrhosis, patients with high C1QTNF2 expression showed a better clinical outcome of cirrhosis, as 
measured by Child-Pugh classification21 (Fig. 4). These animal model- and clinical cohort-based findings suggest 
that C1QTNF2 plays a protective role in cirrhosis progression. If a physical interaction with C1QTNF2 protein 

Figure 2. HSC-specific expression of C1QTNF2, a potential target of apigenin. (A) Overlap between HSC 
gene signature8 and potential intracellular targets of apigenin18. (B) C1QTNF2 expression in a panel of various 
cell types isolated from mouse livers (expression DNA microarray, n ≥  3 in each cell type)8. BDL: bile duct 
ligation; CCl4: carbon tetrachloride. *p <  0.001, Tukey’s test. (C) Subcellular localization of C1QTNF2 protein 
in TWNT-4 cells (immunofluorescence staining). (D) Modulation of C1QTNF2 expression by apigenin and 
sorafenib in TWNT-4 cells (qRT-PCR, n =  2). (E) Modulation of C1QTNF2 protein by apigenin and sorafenib 
in TWNT-4 cells and adipose tissues (Western blotting, n =  1). Relative intensity to tubulin was calculated.
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is needed for apigenin to elicit its COL1A1-suppresive effect as we computationally predict, it may be possible 
that the status of C1QTNF2 expression can serve as a predictive marker of apigenin responses, which could be 
clarified in future studies.

Discussion
Molecular signature-based unbiased and hypothesis-free computational drug discovery has been successfully 
utilized primarily in cancer and inflammatory diseases3. Our study has demonstrated that this strategy can be 
similarly applied to anti-fibrotic drug discovery. Generation of the query gene signature in transcriptomic pro-
files of activated HSCs enabled the discovery of candidate compounds specific to the biological context, circum-
venting the need for costly large compound library screen. The identification of apigenin, already known to be 

Figure 3. Reduced C1QTNF2 mRNA and protein expression in mouse primary HSCs and ethanol-injured 
liver. (A) C1QTNF2 expression in freshly isolated (“quiescent”) and 7-day-cultured (“activated”) mouse 
primary HSCs13 (expression DNA microarray, n =  3). *p <  0.001, t-test. (B) C1QTNF2 protein expression in 
livers from mice fed with Lieber DeCarli ethanol-containing diet normalized to calnexin (Western blotting, 
n =  5). *p <  0.05, t-test. Bar graphs show mean and standard error of mean (SEM) (error bars) of replicated 
experiments.

Figure 4. Prognostic association of C1QTNF2 expression in a clinical HCV cirrhosis cohort. (A) clinical 
cohort of 216 patients with compensated HCV-related cirrhosis6 was classified into C1QTNF2-high (n =  25) and 
low (n =  101) groups, and evaluated for association with cirrhosis progression, i.e., progression of Child-Pugh 
class21 from (A) to (B) or (C). P-value was calculated by log-rank test.
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anti-fibrotic in other tissue types such as pancreas22,23, clearly indicates that our approach is a viable option to 
discover biologically relevant anti-fibrotic agents in a cost-effective manner.

Apigenin is a flavonoid, abundant in parsley and celery, that has gained interest as a health-promoting agent 
because of its low intrinsic toxicity24. Despite the promising in vitro anti-fibrogenic activity comparable to 
sorafenib14, its poor solubility limits optimal in vivo biodistribution and needs further biochemical modifications 
to improve solubility. In addition, apigenin is known to modulate the immune response18, although our in vitro 
experimental system did not uncover an immune-related activity, which could be assessed in future studies. 
C1QTNF2, which we have associated with liver disease severity and prognosis, may be a factor that potentially 
influences the outcome of apigenin-based therapy in particular, and the biology of hepatic fibrosis in general. 
C1QTNF2 is a member of C1q/TNF-related proteins that represent an adipokine family less characterized than 
other well-studied adipocytokines implicated in liver fibrosis, such as adiponectin19,25. The only known source 
of C1QTNF2 production is stromal vascular cells in adipose tissue, and the highly restricted sites of produc-
tion suggests its function is distinct from adiponectin19. Indeed, C1QTNF2 does not substitute for adiponectin 
in caloric restriction26. C1QTNF2 is known to be involved in several metabolic processes such as AMP kinase 
phosphorylation to stimulate glucose uptake in muscle cells27 and improvement of insulin and lipid tolerance in 
diet-induced obese mice28. C1QTNF2 may form heteromers with C1QTNF7 and adiponectin19. Our study sug-
gets it has a novel role in HSC biology that could maintain the cell’s quiescent state. These findings reinforce the 
value of computational approaches to drug discovery for hepatic fibrosis, and identify C1QTNF2 as a potential 
mediator of apigenin’s anti-fibrotic activity.
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